1. Field of the Invention
This application relates generally to the protection of electronic devices against surge events, and more specifically to the application of voltage switchable dielectric materials for circuit boards to protect surface mounted and embedded electronic components thereof against electric discharge events.
2. Description of Related Art
Electric discharge, such as electrostatic discharge (ESD), and electrical overstress (EOS) are among the leading causes of failure in electronic components and devices. The continuing trend to miniaturize electronic devices and the integration of increasingly smaller-scaled components into circuits causes an increase in ESD susceptibility problems. Consequently, these failures commonly lead to performance reduction or destruction of electronic devices due to unwanted overvoltage and/or overcurrent influence.
Various solutions have become available to protect electronic devices from ESD and EOS effects. To address ESD issues, engineers commonly use different capacitor based arrangements, Zener diodes, transient voltage suppression (TVS) diodes, multilayer varistors, Schottky diodes, and so forth. However, the aforementioned devices need to be mounted on circuit boards and, therefore, require additional space, in addition to increasing the complexity of the design. Moreover, most integrated circuits cannot be completely protected with existing ESD solutions.
Various embodiments relate to the use of voltage switchable dielectric materials in printed circuit boards to provide techniques for shunting currents to ground in case of an overvoltage and/or overcurrent event, thereby preventing damage to electronic components
In one embodiment, a printed circuit board is provided including at least one non-conductive layer, a conductor, a voltage switchable dielectric material (VSDM) applied to the conductor, and an electronic component having at least one lead, wherein the at least one lead is electrically coupled to the VSDM layer. The VSDM switches from being dielectric to being conductive when a voltage applied to the material exceeds a characteristic voltage level. The electronic component may be an embedded component or a surface mounted component. The electronic component may be a passive component such as a resistor, an inductor, or a capacitor. The electronic component may be an active component such as a diode, a transistor, a semiconductor device, a circuit, a chip, or an integrated circuit.
In another embodiment, a printed circuit board is provided including at least one non-conductive layer, a conductor, a voltage switchable dielectric material (VSDM) applied to the at least one non-conductive layer, and an electronic component having at least one lead, wherein the at least one lead is electrically coupled to the VSDM layer. The VSDM switches from being dielectric to being conductive when a voltage applied to the material exceeds a characteristic voltage level. The electronic component may be an embedded component or a surface mounted component. The electronic component may be a passive component such as a resistor, an inductor, or a capacitor. The electronic component may be an active component such as a diode, a transistor, a semiconductor device, a circuit, a chip, or an integrated circuit.
Embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements.
In some exemplary embodiments, protection against ESD or EOS may include using a VSDM. A VSDM may behave as an insulator at a lower voltage and a conductor at a higher voltage. A VSDM may have a specific switching voltage, which is a range between the states of low and high conductivity. The VSDM may provide a shunt to ground that protects a circuit and/or electronic component against voltage values above the switching voltage by allowing currents at the higher voltage values to pass to ground through the VSDM, rather than through the device or component being protected.
In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one. In this document, the term “or” is used to refer to a nonexclusive “or,” such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. Furthermore, all publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not to be construed as preferred or advantageous over other embodiments. Likewise, the term “embodiments” does not require that all embodiments include the discussed feature, advantage or mode of operation.
As used herein, the term printed circuit board (PCB) relates to a printed wiring board, an etched wiring board or similar substrate. PCBs are used to mechanically support and electrically connect discrete electronic components using conductive leads, wires, lines, pathways, tracks or signal traces laminated or attached onto a non-conductive substrate. In some cases, metallic leads may be included (e.g., as a layer of Cu which is subsequently etched) to provide electrical connectivity among various attached electronic components. According to some embodiments disclosed herein, the PCB can be implemented as a single substrate or a multi-layer substrate having the same or different conductivity at different layers.
As used herein, the term electronic component may refer to a passive component and/or an active component, and includes but is not limited to a resistor, an inductor, a capacitor, a diode, a transistor, a semiconductor device, a circuit, a chip, an integrated circuit, or the like. Typically, electronic components have conductive leads used for electrical connection thereof to other components or pathways. According to embodiments disclosed herein, electronic components include surface mounted components and embedded components. Electronic components can be implemented as discrete elements or as thin films (e.g. a resistive layer, a capacitance layer, etc.) and deposited or sputtered on substrates or layers of PCB.
