Electroactive polymer actuator lenticular system

Information

  • Patent Grant
  • 9195058
  • Patent Number
    9,195,058
  • Date Filed
    Thursday, March 22, 2012
    12 years ago
  • Date Issued
    Tuesday, November 24, 2015
    9 years ago
Abstract
The present invention provides an optical system comprising a lens element, a display unit displaced transversely from the lens element, at least one actuator coupled to at least one of the lens element or the display unit and capable of changing position of the lens element relative to the display unit in a lateral direction, and an electronic control system capable of driving the at least one actuator to move in a programmed manner to control positioning of the lens element relative to the display unit.
Description
FIELD OF THE INVENTION

The present invention relates in general to optical systems and more specifically to lenticular lens systems which enable the viewer to see two or more images in a display, such as an artwork, sequentially by changing the angle of the lenticular lens with respect to the viewer or by changing the position of the lens with respect to the display.


BACKGROUND OF THE INVENTION

The kineograph, or flip book, was patented in 1897 by Linnet in GB189715668 as a means of advertising using animation of a linear sequence of images. These objects are oftentimes used as prizes, such as are found in breakfast cereal and CRACKER JACK boxes and as novelty or promotional items.


U.S. Published Patent Application No. 2010/0164329 relates the use of an electroactive polymer actuator to move a light source with respect to one or more reflectors to change the angle of the reflector (and the angle/intensity/focus of the output beam of light). A reflector can be between the light source and the user as well as behind the light source. The electroactive polymer actuator may be moved at different frequencies for different light effects. The frequency may be high enough that the user may not perceive the change in focus. Multiple actuators or phases of actuators may be used to direct the light in different directions.


U.S. Pat. No. 7,352,339, issued to Morgan et al., discloses sources of diffuse illumination for providing substantially uniform illumination to a surface. The diffuse illumination arises from varying the diffusion angle of light generated by a light emitting diode (LED) system. To vary the diffusion angle, a translucent member is placed between the LED system and the surface. Light emitted from the LED system across the translucent member can subsequently uniformly cover the surface. The translucent member can include a plurality of individual lenticular lenses. An electromagnetic actuator can be coupled to the LED-based light source and the translucent material and adapted to move the translucent material relative to the radiation generated by the LED-based light source.


SUMMARY OF THE INVENTION

The present invention provides an optical system comprising a lens element, a display unit displaced transversely from the lens element, at least one actuator coupled to at least one of the lens element or the display unit and capable of changing the position of the lens element relative to the display unit in a lateral direction, and an electronic control system capable of driving the at least one actuator to move in a programmed manner to control positioning of the lens element relative to the display unit. The optical system of the present invention may find use in point-of-purchase displays or general illumination applications.


These and other advantages and benefits of the present invention will be apparent from the Detailed Description of the Invention herein below.





BRIEF DESCRIPTION OF THE FIGURES

The present invention will now be described for purposes of illustration and not limitation in conjunction with the figures, wherein:



FIG. 1 is a cutaway view of an electroactive polymer actuator system, according to one embodiment;



FIG. 2 is a schematic diagram of one embodiment of an electroactive polymer actuator system to illustrate the principle of operation;



FIGS. 3A, 3B, and 3C illustrate three possible configurations, one/three/six bar actuator arrays, according to various embodiments;



FIG. 4 provides an exploded view of one embodiment of the electroactive polymer actuator lenticular device of the present invention;



FIG. 5 illustrates the prior art method of stacking a lenticular system;



FIG. 6 shows the inventive method of stacking a lenticular system with a clearance between the display and the lens;



FIG. 7 is a side view of the embodiment of the electroactive polymer actuator lenticular device of the present invention shown in FIG. 4;



FIGS. 8A and 8B provide a schematic illustration of one embodiment of a lighting system useful in the present invention;



FIGS. 9A and 9B provide a schematic illustration of another embodiment of a lighting system useful in the present invention;



FIG. 10 is a graph showing the steady, constant rate motion of a display with respect to a lens;



FIG. 11 is a graph showing variable rate motion for rapid return to a starting position of a display with respect to a lens element;



FIG. 12 shows the sequence of steps for assembly of an embodiment of optical system which comprises artwork as the display.





