1. Technical Field
The present invention relates to a junction box for power sources, and specifically to a junction box for electrically connecting to a photovoltaic panel.
2. Description of Related Art
A photovoltaic module or photovoltaic panel is a packaged interconnected assembly of photovoltaic cells, also known as solar cells. Since a single photovoltaic module can only produce a limited amount of power, commercial installations include several modules or panels interconnected in serial and in parallel into a photovoltaic array. Electrical connections are made in series to achieve a desired output voltage and/or in parallel to provide a desired amount of current source capability. A photovoltaic installation typically includes the array of photovoltaic modules, an inverter, batteries and interconnection wiring.
When part of a photovoltaic module is shaded, the shaded cells do not produce as much current as the unshaded cells. Since photovoltaic cells are connected in series, the same amount of current must flow through every serially connected cell. The unshaded cells force the shaded cells to pass more current. The only way the shaded cells can operate at a higher current is to operate in a region of negative voltage that is to cause a net voltage loss to the system. The current times this negative voltage gives the negative power produced by the shaded cells. The shaded cells dissipate power as heat and cause “hot spots”. Bypass diodes are therefore integrated with the photovoltaic modules to avoid overheating of cells in case of partial shading of the photovoltaic module.
Blocking diodes may be placed in series with cells or modules to block reverse leakage current backwards through the modules such as to block reverse flow of current from a battery through the module at night or to block reverse flow down damaged modules from parallel-connected modules during the day.
Electronic modules may be integrated with the photovoltaic modules which perform electrical conversion, e.g. direct current (DC) to direct current conversion, electrical inversion, e.g. micro-inverter, or other functions such as monitoring of performance and/or protection against theft.
U.S. Pat. No. 7,291,036 discloses a photovoltaic connection system including a connection box with for surface mounted diodes mounted on a printed circuit board inside of the connection box. The connection box optionally includes a metal plate mounted inside the lid of the connection box as a heat sink for dissipating heat from the diodes.
The term “cable gland” as used herein refers to a device used for the entry of electrical cables or cords into electrical equipment and is used to firmly secure an electrical cable entering a piece of electrical equipment.
The term “in situ” in the context of the present invention refers to bonding or attaching during manufacture, e.g. injection molding, of a part as opposed to attaching after manufacture of the part.
According to an aspect of the present invention there is provided a junction box used for making electrical connections to a photovoltaic panel. The junction box has two chambers including a first chamber and a second chamber and a wall common to and separating both chambers. The wall may be adapted to have an electrical connection therethrough. The two lids are adapted to seal respectively the two chambers. The two lids are configured to be on opposite sides of the junction box relative to the photovoltaic panel. The two lids may be attachable using different sealing processes. One of the lids may be adapted to seal the first chamber and the other lid may seal the second chamber to a different level of hermeticity from that of the first chamber. The first chamber may be adapted to receive a circuit board for electrical power conversion of the power output of the photovoltaic panel. The junction box may include supports for mounting a printed circuit board in the first chamber. The second chamber is configured for electrical connection to the photovoltaic panel. The second chamber may optionally be configured to include diodes, e.g. bypass and/or blocking diodes. The junction box may have electrical connection terminals mounted inside the second chamber for connecting a circuit to the photovoltaic panel. A metal heat sink may be bonded inside the first chamber. The first chamber is adapted to receive a circuit board for electrical power conversion, and the metal heat sink is adapted to dissipate heat generated by the circuit board. The heat sink is placed inside an injection mold during manufacture of the junction box. The junction box may further include a pad adapted to provide thermal conduction and electrical insulation between the circuit board and the metal heat sink. The metal heat sink may include a dovetail structure adapted to prevent mutual separation of the metal heat sink from the junction box. The dovetail structure may be hollow.
According to an aspect of the present invention there is provided a junction box used for making electrical connections to a photovoltaic panel. The junction box has a metal heat sink bonded in situ inside the first chamber. The first chamber is adapted to receive a circuit board for electrical power conversion, and the metal heat sink is adapted to dissipate heat generated by the circuit board. The junction box optionally may have two chambers including a first chamber and a second chamber and a wall common to and separating both chambers. Two lids may be adapted to seal respectively the two chambers. The metal heat sink may include a dovetail structure adapted to prevent mutual separation of the metal heat sink from the junction box. The wall may have an electrical connection therethrough.
Aspects of the invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:
The foregoing and/or other aspects will become apparent from the following detailed description when considered in conjunction with the accompanying drawing figures.
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below to explain the present invention by referring to the figures.