As used herein, VSDM relates to any composition, or combination of compositions that has a characteristic of being dielectric or non-conductive, unless a field or voltage that exceeds a specific value is applied to the material, in which case the material becomes conductive. Thus, the VSDM is a dielectric unless voltage (or field) exceeding the value associated with the material (e.g. such as provided by ESD or EOS events) is applied to the material, in which case the VSDM switches to a conductive state.
The VSDM may further be defined as a nonlinear resistance material. In many applications, the characteristic voltage of VSDM ranges in values that exceed the operational voltage levels of the circuit or device several times over. Such voltage levels may be of the order of transient conditions (e.g., produced by electric charges, such as electrostatic discharge), although embodiments may include use of planned electrical events. Furthermore, one or more embodiments provide a VSDM that behaves similarly to a non-conductive or dielectric material in the absence of the voltage exceeding the characteristic voltage.
According to embodiments disclosed herein, the VSDM is a polymer-based material and may include filled polymers. The filled polymers may include a mixture of insulator, conductor, and semiconductor materials. Examples of insulative materials include but are not limited to silicone polymers, epoxy, polyimide, polyethylene, polypropylene, polyphenylene oxide, polysulphone, solgel materials, creamers, silicone dioxide, aluminum oxide, zirconia oxide, and other metal oxide insulators. Examples of conductive materials include metals, such as copper, aluminum, nickel, stainless steel, or the like. Examples of semiconductive materials include both organic and inorganic semiconductors. Some inorganic semiconductors include silicon, silicon carbide, boron nitride, aluminum nitride, nickel oxide, zinc oxide, and zinc sulfide. Examples of organic semiconductors include poly-3-exylthiophene, pentacene, perylene, carbon nanotubes, fullerenes, or the like. A specific formulation and composition may be selected for mechanical and electrical properties well suited to the particular application of the VSDM.
Additionally, one or more embodiments disclosed herein incorporate a VSDM layer over a PCB. The VSDM layer may provide a shunt to ground that protects a circuit and/or electronic component against voltages above the switching voltage by allowing currents at these voltages to pass to ground through the VSDM layer, rather than through the circuit and/or electronic component being protected.
An electronic component 230 that is to be protected (e.g., a resistor, inductor, capacitor, diode, transistor, circuit, chip, and the like) may be mounted on the VSDM layer 210. In some cases, the electronic component 230 may be a surface mounted device. According to another embodiment, the electronic component 230 may be a substantially planar device deposited directly on the VSDM layer 210 (e.g., as resistive ink). Furthermore, the electronic component 230 may include one or more leads 240 (e.g., Cu leads). During an overvoltage event (e.g., an ESD or EOS event) involving the electronic component 230, current may be shunted from the leads 240 (and/or the component 230) through the VSDM layer 210 to the conductor 220. The current may bridge a gap 250 between the component 230 and/or the lead 240 and a conductive pad 260, which may be electrically connected to the conductor 220 by a via 270.
The electronic component 230 may be characterized by one or more specifications such as a resistance, an inductance, a capacitance, or the like. In some cases, the ability to withstand an overvoltage and/or overcurrent event may not be specified. For example, a resistor may be designed to provide a resistance of 1 ohm during normal use (e.g., at voltages up to 10 volts) but may be damaged by higher voltages, and a similar resistor designed to be damage resistant may be too large in scale for a given application. Protecting a smaller resistor using a VSDM may allow the use of smaller components, which may be advantageous in packages such as PCB assemblies. While larger resistors such as 0603 and 0402 resistors may be large enough to withstand an overvoltage or overcurrent event, smaller resistors such as 0201 and 01005 resistors may require protection to maintain the integrity of the circuit.
Any of the VSDM layer 210, the conductor 220, and the electronic component 230 may be disposed on the surface of the substrate 202, or be inside (e.g., embedded in) the substrate 202. In some embodiments, the VSDM layer 210 and the electronic component 230 are embedded in a PCB (e.g., fabricated as layers in a PCB stackup). The stackup 200 may be embedded by adding and processing additional PCB components (e.g., additional layers of prepreg).