DETAILED DESCRIPTION OF TILE INVENTION

Before explaining the disclosed embodiments in detail, it should be noted that the disclosed embodiments are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The disclosed embodiments may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments for the convenience of the reader and are not for the purpose of limitation thereof. Further, it should be understood that any one or more of the disclosed embodiments, expressions of embodiments, and examples can be combined with any one or more of the other disclosed embodiments, expressions of embodiments, and examples, without limitation. Thus, the combination of an element disclosed in one embodiment and an element disclosed in another embodiment is considered to be within the scope of the present disclosure and appended claims.


The present invention provides an optical system comprising a lens element, a display unit displaced transversely from the lens element, at least one actuator coupled to at least one of the lens element or the display unit and capable of changing position of the lens element relative to the display unit in a lateral direction, and an electronic control system capable of driving the at least one actuator to move in a programmed manner to control positioning of the lens element relative to the display unit. The optical system may further comprise one or more reflectors in some embodiments. The lens element may comprise one or more lenticular lenses or an array of lenses. The display may comprise two images or multiple images. The optical system may also be a lens stack which is illuminated by an array of LED light sources (or other light sources) as the display. Optionally, a second actuator capable of changing the transverse displacement between the lens element and the display unit may be included in some embodiments.


Lenticular lens systems enable the viewer to see sequentially two or more images printed in a display such as an artwork by changing the angle of the lenticular lens with respect to the viewer or by changing the position of the lens with respect to the display. In some embodiments, the display may comprise multiple images integrated to exhibit separately when viewed through different positions of the lenticular lens. With high quality artwork, multiple images may be arranged to enable the user to see the equivalent of a stop-action movie clip, similar to the effect seen in a kineograph or flip book. Electroactive polymer actuators may be used to change the position of the lens with respect to the artwork with high precision and speed. The motion of the actuator may be controlled with constant or variable rates to create different visual effects.


Examples of electroactive polymer devices and their applications are described, for example, in U.S. Pat. Nos. 7,394,282; 7,378,783; 7,368,862; 7,362,032; 7,320,457; 7,259,503; 7,233,097; 7,224,106; 7,211,937; 7,199,501; 7,166,953; 7,064,472; 7,062,055; 7,052,594; 7,049,732; 7,034,432; 6,940,221; 6,911,764; 6,891,317; 6,882,086; 6,876,135; 6,812,624; 6,809,462; 6,806,621; 6,781,284; 6,768,246; 6,707,236; 6,664,718; 6,628,040; 6,586,859; 6,583,533; 6,545,384; 6,543,110; 6,376,971; 6,343,129; 7,952,261; 7,911,761; 7,492,076; 7,761,981; 7,521,847; 7,608,989; 7,626,319; 7,915,789; 7,750,532; 7,436,099; 7,199,501; 7,521,840; 7,595,580; and 7,567,681, and in U.S. Patent Published Application Nos. 2009/0154053; 2008/0116764; 2007/0230222; 2007/0200457; 2010/0109486; and 2011/128239, and PCT Publication No. WO2010/054014, the entireties of which are incorporated herein by reference.


The present disclosure provides various embodiments of electroactive polymer actuator lenticular devices. Before launching into a description of various lenticular devices comprising an electroactive polymer actuator, the present disclosure briefly turns to FIG. 1, which provides a cutaway view of an electroactive polymer actuator that may be integrally incorporated in the optical system of the present invention. Accordingly, one embodiment of an electroactive polymer actuator is now described with reference to the module 10.