By way of introduction, diodes and/or electronic modules within junction boxes attached to the photovoltaic modules dissipate heat. When insulating junction boxes are used, heat must be dissipated mostly through air inside the junction box. When metallic junction boxes are used then heat may be dissipated directly through the junction box. However, the use of a metallic junction boxes may be inconvenient because of regulations which require accessible metallic surfaces to be grounded and extra wiring is required.
Before explaining exemplary embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of design and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
Referring now to the drawings,
Chamber A includes circuit board 260, thermally conductive pad 262, heat sink 264, outer casing 102 and lid 108. Circuit board 260 is preferably mounted on supports adapted to receive circuit board 260. Thermal pad 262 provides electrical isolation and thermal conductivity between heat sink 264 and circuit board 260. The component side of circuit board 260 is preferably in contact with thermal pad 262 so that heat created by the components of circuit board 260 is dissipated by heat sink 264 via thermal pad 262. Radio Frequency Interference (RFI) emission from junction box 12 as a result of the operation of circuit board 260 is reduced by having the side of lid 108 coated in an electrically conductive shielding 108a. Shielding 108a connects electrically to heat sink 264 to form a Faraday cage which suppresses RFI emission from junction box 12.
Lid 108 according to an aspect of the present invention is preferably manufactured by an injection molding process. During the injection molding process of lid 207 a shield 108a may be placed in situ and bonded to lid 108 during the injection molding process. Thus, when lid 108 is attached to box chamber A; junction box 12 is electrically isolated by heat sink 264 and shield 108a. Outer casing 102 and lid 108 additionally provide a non-electrically conductive isolation of heat sink 264 and shield 108a between the backside 4 of panel 16 and the exterior of junction box 12. Lid 108 is optionally permanently and/or hermetically sealed to chamber A.
Chamber B includes terminal 104, support 214, bypass diode 110, lid 106, bus bar 212 and wall 202. Wall 202 provides physical separation between chambers A and B. Electrical connectivity between circuit board 260 in chamber A and electrical connector 104 in chamber B is via bus bar 212. Bus bar 212 is sealed in wall 202 in such a way as to preserve the desired hermeticity of chamber A for example against the ingress of water or humidity. Both electrical connector 104 and bus bar 212 are supported mechanically by support 214. Support 214 may also provide hermetic sealing and/or electrical isolation between one end of connector 104 which connects to bus bar 212 and the other end of connector 104 which connects to connections provided by photovoltaic panel 16. Bypass diode 110 connected to connector 104 may be located between support 214 or backside 4 of panel 16 or between support 214 and lid 106. Lid 106 gives access to chamber B whilst junction box 12 is physically attached photovoltaic panel 16 but electrically isolated from panel 16. A preferred mechanism of attaching lid 106 to junction box 12 is to use a rubber gasket arrangement such that chamber B is hermetically sealed against for example the ingress of water/humidity through lid 106 into chamber B.
According to another embodiment of the present invention, junction box 12 is constructed with a double wall 202 so that chamber A and chamber B are mutually separable and re-attachable. Similarly, bus bar 212 is re-connectable between chamber A and chamber B. In this embodiment, a failure within the electronics of circuit board 260 may be repaired by replacing chamber A with a new circuit board 260 without requiring disconnection of chamber B from photovoltaic panel 16. Similarly, an electronics upgrade may be easily achieved.
Junction box 12 including casing 102, lids 108/106, heat sink 264, and thermal pad 262 are preferably adapted to comply with temperature and insulation standard of IEC 61215 (Ed. 2) or other applicable industry standards for use with connection to photovoltaic panels. Junction box 12 and lids 108/106 may be manufactured by injection molding of acrylonitrile butadiene styrene (ABS) thermoplastic, Polybutylene terephthalate (PBT), Poly(p-phenylene oxide) (PPO) or a thermoset such as epoxy resin.
The manufacture of box chamber sections A and B of junction box 12 in a preferred embodiment of the present invention is by an injection molding process. During the injection molding process heat sink 264 with or without dovetail structure 264a is placed inside box chamber A and is bonded in situ to box chamber A as a result of the injection molding process.
Additional strength of the bonding between heat sink 264 and box chamber A may be provided by a dovetail structure 264a which may be an integral part of heat sink 264. A further function of dovetail structure 264a ensures that the bonding between heat sink 264 and chamber A remains intact when for example junction box 12 is subjected to thermal stresses as a result of electronic components operating inside chamber A, high ambient heat and sunlight when junction box 12 attached to a photovoltaic panel. Where a fastener, e.g. screw is used to fasten chamber A to heat sink 264, the lateral dimensions of dovetail structure 264a is typically increased in order to accommodate the size of the fastener. A further feature of dovetail structure 264a is a hollow structure within dovetail structure 264a which allows for a deformation of dovetail structure 264a. The deformation of dovetail structure 264a allows for the different rates of thermal expansion of enclosure 102 and heat sink 264/dovetail structure 264a during the curing/cooling of the bond between heat sink 264 and enclosure 102 of chamber A.
