Electrically isolated heat dissipating junction box

Abstract
A junction box used for making electrical connections to a photovoltaic panel. The junction box has two chambers including a first chamber and a second chamber and a wall common to and separating both chambers. The wall may be adapted to have an electrical connection therethrough. The two lids are adapted to seal respectively the two chambers. The two lids are on opposite sides of the junction box relative to the photovoltaic panel. The two lids may be attachable using different sealing processes to a different level of hermeticity. The first chamber may be adapted to receive a circuit board. The junction box may include supports for mounting a printed circuit board in the first chamber. The second chamber is configured for electrical connection to the photovoltaic panel. A metal heat sink may be bonded inside the first chamber. The first chamber is adapted to receive a circuit board for electrical power conversion, and the metal heat sink is adapted to dissipate heat generated by the circuit board.
Description
BACKGROUND

1. Technical Field


The present invention relates to a junction box for power sources, and specifically to a junction box for electrically connecting to a photovoltaic panel.


2. Description of Related Art


A photovoltaic module or photovoltaic panel is a packaged interconnected assembly of photovoltaic cells, also known as solar cells. Since a single photovoltaic module can only produce a limited amount of power, commercial installations include several modules or panels interconnected in serial and in parallel into a photovoltaic array. Electrical connections are made in series to achieve a desired output voltage and/or in parallel to provide a desired amount of current source capability. A photovoltaic installation typically includes the array of photovoltaic modules, an inverter, batteries and interconnection wiring.


When part of a photovoltaic module is shaded, the shaded cells do not produce as much current as the unshaded cells. Since photovoltaic cells are connected in series, the same amount of current must flow through every serially connected cell. The unshaded cells force the shaded cells to pass more current. The only way the shaded cells can operate at a higher current is to operate in a region of negative voltage that is to cause a net voltage loss to the system. The current times this negative voltage gives the negative power produced by the shaded cells. The shaded cells dissipate power as heat and cause “hot spots”. Bypass diodes are therefore integrated with the photovoltaic modules to avoid overheating of cells in case of partial shading of the photovoltaic module.


Blocking diodes may be placed in series with cells or modules to block reverse leakage current backwards through the modules such as to block reverse flow of current from a battery through the module at night or to block reverse flow down damaged modules from parallel-connected modules during the day.


Electronic modules may be integrated with the photovoltaic modules which perform electrical conversion, e.g. direct current (DC) to direct current conversion, electrical inversion, e.g. micro-inverter, or other functions such as monitoring of performance and/or protection against theft.


U.S. Pat. No. 7,291,036 discloses a photovoltaic connection system including a connection box with for surface mounted diodes mounted on a printed circuit board inside of the connection box. The connection box optionally includes a metal plate mounted inside the lid of the connection box as a heat sink for dissipating heat from the diodes.


The term “cable gland” as used herein refers to a device used for the entry of electrical cables or cords into electrical equipment and is used to firmly secure an electrical cable entering a piece of electrical equipment.


The term “in situ” in the context of the present invention refers to bonding or attaching during manufacture, e.g. injection molding, of a part as opposed to attaching after manufacture of the part.


BRIEF SUMMARY

According to an aspect of the present invention there is provided a junction box used for making electrical connections to a photovoltaic panel. The junction box has two chambers including a first chamber and a second chamber and a wall common to and separating both chambers. The wall may be adapted to have an electrical connection therethrough. The two lids are adapted to seal respectively the two chambers. The two lids are configured to be on opposite sides of the junction box relative to the photovoltaic panel. The two lids may be attachable using different sealing processes. One of the lids may be adapted to seal the first chamber and the other lid may seal the second chamber to a different level of hermeticity from that of the first chamber. The first chamber may be adapted to receive a circuit board for electrical power conversion of the power output of the photovoltaic panel. The junction box may include supports for mounting a printed circuit board in the first chamber. The second chamber is configured for electrical connection to the photovoltaic panel. The second chamber may optionally be configured to include diodes, e.g. bypass and/or blocking diodes. The junction box may have electrical connection terminals mounted inside the second chamber for connecting a circuit to the photovoltaic panel. A metal heat sink may be bonded inside the first chamber. The first chamber is adapted to receive a circuit board for electrical power conversion, and the metal heat sink is adapted to dissipate heat generated by the circuit board. The heat sink is placed inside an injection mold during manufacture of the junction box. The junction box may further include a pad adapted to provide thermal conduction and electrical insulation between the circuit board and the metal heat sink. The metal heat sink may include a dovetail structure adapted to prevent mutual separation of the metal heat sink from the junction box. The dovetail structure may be hollow.