An electroactive polymer actuator slides an output plate 12 (e.g., sliding surface) relative to a fixed plate 14 (e.g., fixed surface) when energized by a high voltage. The plates 12, 14 are separated by steel balls, and have features that constrain movement to the desired direction, limit travel, and withstand drop tests. For integration into an optical system, the top plate 12 may be attached to an inertial mass such the display unit of the optical system. In the embodiment illustrated in FIG. 1, the top plate 12 of the module 10 comprises a sliding surface that mounts to an inertial mass or back of the optical system that can move bi-directionally as indicated by arrow 16. Between the output plate 12 and the fixed plate 14, the module 10 comprises at least one electrode 18, optionally, at least one divider 11, and at least one portion or bar 13 that attaches to the sliding surface, e.g., the top plate 12. Frame and divider segments 15 attach to a fixed surface, e.g., the bottom plate 14. The module 10 may comprise any number of bars 13 configured into arrays to amplify the motion of the sliding surface. The module 10 may be coupled to the drive electronics of an actuator controller circuit via a flex cable 19.


Advantages of the electroactive polymer module 10 include providing smooth motion, consuming significantly less battery life, and suitability for customizable design and performance options. A flat, small, and lightweight form factor is particularly suitable for point-of-purchase displays and low profile lighting systems. The module 10 is representative of actuator modules developed by Artificial Muscle, Inc., of Sunnyvale, Calif. In the present invention, an electronic control system is used to afford the smooth motion of the lens element. Such a control system is capable of driving the actuator to move in a programmed manner to control positioning of the lens element relative to the display unit. Suitable electronic control systems are disclosed, for example, in U.S. Published Patent Application Nos. 2009/0147340 and 2010/0033835, the entireties of which are incorporated herein by reference.


Still with reference to FIG. 1, many of the design variables of the module 10, (e.g., thickness, footprint) may be fixed by the needs of module integrators while other variables (e.g., number of dielectric layers, operating voltage) may be constrained by cost. Since actuator geometry—the allocation of footprint to rigid supporting structure versus active dielectric—does not impact cost much, it is a reasonable way to tailor performance of the module 10 to an application where the module 10 is integrated with an optical device.



FIG. 2 is a schematic diagram of one embodiment of an actuator system 20 to illustrate the principle of operation. The actuator system 20 comprises a power source 22, shown as a low voltage direct current (DC) battery, electrically coupled to an actuator module 21. The actuator module 21 comprises a thin elastomeric dielectric 26 disposed (e.g., sandwiched) between two conductive electrodes 24A, 24B. In one embodiment, the conductive electrodes 24A, 24B are stretchable (e.g., conformable or compliant) and may be printed on the top and bottom portions of the elastomeric dielectric 26 using any suitable techniques, such as, for example screen printing. The actuator module 21 is activated by coupling the battery 22 to an actuator circuit 29 by closing a switch 28. The actuator circuit 29 converts the low DC voltage VBatt into a high DC voltage Vin suitable for driving the module 21. The actuator circuit 29 may also comprise electronics components including microprocessors, memory, and signal generators, capable of generating specific patterns or waveforms or voltage drive signals to drive the motion of the actuator module 21. When the high voltage Vin is applied to the conductive electrodes 24A, 24B the elastomeric dielectric 26 contracts in the vertical direction (V) and expands in the horizontal direction (H) under electrostatic pressure. The contraction and expansion of the elastomeric dielectric 26 can be harnessed as motion. The amount of motion or displacement is proportional to the input voltage Vin. The motion or displacement may be amplified by a suitable configuration of actuators as described below in connection with FIGS. 3A, 3B, and 3C.



FIGS. 3A, 3B, 3B illustrate three possible configurations, among others, of actuator arrays 30, 34, 36, according to various embodiments. Various embodiments of actuator arrays may comprise any suitable number of bars depending on the application and physical spacing restrictions of the application. Additional bars provide additional displacement and therefore enhance the motion of the display that the user can appreciate substantially immediately. The actuator arrays 30, 34, 36 may be coupled to the drive electronics of an actuator controller circuit via, a flex cable 38.