During an overvoltage event (e.g., an ESD or EOS event) involving the component 430, excess current may be shunted to ground, rather than passing through the component 430 at a level that damages the component 430. The current may be shunted by passing through the VSDM layer 210, which may include a gap 450. In some cases, additional layers (e.g., a film associated with the component 430) may be present in a condition that does not deleteriously affect the ESD/EOS protection capabilities of the VSDM layer 210 (e.g., a resistive film may be particularly thin, so the resistive layer 432 may be disposed beneath the leads 440 when the resistive layer 432 is particularly thin).
In case of an overvoltage event related to an ESD or EOS involving the component 430, overcurrent may be shunted to ground, rather than passing through the electronic component 430. The excess current may be shunted by passing through the VSDM layer 210, which may include a gap 550.
The VSDM layer 210 may include a gap 750. During an overvoltage event involving the electronic component 430, excess current may be shunted to ground via the gap 750 of the VSDM layer 210, rather than passing through the component 430 itself, thereby protecting component 430 from damage or destruction.
Some embodiments may include sensors to sense various parameters (e.g., current, voltage, power, resistance, resistivity, inductance, capacitance, thickness, strain, temperature, stress, concentration, depth, length, width, switching voltage and/or voltage density (between insulating and conducting), trigger voltage, clamp voltage, off-state current passage, dielectric constant, time, date, and other characteristics). Various apparatuses may monitor various sensors, and systems may be actuated by automated controls (solenoid, pneumatic, piezoelectric, and the like). Some embodiments may include a computer-readable storage medium coupled to a processor and memory. Executable instructions stored on the computer readable storage medium may be executed by the processor to perform, control or monitor various methods of operating and/or protecting electronic components arranged in PCBs. Sensors and actuators may be coupled to the processor, providing input and receiving instructions associated with various methods. Certain instructions may be provided for closed-loop control of various parameters via coupled sensors providing input and coupled actuators receiving instructions to adjust parameters. Various embodiments may include different electronic devices such as telephones (e.g., cell phones), Universal Serial Bus (USB)-devices (e.g., a USB-storage device), personal digital assistants (PDAs), laptop computers, netbook computers, tablet Personal Computer (PC), light emitting diodes (LEDs), and the like.
The foregoing description is provided to enable any person skilled in the art to make or use specific embodiments. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the disclosure. Thus, the present disclosure is not intended to be limited to the embodiments described herein but is to be accorded the widest scope consistent with the principles disclosed herein.