According to an aspect of the present invention there is provided a junction box used for making electrical connections to a photovoltaic panel. The junction box has a metal heat sink bonded in situ inside the first chamber. The first chamber is adapted to receive a circuit board for electrical power conversion, and the metal heat sink is adapted to dissipate heat generated by the circuit board. The junction box optionally may have two chambers including a first chamber and a second chamber and a wall common to and separating both chambers. Two lids may be adapted to seal respectively the two chambers. The metal heat sink may include a dovetail structure adapted to prevent mutual separation of the metal heat sink from the junction box. The wall may have an electrical connection therethrough.





BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:



FIGS. 1A and 1B illustrate isometric views of a junction box, according to an embodiment of the present invention.



FIG. 2A shows details of cross section of the junction box indicated by dotted line XX in FIG. 1A.



FIG. 2B shows details of cross section YY of the junction box indicated by dotted line in FIG. 1A.



FIGS. 3A and 3B show isometric views of a heat sink according to another embodiment of the present invention.





The foregoing and/or other aspects will become apparent from the following detailed description when considered in conjunction with the accompanying drawing figures.


DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below to explain the present invention by referring to the figures.


By way of introduction, diodes and/or electronic modules within junction boxes attached to the photovoltaic modules dissipate heat. When insulating junction boxes are used, heat must be dissipated mostly through air inside the junction box. When metallic junction boxes are used then heat may be dissipated directly through the junction box. However, the use of a metallic junction boxes may be inconvenient because of regulations which require accessible metallic surfaces to be grounded and extra wiring is required.


Before explaining exemplary embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of design and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


Referring now to the drawings, FIG. 1A shows an isometric view 10A of a junction box 12, according to an embodiment of the present invention. Junction box 12 is shown mounted on the back (or non-photovoltaic side) 4 of a photovoltaic panel 16. Junction box 12 has cable glands 130 which allow for termination of cables inside of junction box 12. Junction box 12 has an outer casing 102 and an access into junction box 12 using a lid 106.



FIG. 1B shows an isometric view of the underside of junction box 12 detached from photovoltaic panel 16. The isometric view shows glands 130 and two sections A and B of junction box 12. chamber A is bounded by the dimensions Z×X with chamber A covered by lid 108. Lid 108 gives access into chamber A of junction box 12. Chamber B is an open section which is bounded by dimensions X×Y and shows terminals 104. A bypass diode 110 is connected between terminals 104. According to a feature of the present invention, lid 106 removed to access chamber B and lid 108 used to access chamber A are on opposite sides of junction box 12.



FIG. 2A shows details of cross section XX of junction box 12 indicated by dotted line in FIG. 1A, showing features of the present invention. Cross section XX shows chamber sections A and B of junction box 12 mounted on non-photovoltaic side 4 of photovoltaic panel 16 with clips 216. The mechanical attachment between junction box 12 and photovoltaic panel 16 using clips 216 is such that junction box 12 is flat on photovoltaic panel 16 and a gasket may be used to seal the open end of chamber B.