FIG. 3A illustrates one embodiment of a one bar actuator array 30. The single bar actuator array 30 comprises a fixed plate 31, an electrode 32, and an elastomeric dielectric 33 coupled to the fixed plate 31.



FIG. 3B illustrates one embodiment of a three bar actuator array 34 comprising three bars 34A, 34B, 34C coupled to a fixed frame 31, where each bar is separated by a divider 37. Each of the bars 34A-C comprises an electrode 32 and an elastomeric dielectric 33. The three bar array 34 amplifies the motion of the sliding surface in comparison to the single bar actuator array 30 of FIG. 3A.



FIG. 3C illustrates one embodiment of a six bar actuator array 36 comprising six bars 36A, 36B, 36C, 36D, 36E, 36F coupled to a fixed frame 31, where each bar is separated by a divider 37. Each of the bars 34A-F comprises an electrode 32 and an elastomeric dielectric 33. The six bar actuator array 36 amplifies the motion of the sliding surface in comparison to the single bar actuator array 30 of FIG. 3A and the three bar actuator array 34 of FIG. 3B.



FIG. 4 illustrates an exploded view of one embodiment of the optical system of the present invention 400. The system depicted in FIG. 4 comprises a top cover 402, which is fixed. A fixed lens element 404 and a movable display unit 406 are arranged below the top cover 402 and rest on actuators 408 which along with fixed battery and electronics 410 are located in main housing 412. The lens element may be a lenticular lens and may comprise multiple lenses.



FIG. 5 illustrates a prior art method of arranging the elements of an optical system 500. Lens 502 is in contact with artwork 504 which contacts actuator 506 which contacts housing 508. One problem encountered with the prior art method was friction between the lens and artwork along with the friction by-products such as jittery or jumpy motion and hysteresis. Because there was no need to move the artwork relative to the lens, the lens was always designed to be focused on the artwork when in full contact with each other.


As mentioned herein, moving displays cause friction problems; therefore, the present inventors positioned a clearance (gap) between the display unit and the lens to eliminate the friction. This embodiment of the optical system of the present invention 600 is illustrated in FIG. 6, where lens element 602 is not in contact with display unit 604, but is separated by a gap 610. Electroactive polymer actuator 606 lies beneath display unit 604 and is in contact with housing 608. In principle, the gap between the lens and the display unit may be any distance; however, it should be remembered that the gap will require a change in focal length of the lens element to ensure that it focuses on the display correctly. The gap may be created, for example, by stand-offs between the lens element 602 and the housing 608. These standoffs may be separate piece parts as is known in the art. They may also be molded into either the lens element 602 or the housing 608. Alternatively, the standoffs may comprise springs or telescoping sections which enable the adjustment of the gap.



FIG. 7 provides a side view of the embodiment of the optical system of the present invention shown in FIG. 4. The system depicted in FIG. 7 comprises a top cover 702, which is fixed. A fixed lens element 704 and a movable display unit 706 are arranged below the top cover 702 and rest on actuators 708 which along with fixed battery and electronics 710 are located in main housing 712.


Electroactive polymer actuators have application in the lighting industry, in the context of both wall socket (120V/60 Hz power) driven/stationary lighting systems and battery-operated/mobile lighting systems. FIGS. 8A and 8B illustrate a schematic representation of an exemplary arrangement of such a lighting system 800. Here, a single-phase, single frustum-type electroactive polymer actuator 802 is employed which includes a diaphragm 808 affixed to a frame 810. The diaphragm may be weighted with a cap 842 having a selected mass to achieve the desired resonance frequency of the diaphragm. The diaphragm may also be pre-biased upwards by any suitable biasing means (not shown), e.g., a spring, to enhance performance of the actuator. Actuator 802 is in positional contact with or otherwise mechanically coupled by way of a stem or rod 822 to a light source 806, which is any suitable light source depending on the application at hand. Upon application of a voltage to the actuator via lead lines 820 coupled to a power supply (not shown), diaphragm 808 relaxes and is moved in the z-axis along with rod 822 and light source 806 are also displaced in the same direction, as illustrated in FIG. 8B.