This nonprovisional patent application claims the priority benefit of U.S. provisional application No. 61/308,825 filed on Feb. 26, 2010, titled “Protecting Embedded Components,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3347724 | Schneble, Jr. et al. | Oct 1967 | A |
3685026 | Wakabayashi et al. | Aug 1972 | A |
3685028 | Wakabayashi et al. | Aug 1972 | A |
3723635 | Smith | Mar 1973 | A |
3808576 | Castonguay et al. | Apr 1974 | A |
3926916 | Mastrangelo | Dec 1975 | A |
3977957 | Kosowsky et al. | Aug 1976 | A |
4113899 | Henry et al. | Sep 1978 | A |
4133735 | Afromowitz et al. | Jan 1979 | A |
4252692 | Taylor et al. | Feb 1981 | A |
4269672 | Inoue | May 1981 | A |
4331948 | Malinaric et al. | May 1982 | A |
4359414 | Mastrangelo | Nov 1982 | A |
4405432 | Kosowsky | Sep 1983 | A |
4439809 | Weight et al. | Mar 1984 | A |
4506285 | Einzinger et al. | Mar 1985 | A |
4591411 | Reimann | May 1986 | A |
4642160 | Burgess | Feb 1987 | A |
4702860 | Kinderov et al. | Oct 1987 | A |
4714952 | Takekawa et al. | Dec 1987 | A |
4726877 | Fryd et al. | Feb 1988 | A |
4726991 | Hyatt et al. | Feb 1988 | A |
4799128 | Chen | Jan 1989 | A |
4888574 | Rice et al. | Dec 1989 | A |
4892776 | Rice | Jan 1990 | A |
4918033 | Bartha et al. | Apr 1990 | A |
4928199 | Diaz et al. | May 1990 | A |
4935584 | Boggs | Jun 1990 | A |
4977357 | Shrier | Dec 1990 | A |
4992333 | Hyatt | Feb 1991 | A |
4996945 | Dix, Jr. | Mar 1991 | A |
5068634 | Shrier | Nov 1991 | A |
5092032 | Murakami | Mar 1992 | A |
5095626 | Kitamura et al. | Mar 1992 | A |
5099380 | Childers et al. | Mar 1992 | A |
5142263 | Childers et al. | Aug 1992 | A |
5148355 | Lowe et al. | Sep 1992 | A |
5167778 | Kaneko et al. | Dec 1992 | A |
5183698 | Stephenson et al. | Feb 1993 | A |
5189387 | Childers et al. | Feb 1993 | A |
5246388 | Collins et al. | Sep 1993 | A |
5248517 | Shrier et al. | Sep 1993 | A |
5252195 | Kobayashi et al. | Oct 1993 | A |
5260848 | Childers | Nov 1993 | A |
5262754 | Collins | Nov 1993 | A |
5278535 | Xu et al. | Jan 1994 | A |
5282312 | DiStefano et al. | Feb 1994 | A |
5294374 | Martinez et al. | Mar 1994 | A |
5295297 | Kitamura et al. | Mar 1994 | A |
5300208 | Angelopoulos et al. | Apr 1994 | A |
5317801 | Tanaka et al. | Jun 1994 | A |
5340641 | Xu | Aug 1994 | A |
5347258 | Howard et al. | Sep 1994 | A |
5354712 | Ho et al. | Oct 1994 | A |
5367764 | DiStefano et al. | Nov 1994 | A |
5378858 | Bruckner et al. | Jan 1995 | A |
5380679 | Kano | Jan 1995 | A |
5393597 | Childers et al. | Feb 1995 | A |
5403208 | Felcman et al. | Apr 1995 | A |
5404637 | Kawakami | Apr 1995 | A |
5413694 | Dixon et al. | May 1995 | A |
5416662 | Kurasawa et al. | May 1995 | A |
5440075 | Kawakita et al. | Aug 1995 | A |
5444593 | Allina | Aug 1995 | A |
5476471 | Shifrin et al. | Dec 1995 | A |
5481795 | Hatakeyama et al. | Jan 1996 | A |
5483407 | Anastasio et al. | Jan 1996 | A |
5487218 | Bhatt et al. | Jan 1996 | A |
5493146 | Pramanik et al. | Feb 1996 | A |
5501350 | Yoshida et al. | Mar 1996 | A |
5502889 | Casson et al. | Apr 1996 | A |
5510629 | Karpovich et al. | Apr 1996 | A |
5550400 | Takagi et al. | Aug 1996 | A |
5557136 | Gordon et al. | Sep 1996 | A |
5654564 | Mohsen | Aug 1997 | A |
5669381 | Hyatt | Sep 1997 | A |
5685070 | Alpaugh et al. | Nov 1997 | A |
5708298 | Masayuki et al. | Jan 1998 | A |
5714794 | Tsuyama et al. | Feb 1998 | A |
5734188 | Murata et al. | Mar 1998 | A |