Chamber A includes circuit board 260, thermally conductive pad 262, heat sink 264, outer casing 102 and lid 108. Circuit board 260 is preferably mounted on supports adapted to receive circuit board 260. Thermal pad 262 provides electrical isolation and thermal conductivity between heat sink 264 and circuit board 260. The component side of circuit board 260 is preferably in contact with thermal pad 262 so that heat created by the components of circuit board 260 is dissipated by heat sink 264 via thermal pad 262. Radio Frequency Interference (RFI) emission from junction box 12 as a result of the operation of circuit board 260 is reduced by having the side of lid 108 coated in an electrically conductive shielding 108a. Shielding 108a connects electrically to heat sink 264 to form a Faraday cage which suppresses RFI emission from junction box 12.


Lid 108 according to an aspect of the present invention is preferably manufactured by an injection molding process. During the injection molding process of lid 207 a shield 108a may be placed in situ and bonded to lid 108 during the injection molding process. Thus, when lid 108 is attached to box chamber A; junction box 12 is electrically isolated by heat sink 264 and shield 108a. Outer casing 102 and lid 108 additionally provide a non-electrically conductive isolation of heat sink 264 and shield 108a between the backside 4 of panel 16 and the exterior of junction box 12. Lid 108 is optionally permanently and/or hermetically sealed to chamber A.


Chamber B includes terminal 104, support 214, bypass diode 110, lid 106, bus bar 212 and wall 202. Wall 202 provides physical separation between chambers A and B. Electrical connectivity between circuit board 260 in chamber A and electrical connector 104 in chamber B is via bus bar 212. Bus bar 212 is sealed in wall 202 in such a way as to preserve the desired hermeticity of chamber A for example against the ingress of water or humidity. Both electrical connector 104 and bus bar 212 are supported mechanically by support 214. Support 214 may also provide hermetic sealing and/or electrical isolation between one end of connector 104 which connects to bus bar 212 and the other end of connector 104 which connects to connections provided by photovoltaic panel 16. Bypass diode 110 connected to connector 104 may be located between support 214 or backside 4 of panel 16 or between support 214 and lid 106. Lid 106 gives access to chamber B whilst junction box 12 is physically attached photovoltaic panel 16 but electrically isolated from panel 16. A preferred mechanism of attaching lid 106 to junction box 12 is to use a rubber gasket arrangement such that chamber B is hermetically sealed against for example the ingress of water/humidity through lid 106 into chamber B.


According to another embodiment of the present invention, junction box 12 is constructed with a double wall 202 so that chamber A and chamber B are mutually separable and re-attachable. Similarly, bus bar 212 is re-connectable between chamber A and chamber B. In this embodiment, a failure within the electronics of circuit board 260 may be repaired by replacing chamber A with a new circuit board 260 without requiring disconnection of chamber B from photovoltaic panel 16. Similarly, an electronics upgrade may be easily achieved.


Junction box 12 including casing 102, lids 108/106, heat sink 264, and thermal pad 262 are preferably adapted to comply with temperature and insulation standard of IEC 61215 (Ed. 2) or other applicable industry standards for use with connection to photovoltaic panels. Junction box 12 and lids 108/106 may be manufactured by injection molding of acrylonitrile butadiene styrene (ABS) thermoplastic, Polybutylene terephthalate (PBT), Poly(p-phenylene oxide) (PPO) or a thermoset such as epoxy resin.



FIG. 2B shows details of cross section YY of junction box 12 indicated by dotted line in FIG. 1A, according to an embodiment of the present invention. Cross section YY is of chamber A mounted on backside 4 of photovoltaic panel 16. Cross section YY shows outer casing 102, heat sink 264 with dovetail structure 264a, thermally conductive pad 262, circuit board 260 and lid 108 with electrical shield 108a.


The manufacture of box chamber sections A and B of junction box 12 in a preferred embodiment of the present invention is by an injection molding process. During the injection molding process heat sink 264 with or without dovetail structure 264a is placed inside box chamber A and is bonded in situ to box chamber A as a result of the injection molding process.