Positioned about the light source is a reflector assembly which includes one or more reflectors, e.g., mirrors, or lenses. Although any number of reflectors may be used, here, two reflectors are used—a primary reflector 812 positioned between actuator 802 and light source 806 and about the z-axis to create the primary reflecting surface, and a secondary reflector 814 positioned on the opposite side of the light source. This arrangement provides a reflector “ring”, however, any other suitable arrangement of reflectors and the resulting construct may be employed with the present invention. In the illustrated embodiment, secondary reflector 814, unlike primary reflector 812, is mechanically coupled to light source 806, and therefore exhibits no movement relative to light source 806 (i.e., secondary reflector is displaced together with the light source). In other embodiments, the light source and the secondary reflector may be stationary and the primary reflector movable relative thereto. The latter configuration is advantageous where the light source/secondary reflector combination is heavier than the primary reflector or where type of light source used is particularly sensitive to vibrational movement such as a filament type incandescent bulb.


In any case, primary reflector 812 is designed to do the bulk of the variable direction ray reflection. For example, at least half of the light emitted from light source 806 is designed to hit primary reflector 812 first and be reflected in the desired direction without the necessity of being diverted by secondary reflectors. Secondary reflector 814 is responsible for diverting rays emitted from light source 806 in the upper hemisphere back down to primary reflector 812 in a concentrated ray. Depending on the application, a tertiary reflector or reflectors (not shown), which are also stationary relative to the primary reflector, may be employed to assist in redirecting stray rays from the light source. In any case, the resulting reflected light ray is made up of substantially all available light provided by light source 806.


By operating electroactive polymer actuator 802 between the high and low positions, as shown in FIGS. 8A and 8B, respectively, (or between any number of positions there between) at a frequency which is greater than that perceptible by the human eye, i.e., >25 Hz, light source 806 is moved relative to the primary reflector 812. The variable focal length to the reflector ring creates the ability to change the overall focus of the emitted light. As illustrated, broader band light rays 816 are provided when the light source is in the “low” position and narrower band light rays 818 are provided when the light source is in the “high” position.


Any arrangement of actuators, light sources and reflectors/lenses may be employed, in the subject systems where the relative motion between the light source(s) and reflector(s)/lens(es) is adjusted at a high rate of speed. As such, an alternative arrangement to the one illustrated in FIGS. 8A and 8B is one that couples the reflector assembly, or one or more reflectors/lenses thereof, to the electroactive polymer actuator to adjust its position relative to the light source(s). Alternatively, both the light source as well as the reflector assembly may be driven each by its own actuator to provide more control over the direction and diffusion of the light vector. Individual reflectors/lenses or groups of reflectors/lens may be driven or moved independently of each other to provide multi-faceted directionality to the light rays. Furthermore, any number of electroactive polymer diaphragms may be used to construct the subject actuators. For example, actuators having a stacked diaphragm configuration may be used to increase maximum displacement of a light source and/or reflector assembly.


Still further, a multi-phase electroactive polymer actuator may be employed to provide a unique lighting pattern, e.g., a strobe effect, flashing, etc. For example, a single, variable-phase actuator, may be used to displace the light source and/or the reflector/lens assembly to change directionality of the light rays where the directionality depends on the “phase” in which the actuator is operated. Such a lighting system 930 is illustrated in FIGS. 9A and 9B, where selected portions of the multi-phase diaphragm 936 of actuator 932 having frame 934 may be activated to change the direction of the reflected rays. The diaphragm may have any number of phases to provide the desired effect. For example, FIGS. 9A and 9B show actuator 932 acting in a bi-lateral manner to provide left-directed rays 938 and right-directed rays 940. A greater number of phases may be employed to produce a rotating light effect, such as those used on emergency vehicles, or a “wobble” pattern.