5744759 | Ameen et al. | Apr 1998 | A |
5781395 | Hyatt | Jul 1998 | A |
5802714 | Kobayashi et al. | Sep 1998 | A |
5807509 | Shrier et al. | Sep 1998 | A |
5808351 | Nathan et al. | Sep 1998 | A |
5834160 | Ferry et al. | Nov 1998 | A |
5834824 | Shepherd et al. | Nov 1998 | A |
5834893 | Bulovic et al. | Nov 1998 | A |
5848467 | Khandros et al. | Dec 1998 | A |
5856910 | Yurchenco et al. | Jan 1999 | A |
5865934 | Yamamoto et al. | Feb 1999 | A |
5869869 | Hively | Feb 1999 | A |
5874902 | Heinrich et al. | Feb 1999 | A |
5906042 | Lan et al. | May 1999 | A |
5910685 | Watanabe et al. | Jun 1999 | A |
5926951 | Khandros et al. | Jul 1999 | A |
5940683 | Holm et al. | Aug 1999 | A |
5946555 | Crumly et al. | Aug 1999 | A |
5955762 | Hively | Sep 1999 | A |
5956612 | Elliott et al. | Sep 1999 | A |
5962815 | Lan et al. | Oct 1999 | A |
5970321 | Hively | Oct 1999 | A |
5972192 | Dubin et al. | Oct 1999 | A |
5977489 | Crotzer et al. | Nov 1999 | A |
6013358 | Winnett et al. | Jan 2000 | A |
6023028 | Neuhalfen | Feb 2000 | A |
6064094 | Intrater et al. | May 2000 | A |
6108184 | Minervini et al. | Aug 2000 | A |
6114672 | Iwasaki | Sep 2000 | A |
6130459 | Intrater | Oct 2000 | A |
6160695 | Winnett et al. | Dec 2000 | A |
6172590 | Shrier et al. | Jan 2001 | B1 |
6184280 | Shituba | Feb 2001 | B1 |
6191928 | Rector et al. | Feb 2001 | B1 |
6198392 | Hahn et al. | Mar 2001 | B1 |
6211554 | Whitney et al. | Apr 2001 | B1 |
6239687 | Shrier et al. | May 2001 | B1 |
6251513 | Rector et al. | Jun 2001 | B1 |
6310752 | Shrier et al. | Oct 2001 | B1 |
6316734 | Yang | Nov 2001 | B1 |
6340789 | Petritsch et al. | Jan 2002 | B1 |
6351011 | Whitney et al. | Feb 2002 | B1 |
6373719 | Behling et al. | Apr 2002 | B1 |
6407411 | Wojnarowski | Jun 2002 | B1 |
6433394 | Intrater | Aug 2002 | B1 |
6448900 | Chen | Sep 2002 | B1 |
6455916 | Robinson | Sep 2002 | B1 |
6468593 | Iazawa | Oct 2002 | B1 |
6512458 | Kobayashi et al. | Jan 2003 | B1 |
6534422 | Ichikawa et al. | Mar 2003 | B1 |
6542065 | Shrier et al. | Apr 2003 | B2 |
6549114 | Whitney et al. | Apr 2003 | B2 |
6570765 | Behling et al. | May 2003 | B2 |
6593597 | Sheu | Jul 2003 | B2 |
6621172 | Nakayama et al. | Sep 2003 | B2 |
6628498 | Whitney et al. | Sep 2003 | B2 |
6642297 | Hyatt et al. | Nov 2003 | B1 |
6657532 | Shrier et al. | Dec 2003 | B1 |
6677183 | Sakaguchi et al. | Jan 2004 | B2 |
6693508 | Whitney et al. | Feb 2004 | B2 |
6709944 | Durocher et al. | Mar 2004 | B1 |
6741217 | Toncich et al. | May 2004 | B2 |
6797145 | Kosowsky | Sep 2004 | B2 |
6882051 | Majumdar et al. | Apr 2005 | B2 |
6903175 | Gore et al. | Jun 2005 | B2 |
6911676 | Yoo | Jun 2005 | B2 |
6916872 | Yadav et al. | Jul 2005 | B2 |
6981319 | Shrier | Jan 2006 | B2 |
7034652 | Whitney et al. | Apr 2006 | B2 |
7049926 | Shrier et al. | May 2006 | B2 |
7053468 | Lee | May 2006 | B2 |
7064353 | Bhat | Jun 2006 | B2 |
7067840 | Klauk | Jun 2006 | B2 |
7132697 | Weimer et al. | Nov 2006 | B2 |
7132922 | Harris et al. | Nov 2006 | B2 |
7141184 | Chacko et al. | Nov 2006 | B2 |
7173288 | Lee et al. | Feb 2007 | B2 |
7183891 | Harris et al. | Feb 2007 | B2 |
7202770 | Harris et al. | Apr 2007 | B2 |
7205613 | Fjelstand et al. | Apr 2007 | B2 |
7218492 | Shrier | May 2007 | B2 |
7279724 | Collins et al. | Oct 2007 | B2 |