Additional strength of the bonding between heat sink 264 and box chamber A may be provided by a dovetail structure 264a which may be an integral part of heat sink 264. A further function of dovetail structure 264a ensures that the bonding between heat sink 264 and chamber A remains intact when for example junction box 12 is subjected to thermal stresses as a result of electronic components operating inside chamber A, high ambient heat and sunlight when junction box 12 attached to a photovoltaic panel. Where a fastener, e.g. screw is used to fasten chamber A to heat sink 264, the lateral dimensions of dovetail structure 264a is typically increased in order to accommodate the size of the fastener. A further feature of dovetail structure 264a is a hollow structure within dovetail structure 264a which allows for a deformation of dovetail structure 264a. The deformation of dovetail structure 264a allows for the different rates of thermal expansion of enclosure 102 and heat sink 264/dovetail structure 264a during the curing/cooling of the bond between heat sink 264 and enclosure 102 of chamber A.


Reference is now made to FIGS. 3A and 3B which show isometric views of heat sink 264 according to another embodiment of the present invention. Heat sink 264 has four holes 302. Holes 302 are used to attach heat sink 264 into chamber A of junction box 12 using screws. The attachment of heat sink to chamber A may come as an additional step after the injection molding of junction box 12 or of a junction box 12 which is not injection molded. An additional thermal pad may be placed between heat sink 264 and enclosure 102 to ensure good contact between heat sink 264 and enclosure 102 after heat sink 264 is attached enclosure 102. The deformable nature of the thermal pad used to accommodate non-uniformity in surfaces of the heat sink 264 and enclosure 102 due to manufacturing tolerances of heat sink 264/enclosure 102. Alternatively a thermally conducting glue or potting material may be placed between heat sink 264 and enclosure 102.


The articles “a” “an” as used herein mean “one or more” such as “a heat-sink”, “a circuit board” have the meaning of “one or more” that is “one or more heat-sinks” or “one or more circuit boards”.


Although selected embodiments of the present invention have been shown and described, it is to be understood the present invention is not limited to the described embodiments. Instead, it is to be appreciated that changes may be made to these embodiments without departing from the principles and spirit of the invention, the scope of which is defined by the claims and the equivalents thereof.

