Claims
- 1. Electrically conductive microparticles characterized by high conductivity and low density, said microparticles comprising hollow microballoons of a ceramic silicate composition containing magnetic impurities imparting permanent magnet properties which render the microballoons magnetically attractive to one another to form a network of contacting particles, and a plating of an electrically conductive metal uniformly covering the surface of said microballoons and imparting electrically conductive properties thereto.
- 2. Electrically conductive microparticles according to claim 1 wherein said microballoons have a diameter of from 1 to 500 microns and a specific gravity of 0.2 to 2.
- 3. Electrically conductive microparticles characterized by high conductivity and low density, said microparticles comprising hollow ceramic magnetic centospheres derived from the ash from coal-fired furnaces and having permanent magnet properties which render the microballoons magnetically attractive to one another to form a network of contacting particles, and a plating of an electrically conductive metal uniformly covering the surface of said microballoons and imparting electrically conductive properties thereto.
- 4. Electrically conductive microparticles characterized by high conductivity and low density, said microparticles comprising hollow microballoons formed of a ceramic silicate composition and having permanent magnet properties which render the microballoons magnetically attractive to one another to form a network of contacting particles, said microballoons having a diameter of between about 1 and 500 microns and a specific gravity of between about 0.2 and 2; and an electrically conductive coating of metal uniformly covering the surface of said microballoons and imparting electrical conductivity thereto, said metal being chosen from the group consisting of silver, copper, nickel, gold, platinum, palladium, osmium, iridium, and tin and alloys consisting essentially of these metals.
- 5. Electrically conductive microparticles according to claim 4 wherein said ceramic silicate composition additionally includes a magnetic material selected from the group consisting of iron, nickel, iron oxide, ferrite, or mixtures of these materials imparting magnetic properties to the microballoons.
- 6. Electrically conductive microparticles characterized by high conductivity and low density, said microparticles comprising hollow ceramic magnetic microballoons derived from the ash from coal-fired furnaces, said microballoons having permanent magnet properties which render the microballoons magnetically attractive to one another to form a network of contacting particles, and said microballoons having a diameter of from 1 to 500 microns and a specific gravity of between about 0.2 and 2, and a bright mirror-like silver plating uniformly covering the surface of said microballoons and imparting electrical conductivity thereto.
- 7. The invention according to claim 6 wherein said electrically conductive microparticles are dispersed in an electrically non-conductive matrix and are magnetically attracted to one another to form an electrically conductive network.
- 8. The invention according to claim 1 or 6 wherein said electrically conductive microparticles are adhered to an electrically non-conductive base and are magnetically attracted to one another to form an electrically conductive network.
- 9. The invention according to claim 1 or 6 wherein said electrically conductive microparticles are dispersed in an electrically non-conductive polymeric adhesive and are magnetically attracted to one another to form an electrically conductive network.
- 10. The invention according to claim 1 or 6 wherein said electrically conductive microparticles are dispersed in an electrically non-conductive liquid and are magnetically attracted to one another to form an electrically conductive network.
- 11. The invention according to claim 1 wherein said electrically conductive microparticles are dispersed in an electrically non-conductive matrix and are magnetically attracted to one another to form an electrically conductive network.
CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of commonly-owned copending application Ser. No. 612,622, filed May 21, 1984.
US Referenced Citations (14)
Foreign Referenced Citations (4)
Number |
Date |
Country |
36940 |
Oct 1981 |
EPX |
3210770 |
Sep 1983 |
DEX |
94106 |
Nov 1972 |
DDX |
542909 |
Nov 1973 |
CHX |
Non-Patent Literature Citations (2)
Entry |
"Effects of Particle Type on the Conductivity of Silvered Glass in Reinforced Composites" by Richard E. Heinze and James R. Ritter. |
Annual Technical Conference 1977-Reinforced Plastics/Composites Institute-The Society of Plastics Industry Inc.-Section 8-D, pp. 1-3. |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
612622 |
May 1984 |
|