7320762 | Greuter et al. | Jan 2008 | B2 |
7341824 | Sexton | Mar 2008 | B2 |
7417194 | Shrier | Aug 2008 | B2 |
7446030 | Kosowsky | Nov 2008 | B2 |
7488625 | Knall | Feb 2009 | B2 |
7492504 | Chopra et al. | Feb 2009 | B2 |
7528467 | Lee | May 2009 | B2 |
7535462 | Spath et al. | May 2009 | B2 |
7585434 | Morita | Sep 2009 | B2 |
7593203 | Dudnikov et al. | Sep 2009 | B2 |
7609141 | Harris et al. | Oct 2009 | B2 |
7692270 | Subramanyam et al. | Apr 2010 | B2 |
7872251 | Kosowsky et al. | Jan 2011 | B2 |
7923844 | Kosowsky | Apr 2011 | B2 |
8045312 | Shrier | Oct 2011 | B2 |
20020004258 | Nakayama et al. | Jan 2002 | A1 |
20020050912 | Shrier et al. | May 2002 | A1 |
20020061363 | Halas et al. | May 2002 | A1 |
20030010960 | Greuter et al. | Jan 2003 | A1 |
20030025587 | Whitney et al. | Feb 2003 | A1 |
20030071245 | Harris, VI | Apr 2003 | A1 |
20030079910 | Kosowsky | May 2003 | A1 |
20030151029 | Hsu | Aug 2003 | A1 |
20030218851 | Harris et al. | Nov 2003 | A1 |
20040000725 | Lee | Jan 2004 | A1 |
20040062041 | Cross et al. | Apr 2004 | A1 |
20040063839 | Kawate et al. | Apr 2004 | A1 |
20040095658 | Buretea et al. | May 2004 | A1 |
20040154828 | Moller et al. | Aug 2004 | A1 |
20040160300 | Shrier | Aug 2004 | A1 |
20040201941 | Harris et al. | Oct 2004 | A1 |
20040211942 | Clark et al. | Oct 2004 | A1 |
20040241894 | Nagai et al. | Dec 2004 | A1 |
20040262583 | Lee et al. | Dec 2004 | A1 |
20050026334 | Knall | Feb 2005 | A1 |
20050039949 | Kosowsky | Feb 2005 | A1 |
20050057867 | Harris et al. | Mar 2005 | A1 |
20050083163 | Shrier | Apr 2005 | A1 |
20050106098 | Tsang et al. | May 2005 | A1 |
20050121653 | Chacko | Jun 2005 | A1 |
20050175938 | Casper et al. | Aug 2005 | A1 |
20050184387 | Collins et al. | Aug 2005 | A1 |
20050218380 | Gramespacher et al. | Oct 2005 | A1 |
20050255631 | Bureau et al. | Nov 2005 | A1 |
20050274455 | Extrand | Dec 2005 | A1 |
20050274956 | Bhat | Dec 2005 | A1 |
20050275070 | Hollingsworth | Dec 2005 | A1 |
20060060880 | Lee et al. | Mar 2006 | A1 |
20060069199 | Charati et al. | Mar 2006 | A1 |
20060142455 | Agarwal | Jun 2006 | A1 |
20060152334 | Maercklein et al. | Jul 2006 | A1 |
20060166474 | Vereecken et al. | Jul 2006 | A1 |
20060167139 | Nelson et al. | Jul 2006 | A1 |
20060181826 | Dudnikov, Jr. et al. | Aug 2006 | A1 |
20060181827 | Dudnikov, Jr. et al. | Aug 2006 | A1 |
20060193093 | Bertin | Aug 2006 | A1 |
20060199390 | Dudnikov, Jr. et al. | Sep 2006 | A1 |
20060211837 | Ko et al. | Sep 2006 | A1 |
20060214156 | Pan et al. | Sep 2006 | A1 |
20060234127 | Kim | Oct 2006 | A1 |
20060291127 | Kim et al. | Dec 2006 | A1 |
20070114640 | Kosowsky | May 2007 | A1 |
20070116976 | Tan et al. | May 2007 | A1 |
20070123625 | Dorade et al. | May 2007 | A1 |
20070126018 | Kosowsky | Jun 2007 | A1 |
20070139848 | Harris et al. | Jun 2007 | A1 |
20070146941 | Harris et al. | Jun 2007 | A1 |
20070208243 | Gabriel et al. | Sep 2007 | A1 |
20070241458 | Ding et al. | Oct 2007 | A1 |
20080045770 | Sigmund et al. | Feb 2008 | A1 |
20080047930 | Blanchet et al. | Feb 2008 | A1 |
20080073114 | Kosowsky et al. | Mar 2008 | A1 |
20080144355 | Boeve et al. | Jun 2008 | A1 |
20080223603 | Kim et al. | Sep 2008 | A1 |
20080278873 | Leduc et al. | Nov 2008 | A1 |