Claims
  • 1. A junction box comprising: an outer casing configured to be mounted to a photovoltaic panel;a first chamber within the outer casing, wherein the first chamber includes a plurality of supports adapted to mount a circuit board configured to electrically convert power output from the photovoltaic panel, and wherein the outer casing includes an opening to the first chamber;a second chamber within the outer casing, wherein the outer casing includes an opening to the second chamber, and wherein the second chamber is configured to provide an electrical connection to the photovoltaic panel;a double wall adapted to separate the first chamber and the second chamber, wherein the double wall is adapted to allow for mutual separation and re-attachment of the first chamber to the second chamber so that the circuit board is replaceable without requiring disconnection of the second chamber from the photovoltaic panel, and wherein, when the circuit board is mounted in the first chamber, the circuit board in the first chamber is electrically connected to the electrical connection in the second chamber via a re-connectable bus bar, wherein portions of the bus bar are contained in the double wall;a first lid adapted to seal the opening to the first chamber; anda second lid adapted to seal the opening to the second chamber.
  • 2. The junction box of claim 1, wherein the opening to the first chamber and the opening to the second chamber are on opposite sides of the junction box.
  • 3. The junction box of claim 1, wherein the first lid is adapted to seal the first chamber using a first sealing process, and wherein the second lid is adapted to seal the second chamber using a second sealing process different from the first sealing process.
  • 4. The junction box according to claim 1, wherein the first lid is adapted to seal said first chamber with a first level of hermeticity, and wherein the second lid is adapted to seal the second chamber with a second level of hermeticity different from the first level of hermeticity.
  • 5. The junction box of claim 1, wherein the first chamber comprises the circuit board for electrically converting the power output of the photovoltaic panel.
  • 6. The junction box of claim 1, wherein said second chamber comprises an electrical connector for the electrical connection to the photovoltaic panel.
  • 7. The junction box of claim 1, wherein said second chamber is configured to include one or more diodes.
  • 8. The junction box according to claim 1, wherein the second chamber further comprises one or more electrical connection terminals for connecting the circuit board to the photovoltaic panel, wherein the one or more electrical connection terminals are mounted inside said second chamber.
  • 9. The junction box of claim 1, further comprising a metal heat sink bonded to said first chamber during manufacture of the junction box.
  • 10. The junction box of claim 9, wherein said metal heat sink is adapted to dissipate heat generated by said circuit board.
  • 11. The junction box of claim 9, wherein said metal heat sink is molded in the junction box during an injection mold process of manufacture of the first chamber.
  • 12. The junction box of claim 9, wherein said metal heat sink includes a dovetail structure adapted to prevent mutual separation of said metal heat sink from said first chamber.
  • 13. The junction box of claim 12, wherein the dovetail structure of the metal heat sink comprises a first rate of thermal expansion,wherein the first chamber comprises a second rate of thermal expansion different from the first rate of thermal expansion,wherein said dovetail structure comprises a hollow structure adapted to prevent mutual separation of the metal heat sink from the first chamber during a curing of a bond between the metal heat sink and the first chamber by allowing for a deformation of a portion of the dovetail structure.
  • 14. The junction box of claim 9, further comprising a thermal pad adapted to provide thermal conduction and electrical insulation between said circuit board and said metal heat sink.
  • 15. The junction box according to claim 1, wherein each of the first chamber and the second chamber is manufactured by injection molding of one of acrylonitrile butadiene styrene (ABS) thermoplastic, polybutylene terephthalate (PBT), poly(p-phenylene oxide) (PPO), and a thermoset.
  • 16. The junction box of claim 1, wherein the first chamber is a first rectangular chamber, and wherein the second chamber is a second rectangular chamber.
  • 17. A junction box comprising: an outer casing configured to be mounted to a photovoltaic panel;a first chamber within the outer casing of the junction box, wherein outer casing includes an opening to the first chamber, and wherein the first chamber includes a plurality of supports adapted to mount a circuit board; anda metal heat sink having a dovetail structure bonded to the first chamber during manufacture,wherein the dovetail structure comprises a first rate of thermal expansion,wherein the first chamber comprises a second rate of thermal expansion different from the first rate of thermal expansion,wherein the dovetail structure comprises a hollow structure adapted to prevent mutual separation of the metal heat sink from the first chamber during a curing of a bond between the metal heat sink and the first chamber by allowing for a deformation of a portion of the dovetail structure, andwherein the metal heat sink is adapted to dissipate heat generated by said circuit board.
  • 18. The junction box of claim 17, further comprising: a second chamber within the outer casing of the junction box, wherein the second chamber is configured to receive an electrical connection to the photovoltaic panel; anda double wall adapted to separate the first chamber and the second chamber, wherein the double wall is further adapted to allow for mutual separation and re-attachment of the first chamber to the second chamber so that the circuit board is replaceable without requiring disconnection of the second chamber from the photovoltaic panel, and wherein, when the circuit board is mounted in the first chamber, the circuit board in the first chamber is electrically connected to the electrical connection in the second chamber via a re-connectable bus bar, wherein a portion of the bus bar is sealed in the double wall.
  • 19. The junction box according to claim 17, wherein the first chamber is manufactured by injection molding of one of acrylonitrile butadiene styrene (ABS) thermoplastic, polybutylene terephthalate (PBT), poly(p-phenylene oxide) (PPO), and a thermoset.
  • 20. The junction box of claim 17, wherein the first chamber is a first rectangular chamber.
  • 21. A method comprising: bonding a metal heat sink within a first chamber of an electrically isolated thermoplastic junction box through an injection molding process, wherein the first chamber is within an outer casing of the of electrically isolated thermoplastic junction box; andforming a junction via a dovetail interface between the metal heat sink and the outer casing inside the first chamber.
  • 22. The method of claim 21, wherein the dovetail interface is adapted to prevent mutual separation of the metal heat sink from the electrically isolated junction box.
  • 23. The method of claim 22, further comprising the step of: curing the junction between the metal heat sink and the outer casing inside the first chamber,wherein the dovetail interface comprises a hollow structure adapted to deform during the curing to prevent the mutual separation of the metal heat sink from the electrically isolated thermoplastic junction box.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims benefit from U.S. patent application 61/180,455 filed May 22, 2009, the disclosure of which is incorporated herein by reference.