Reference is now made to
The articles “a” “an” as used herein mean “one or more” such as “a heat-sink”, “a circuit board” have the meaning of “one or more” that is “one or more heat-sinks” or “one or more circuit boards”.
Although selected embodiments of the present invention have been shown and described, it is to be understood the present invention is not limited to the described embodiments. Instead, it is to be appreciated that changes may be made to these embodiments without departing from the principles and spirit of the invention, the scope of which is defined by the claims and the equivalents thereof.
This application claims benefit from U.S. patent application 61/180,455 filed May 22, 2009, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3369210 | Manickella | Feb 1968 | A |
3596229 | Hohorst | Jul 1971 | A |
4171861 | Hohorst | Oct 1979 | A |
4452867 | Conforti | Jun 1984 | A |
4460232 | Sotolongo | Jul 1984 | A |
4623753 | Feldman et al. | Nov 1986 | A |
4637677 | Barkus | Jan 1987 | A |
4641079 | Kato et al. | Feb 1987 | A |
4783728 | Hoffman | Nov 1988 | A |
4903851 | Slough | Feb 1990 | A |
4987360 | Thompson | Jan 1991 | A |
5045988 | Gritter et al. | Sep 1991 | A |
5280232 | Kohl et al. | Jan 1994 | A |
5460546 | Kunishi et al. | Oct 1995 | A |
5497289 | Sugishima et al. | Mar 1996 | A |
5548504 | Takehara | Aug 1996 | A |
5604430 | Decker et al. | Feb 1997 | A |
5646501 | Fishman et al. | Jul 1997 | A |
5773963 | Blanc et al. | Jun 1998 | A |
5780092 | Agbo et al. | Jul 1998 | A |
5798631 | Spee et al. | Aug 1998 | A |
5801519 | Midya et al. | Sep 1998 | A |
5804894 | Leeson et al. | Sep 1998 | A |
5821734 | Faulk | Oct 1998 | A |
5822186 | Bull et al. | Oct 1998 | A |
5838148 | Kurokami et al. | Nov 1998 | A |
5869956 | Nagao et al. | Feb 1999 | A |
5873738 | Shimada et al. | Feb 1999 | A |
5892354 | Nagao et al. | Apr 1999 | A |
5923158 | Kurokami et al. | Jul 1999 | A |
5945806 | Faulk | Aug 1999 | A |
5963010 | Hayashi et al. | Oct 1999 | A |
5990659 | Frannhagen | Nov 1999 | A |
6031736 | Takehara et al. | Feb 2000 | A |
6038148 | Farrington et al. | Mar 2000 | A |
6046919 | Madenokouji et al. | Apr 2000 | A |
6050779 | Nagao et al. | Apr 2000 | A |
6082122 | Madenokouji et al. | Jul 2000 | A |
6105317 | Tomiuchi et al. | Aug 2000 | A |
6111188 | Kurokami et al. | Aug 2000 | A |
6111391 | Cullen | Aug 2000 | A |
6111767 | Handleman | Aug 2000 | A |
6145264 | Dallaire | Nov 2000 | A |
6163086 | Choo | Dec 2000 | A |
6166455 | Li | Dec 2000 | A |
6166527 | Dwelley et al. | Dec 2000 | A |
6169678 | Kondo et al. | Jan 2001 | B1 |
6259234 | Perol | Jul 2001 | B1 |
6262558 | Weinberg | Jul 2001 | B1 |
6285572 | Onizuka et al. | Sep 2001 | B1 |
6320769 | Kurokami et al. | Nov 2001 | B2 |
6339538 | Handleman | Jan 2002 | B1 |
6493246 | Suzui et al. | Dec 2002 | B2 |
6531848 | Chitsazan et al. | Mar 2003 | B1 |
6545211 | Mimura | Apr 2003 | B1 |
6548205 | Leung et al. | Apr 2003 | B2 |
6590793 | Nagao et al. | Jul 2003 | B1 |
6608468 | Nagase | Aug 2003 | B2 |
6611441 | Kurokami et al. | Aug 2003 | B2 |
6672018 | Shingleton | Jan 2004 | B2 |
6678174 | Suzui et al. | Jan 2004 | B2 |
6690590 | Stamenic et al. | Feb 2004 | B2 |
6738692 | Schienbein et al. | May 2004 | B2 |
6768047 | Chang et al. | Jul 2004 | B2 |