20080313576 | Kosowsky et al. | Dec 2008 | A1 |
20090044970 | Kosowsky | Feb 2009 | A1 |
20090309074 | Chen et al. | Dec 2009 | A1 |
20090310265 | Fukuoka et al. | Dec 2009 | A1 |
20100038119 | Kosowsky | Feb 2010 | A1 |
20100038121 | Kosowsky | Feb 2010 | A1 |
20100040896 | Kosowsky | Feb 2010 | A1 |
20100044079 | Kosowsky | Feb 2010 | A1 |
20100044080 | Kosowsky | Feb 2010 | A1 |
20100047535 | Kosowsky et al. | Feb 2010 | A1 |
20100187006 | Kosowsky et al. | Jul 2010 | A1 |
20100243302 | Kosowsky et al. | Sep 2010 | A1 |
20100270588 | Kosowsky et al. | Oct 2010 | A1 |
20110061230 | Kosowsky | Mar 2011 | A1 |
20110062388 | Kosowsky et al. | Mar 2011 | A1 |
20110211289 | Kosowsky et al. | Sep 2011 | A1 |
20110317318 | Fleming et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
663491 | Dec 1987 | CH |
3040784 | May 1982 | DE |
10115333 | Jan 2002 | DE |
102004049053 | May 2005 | DE |
102006047377 | Apr 2008 | DE |
0790758 | Aug 1997 | EP |
0930623 | Jul 1999 | EP |
1003229 | May 2000 | EP |
1245586 | Oct 2002 | EP |
1542240 | Jun 2005 | EP |
1580809 | Sep 2005 | EP |
1990834 | Nov 2008 | EP |
56091464 | Jul 1981 | JP |
63 195275 | Aug 1988 | JP |
2000062076 | Feb 2000 | JP |
WO8906859 | Jul 1989 | WO |
WO9602922 | Feb 1996 | WO |
WO9602924 | Feb 1996 | WO |
WO9726665 | Jul 1997 | WO |
WO9823018 | May 1998 | WO |
WO9924992 | May 1999 | WO |
WO02103085 | Dec 2002 | WO |
WO2005100426 | Oct 2005 | WO |
WO2006130366 | Dec 2006 | WO |
WO2007062170 | May 2007 | WO |
WO2007062171 | May 2007 | WO |
WO2008016858 | Feb 2008 | WO |
WO2008016859 | Feb 2008 | WO |
WO2008153584 | Dec 2008 | WO |
Entry |
---|
Breton et al., “Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology,” Carbon Elsevier UK, vol. 42, No. 5-6, pp. 1027-1030 (2004). |
Celzard, A., et al., “Conduction Mechanisms in Some Graphite-polymer Composites: The Effect of a Direct-current Electric Field”, Journal of Physics: Condensed Matter, 9 (1997) pp. 2225-2237. |
Facchetti, Antonio, “Semiconductors for Organic Transistors”, Materials Today, vol. 10, No. 3, pp. 28-37. |
Fullerene Chemistry—Wikipedia, http://en.wikipedia.org/wiki/Fullerene/chemistry, 6 pages, printed Apr. 8, 2010. |
Granstrom et al., “Laminated fabrication of polymeric photovoltaic diodes,” Nature, vol. 395, pp. 257-260 (1998). |
Guo et al., “Block Copolymer Modified Novolac Epoxy Resin,” Polymer Physics, vol. 41, No. 17, pp. 1994-2003 (2003). |
Levinson et al. “The Physics of Metal Oxide Varistors,” J. App. Phys. 46 (3): 1332-1341 (1975). |
Modine, F.A. and Hyatt, H.M. “New Varistor Material”, Journal of Applied Physics, 64 (8), Oct. 15, 1988, pp. 4229-4232. |
Onoda et al., “Photoinduced Charge Transfer of Conducting Polymer Compositions,” IEICE Trans. Electronics, vol. E81-C(7), pp. 1051-1056 (1998). |
Raffaelle et al., “Nanomaterial Development for Polymeric Solar Cells,” IEEE 4th World Conf on Photovoltaic energy Conversion, pp. 186-189 (2006). |
Reese, Colin and Bao, Zhenan, “Organic Single-Crystal Field-Effect Transistors”, Materials Today, vol. 10, No. 3, pp. 20-27. |
Saunders et al., “Nanoparticle-polymer photovoltaic cells,” Adv. Colloid Int. Sci., vol. 138, No. 1, pp. 1-23 (2007). |
Number | Date | Country | |
---|---|---|---|
20110211319 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61308825 | Feb 2010 | US |