US Referenced Citations (160)
Number Name Date Kind
3369210 Manickella Feb 1968 A
3596229 Hohorst Jul 1971 A
4171861 Hohorst Oct 1979 A
4452867 Conforti Jun 1984 A
4460232 Sotolongo Jul 1984 A
4623753 Feldman et al. Nov 1986 A
4637677 Barkus Jan 1987 A
4641079 Kato et al. Feb 1987 A
4783728 Hoffman Nov 1988 A
4903851 Slough Feb 1990 A
4987360 Thompson Jan 1991 A
5045988 Gritter et al. Sep 1991 A
5280232 Kohl et al. Jan 1994 A
5460546 Kunishi et al. Oct 1995 A
5497289 Sugishima et al. Mar 1996 A
5548504 Takehara Aug 1996 A
5604430 Decker et al. Feb 1997 A
5646501 Fishman et al. Jul 1997 A
5773963 Blanc et al. Jun 1998 A
5780092 Agbo et al. Jul 1998 A
5798631 Spee et al. Aug 1998 A
5801519 Midya et al. Sep 1998 A
5804894 Leeson et al. Sep 1998 A
5821734 Faulk Oct 1998 A
5822186 Bull et al. Oct 1998 A
5838148 Kurokami et al. Nov 1998 A
5869956 Nagao et al. Feb 1999 A
5873738 Shimada et al. Feb 1999 A
5892354 Nagao et al. Apr 1999 A
5923158 Kurokami et al. Jul 1999 A
5945806 Faulk Aug 1999 A
5963010 Hayashi et al. Oct 1999 A
5990659 Frannhagen Nov 1999 A
6031736 Takehara et al. Feb 2000 A
6038148 Farrington et al. Mar 2000 A
6046919 Madenokouji et al. Apr 2000 A
6050779 Nagao et al. Apr 2000 A
6082122 Madenokouji et al. Jul 2000 A
6105317 Tomiuchi et al. Aug 2000 A
6111188 Kurokami et al. Aug 2000 A
6111391 Cullen Aug 2000 A
6111767 Handleman Aug 2000 A
6145264 Dallaire Nov 2000 A
6163086 Choo Dec 2000 A
6166455 Li Dec 2000 A
6166527 Dwelley et al. Dec 2000 A
6169678 Kondo et al. Jan 2001 B1
6259234 Perol Jul 2001 B1
6262558 Weinberg Jul 2001 B1
6285572 Onizuka et al. Sep 2001 B1
6320769 Kurokami et al. Nov 2001 B2
6339538 Handleman Jan 2002 B1
6493246 Suzui et al. Dec 2002 B2
6531848 Chitsazan et al. Mar 2003 B1
6545211 Mimura Apr 2003 B1
6548205 Leung et al. Apr 2003 B2
6590793 Nagao et al. Jul 2003 B1
6608468 Nagase Aug 2003 B2
6611441 Kurokami et al. Aug 2003 B2
6672018 Shingleton Jan 2004 B2
6678174 Suzui et al. Jan 2004 B2
6690590 Stamenic et al. Feb 2004 B2
6738692 Schienbein et al. May 2004 B2
6768047 Chang et al. Jul 2004 B2
6788033 Vinciarelli Sep 2004 B2
6795318 Haas et al. Sep 2004 B2
6801442 Suzui et al. Oct 2004 B2
6914418 Sung Jul 2005 B2
6919714 Delepaut Jul 2005 B2
6936995 Kapsokavathis et al. Aug 2005 B2
6963147 Kurokami et al. Nov 2005 B2
6984970 Capel Jan 2006 B2
7030597 Bruno et al. Apr 2006 B2
7031176 Kotsopoulos et al. Apr 2006 B2
7042195 Tsunetsugu et al. May 2006 B2
7046531 Zocchi et al. May 2006 B2
7053506 Alonso et al. May 2006 B2
7072194 Nayar et al. Jul 2006 B2
7079406 Kurokami et al. Jul 2006 B2