6788033 | Vinciarelli | Sep 2004 | B2 |
6795318 | Haas et al. | Sep 2004 | B2 |
6801442 | Suzui et al. | Oct 2004 | B2 |
6914418 | Sung | Jul 2005 | B2 |
6919714 | Delepaut | Jul 2005 | B2 |
6936995 | Kapsokavathis et al. | Aug 2005 | B2 |
6963147 | Kurokami et al. | Nov 2005 | B2 |
6984970 | Capel | Jan 2006 | B2 |
7030597 | Bruno et al. | Apr 2006 | B2 |
7031176 | Kotsopoulos et al. | Apr 2006 | B2 |
7042195 | Tsunetsugu et al. | May 2006 | B2 |
7046531 | Zocchi et al. | May 2006 | B2 |
7053506 | Alonso et al. | May 2006 | B2 |
7072194 | Nayar et al. | Jul 2006 | B2 |
7079406 | Kurokami et al. | Jul 2006 | B2 |
7087332 | Harris | Aug 2006 | B2 |
7090509 | Gilliland et al. | Aug 2006 | B1 |
7091707 | Cutler | Aug 2006 | B2 |
7097516 | Werner et al. | Aug 2006 | B2 |
7126053 | Kurokami et al. | Oct 2006 | B2 |
7126294 | Minami et al. | Oct 2006 | B2 |
7148669 | Maksimovic et al. | Dec 2006 | B2 |
7291036 | Daily et al. | Nov 2007 | B1 |
7385833 | Keurig | Jun 2008 | B2 |
7420815 | Love | Sep 2008 | B2 |
7435134 | Lenox | Oct 2008 | B2 |
7435897 | Russell | Oct 2008 | B2 |
7600349 | Liebendorfer | Oct 2009 | B2 |
7748175 | Liebendorfer | Jul 2010 | B2 |
7759575 | Jones et al. | Jul 2010 | B2 |
7763807 | Richter | Jul 2010 | B2 |
7780472 | Lenox | Aug 2010 | B2 |
7900361 | Adest et al. | Mar 2011 | B2 |
7960650 | Richter et al. | Jun 2011 | B2 |
7960950 | Glovinsky | Jun 2011 | B2 |
8003885 | Richter et al. | Aug 2011 | B2 |
8004117 | Adest et al. | Aug 2011 | B2 |
8013472 | Adest et al. | Sep 2011 | B2 |
8111052 | Glovinsky | Feb 2012 | B2 |
20030080741 | LeRow et al. | May 2003 | A1 |
20040201279 | Templeton | Oct 2004 | A1 |
20050057214 | Matan | Mar 2005 | A1 |
20050057215 | Matan | Mar 2005 | A1 |
20050068820 | Radosevich et al. | Mar 2005 | A1 |
20050172995 | Rohrig et al. | Aug 2005 | A1 |
20060001406 | Matan | Jan 2006 | A1 |
20060038692 | Schnetker | Feb 2006 | A1 |
20060108979 | Daniel et al. | May 2006 | A1 |
20060149396 | Templeton | Jul 2006 | A1 |
20060162772 | Presher, Jr. et al. | Jul 2006 | A1 |
20060174939 | Matan | Aug 2006 | A1 |
20060185727 | Matan | Aug 2006 | A1 |
20060192540 | Balakrishnan et al. | Aug 2006 | A1 |
20060208660 | Shinmura et al. | Sep 2006 | A1 |
20070044837 | Simburger et al. | Mar 2007 | A1 |
20070147075 | Bang | Jun 2007 | A1 |
20070159866 | Siri | Jul 2007 | A1 |
20080097655 | Hadar et al. | Apr 2008 | A1 |
20080136367 | Adest et al. | Jun 2008 | A1 |
20080143188 | Adest et al. | Jun 2008 | A1 |
20080144294 | Adest et al. | Jun 2008 | A1 |
20080147335 | Adest et al. | Jun 2008 | A1 |
20080150366 | Adest et al. | Jun 2008 | A1 |
20080164766 | Adest et al. | Jul 2008 | A1 |
20080238195 | Shaver et al. | Oct 2008 | A1 |
20090039852 | Fishelov et al. | Feb 2009 | A1 |
20090084570 | Gherardini et al. | Apr 2009 | A1 |
20090140715 | Adest et al. | Jun 2009 | A1 |
20090141522 | Adest et al. | Jun 2009 | A1 |
20090145480 | Adest et al. | Jun 2009 | A1 |
20090146667 | Adest et al. | Jun 2009 | A1 |
20090146671 | Gazit | Jun 2009 | A1 |
20090147554 | Adest et al. | Jun 2009 | A1 |
20090206666 | Sella et al. | Aug 2009 | A1 |
20090237042 | Glovinsky | Sep 2009 | A1 |
20090237043 | Glovinsky | Sep 2009 | A1 |
20090273241 | Gazit et al. | Nov 2009 | A1 |