7087332 Harris Aug 2006 B2
7090509 Gilliland et al. Aug 2006 B1
7091707 Cutler Aug 2006 B2
7097516 Werner et al. Aug 2006 B2
7126053 Kurokami et al. Oct 2006 B2
7126294 Minami et al. Oct 2006 B2
7148669 Maksimovic et al. Dec 2006 B2
7291036 Daily et al. Nov 2007 B1
7385833 Keurig Jun 2008 B2
7420815 Love Sep 2008 B2
7435134 Lenox Oct 2008 B2
7435897 Russell Oct 2008 B2
7600349 Liebendorfer Oct 2009 B2
7748175 Liebendorfer Jul 2010 B2
7759575 Jones et al. Jul 2010 B2
7763807 Richter Jul 2010 B2
7780472 Lenox Aug 2010 B2
7900361 Adest et al. Mar 2011 B2
7960650 Richter et al. Jun 2011 B2
7960950 Glovinsky Jun 2011 B2
8003885 Richter et al. Aug 2011 B2
8004117 Adest et al. Aug 2011 B2
8013472 Adest et al. Sep 2011 B2
8111052 Glovinsky Feb 2012 B2
20030080741 LeRow et al. May 2003 A1
20040201279 Templeton Oct 2004 A1
20050057214 Matan Mar 2005 A1
20050057215 Matan Mar 2005 A1
20050068820 Radosevich et al. Mar 2005 A1
20050172995 Rohrig et al. Aug 2005 A1
20060001406 Matan Jan 2006 A1
20060038692 Schnetker Feb 2006 A1
20060108979 Daniel et al. May 2006 A1
20060149396 Templeton Jul 2006 A1
20060162772 Presher, Jr. et al. Jul 2006 A1
20060174939 Matan Aug 2006 A1
20060185727 Matan Aug 2006 A1
20060192540 Balakrishnan et al. Aug 2006 A1
20060208660 Shinmura et al. Sep 2006 A1
20070044837 Simburger et al. Mar 2007 A1
20070147075 Bang Jun 2007 A1
20070159866 Siri Jul 2007 A1
20080097655 Hadar et al. Apr 2008 A1
20080136367 Adest et al. Jun 2008 A1
20080143188 Adest et al. Jun 2008 A1
20080144294 Adest et al. Jun 2008 A1
20080147335 Adest et al. Jun 2008 A1
20080150366 Adest et al. Jun 2008 A1
20080164766 Adest et al. Jul 2008 A1
20080238195 Shaver et al. Oct 2008 A1
20090039852 Fishelov et al. Feb 2009 A1
20090084570 Gherardini et al. Apr 2009 A1
20090140715 Adest et al. Jun 2009 A1
20090141522 Adest et al. Jun 2009 A1
20090145480 Adest et al. Jun 2009 A1
20090146667 Adest et al. Jun 2009 A1
20090146671 Gazit Jun 2009 A1
20090147554 Adest et al. Jun 2009 A1
20090206666 Sella et al. Aug 2009 A1
20090237042 Glovinsky Sep 2009 A1
20090237043 Glovinsky Sep 2009 A1
20090273241 Gazit et al. Nov 2009 A1
20090282755 Abbott et al. Nov 2009 A1
20100124027 Handelsman et al. May 2010 A1
20100269430 Haddock et al. Oct 2010 A1
20100282290 Schwarze et al. Nov 2010 A1
20100294903 Shmukler et al. Nov 2010 A1
20100297860 Shmukler et al. Nov 2010 A1
20100301991 Sella et al. Dec 2010 A1
20110084553 Adest et al. Apr 2011 A1
20110114154 Lichy et al. May 2011 A1
20110121652 Sella et al. May 2011 A1
20110125431 Adest et al. May 2011 A1
20110133552 Binder et al. Jun 2011 A1