20090282755 | Abbott et al. | Nov 2009 | A1 |
20100124027 | Handelsman et al. | May 2010 | A1 |
20100269430 | Haddock et al. | Oct 2010 | A1 |
20100282290 | Schwarze et al. | Nov 2010 | A1 |
20100294903 | Shmukler et al. | Nov 2010 | A1 |
20100297860 | Shmukler et al. | Nov 2010 | A1 |
20100301991 | Sella et al. | Dec 2010 | A1 |
20110084553 | Adest et al. | Apr 2011 | A1 |
20110114154 | Lichy et al. | May 2011 | A1 |
20110121652 | Sella et al. | May 2011 | A1 |
20110125431 | Adest et al. | May 2011 | A1 |
20110133552 | Binder et al. | Jun 2011 | A1 |
20110140536 | Adest et al. | Jun 2011 | A1 |
20110181340 | Gazit | Jul 2011 | A1 |
20110271611 | Maracci et al. | Nov 2011 | A1 |
20110273015 | Adest et al. | Nov 2011 | A1 |
20110273016 | Adest et al. | Nov 2011 | A1 |
20110291486 | Adest et al. | Dec 2011 | A1 |
20120007613 | Gazit | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
201008026 | Jan 2008 | CN |
202009001918 | Jul 2009 | DE |
0420295 | Apr 1991 | EP |
0604777 | Jul 1994 | EP |
1531545 | May 2005 | EP |
1657797 | May 2006 | EP |
1729369 | Dec 2006 | EP |
2296188 | Mar 2011 | EP |
2249147 | Mar 2006 | ES |
2003134667 | May 2003 | JP |
2007058845 | Mar 2007 | JP |
9313587 | Jul 1993 | WO |
9613093 | May 1996 | WO |
9823021 | May 1998 | WO |
03050938 | Jun 2003 | WO |
03071655 | Aug 2003 | WO |
2004023278 | Mar 2004 | WO |
2004090993 | Oct 2004 | WO |
2004107543 | Dec 2004 | WO |
2005076445 | Aug 2005 | WO |
2006078685 | Jul 2006 | WO |
2007006564 | Jan 2007 | WO |
2007084196 | Jul 2007 | WO |
2007113358 | Oct 2007 | WO |
2008057493 | May 2008 | WO |
2010134057 | Nov 2010 | WO |
Entry |
---|
Combined search and examination report—GB1107241.0—Dated Sep. 5, 2011. |
PCT/IB2010/052287 International Search Report and Written Opinion. |
International Search Report for PCT/IB2007/004610 dated Feb. 23, 2009. |
International Search Report for PCT/IB2007/004584 dated Jan. 28, 2009. |
International Search Report for PCT/IB2007/004586 dated Mar. 5, 2009. |
International Search Report for PCT/IB2007/004643 dated Jan. 30, 2009. |
International Search Report for PCT/US2008/085736 dated Jan. 28, 2009. |
International Search Report for PCT/US2008/085754 dated Feb. 9, 2009. |
International Search Report for PCT/US2008/085755 dated Feb. 3, 2009. |
Knaupp, et al., “Operation of a 10 KW PV Façade with 100 W AC Photovoltaic Modules”, 1996 IEEE, 25th PVSC, May 13-17, 1996, pp. 1235-1238, Washington, DC. |
Myrzik, et al., “String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems—A Review”, Power Tech Conference Proceedings, 2003 IEEE Bologna, Jun. 23-26, 2003, p. 8, vol. 2. |
Alonso, “A New Distributed Converter Interface for PV Panels”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2288-2291. |
Enslin, “Integrated Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial Electronics, vol. 44, No. 6, Dec. 1997, pp. 769-773. |
Lindgren, “Topology for Decentralised Solar Energy Inverters with a Low Voltage AC-Bus”, Chalmers University of Technology, Department of Electrical Power Engineering, EPE '99—Lausanne. |
Palma, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability”, IEEE 2007, pp. 2633-2638. |
Number | Date | Country | |
---|---|---|---|
20100294528 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
61180455 | May 2009 | US |