20110140536 Adest et al. Jun 2011 A1
20110181340 Gazit Jul 2011 A1
20110271611 Maracci et al. Nov 2011 A1
20110273015 Adest et al. Nov 2011 A1
20110273016 Adest et al. Nov 2011 A1
20110291486 Adest et al. Dec 2011 A1
20120007613 Gazit Jan 2012 A1
Foreign Referenced Citations (26)
Number Date Country
201008026 Jan 2008 CN
202009001918 Jul 2009 DE
0420295 Apr 1991 EP
0604777 Jul 1994 EP
1531545 May 2005 EP
1657797 May 2006 EP
1729369 Dec 2006 EP
2296188 Mar 2011 EP
2249147 Mar 2006 ES
2003134667 May 2003 JP
2007058845 Mar 2007 JP
9313587 Jul 1993 WO
9613093 May 1996 WO
9823021 May 1998 WO
03050938 Jun 2003 WO
03071655 Aug 2003 WO
2004023278 Mar 2004 WO
2004090993 Oct 2004 WO
2004107543 Dec 2004 WO
2005076445 Aug 2005 WO
2006078685 Jul 2006 WO
2007006564 Jan 2007 WO
2007084196 Jul 2007 WO
2007113358 Oct 2007 WO
2008057493 May 2008 WO
2010134057 Nov 2010 WO
Non-Patent Literature Citations (15)
Entry
Combined search and examination report—GB1107241.0—Dated Sep. 5, 2011.
PCT/IB2010/052287 International Search Report and Written Opinion.
International Search Report for PCT/IB2007/004610 dated Feb. 23, 2009.
International Search Report for PCT/IB2007/004584 dated Jan. 28, 2009.
International Search Report for PCT/IB2007/004586 dated Mar. 5, 2009.
International Search Report for PCT/IB2007/004643 dated Jan. 30, 2009.
International Search Report for PCT/US2008/085736 dated Jan. 28, 2009.
International Search Report for PCT/US2008/085754 dated Feb. 9, 2009.
International Search Report for PCT/US2008/085755 dated Feb. 3, 2009.
Knaupp, et al., “Operation of a 10 KW PV Façade with 100 W AC Photovoltaic Modules”, 1996 IEEE, 25th PVSC, May 13-17, 1996, pp. 1235-1238, Washington, DC.
Myrzik, et al., “String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems—A Review”, Power Tech Conference Proceedings, 2003 IEEE Bologna, Jun. 23-26, 2003, p. 8, vol. 2.
Alonso, “A New Distributed Converter Interface for PV Panels”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2288-2291.
Enslin, “Integrated Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial Electronics, vol. 44, No. 6, Dec. 1997, pp. 769-773.
Lindgren, “Topology for Decentralised Solar Energy Inverters with a Low Voltage AC-Bus”, Chalmers University of Technology, Department of Electrical Power Engineering, EPE '99—Lausanne.
Palma, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability”, IEEE 2007, pp. 2633-2638.
Related Publications (1)
Number Date Country
20100294528 A1 Nov 2010 US
Provisional Applications (1)
Number Date Country
61180455 May 2009 US