Those skilled in the art will appreciate than any number of lighting system architectures of the present invention may be employed. An aspect of the systems is achieve an efficient input voltage-to-diaphragm displacement ratio by providing or tuning the electroactive polymer actuators to operate at their natural frequency. Suitable power supplies for such applications are configured to generate high oscillating voltages from a direct current (DC) power source, such as a high voltage transistor array. Any increase in space requirements of the power supply are offset by the reduced requirement for bulky chemical energy storage, i.e., batteries, as the power supply is lighter than most batteries, making the overall system lighter and more efficient.


As for light sources, any type may be employed with the subject systems, depending on the desired lighting elect. For example, for directed light, light-emitting diodes (LEDs) may be employed, whereas conventional incandescent lights may be used to produce diffuse light. Short arc high intensity discharge light sources are the closest to point light sources and are therefore easily usable in the high efficiency light systems of the present invention.


The present invention provides in some embodiments, a lighting or illumination system using the lens stack with an array of LED light sources (or other light sources) as the display. The light sources may emit the same or different colors. In some embodiments, the display may include a layer of phosphors placed between the LED light sources and the lens stack. The phosphor layer may be excited by light from the LEDs and emit light of a different color. The phosphor layer may comprise a single chemical composition or may have regions of different chemical compositions which may emit different colors. By moving the lens array either laterally or transversely with respect to the LED light source array, the light perceived by the user can change in intensity, focus, and beam direction.


Where the array of LEDs contains multiple colors of LED light sources or excites an array of multiple compositions of phosphors, the relative intensities of the different colors of light emitted may be varied by moving the lens array laterally with respect to the LED array so the user will perceive different mixtures of colored light. The actuator(s) may be moved at different frequencies or with variable rates to provide complex patterns of colors, intensity, focus, and other lighting effects such as a stroboscopic effect. The actuator(s) may also be moved to a specific position for a constant color, intensity, and focus. A reflector or array of reflectors may be included in the stack for more capability in changing intensity, focus, and beam direction, particularly where the optical system includes an additional actuator which can change the displacement between any combination of the lens array, the reflector, and the LED array. In some embodiments, individual reflectors may be interspersed between and among the LEDs in an LED array. In other embodiments, reflectors may be situated above the LEDs beneath the lens element.


As illustrated in FIGS. 10 and 11, electroactive polymer actuators permit the system to have different motion regimens. FIG. 10 shows an example of a motion with the constant rate in both directions of movement. FIG. 11 shows an example of a motion with a variable rate, here a snap back action. The motion regimen depicted in FIG. 11 is particularly advantageous for lenticular systems where the forward motion of the actuator enables the viewer to see a series of images similar to a video clip. The snap-back motion of the actuator enables a rapid return to the first image to reset the series of images without the viewer having to see the series of images in reverse. Those skilled in the art will appreciate there are many other potential motion regimens that could be given based on application requirements including a regimen where the actuator is moved and held at a set position to hold a fixed position of the lens element relative to the display. The motion regimen should preferably be matched with the artwork to create the proper intended visual effect.



FIGS. 12A, 12B and 12C illustrate the steps of assembling an optical system which has an artwork as the display in this embodiment. FIG. 12A depicts the artwork laminated to the moving plate (shown as 406 in FIG. 4). FIG. 12B shows the lens element placed over the artwork while leaving a gap to prevent friction and jittery motion. FIG. 12C shows attachment of the top cover Which may be secured by fasteners, such as screws.


The foregoing examples of the present invention are offered for the purpose of illustration and not limitation. It will be apparent to those skilled in the art that the embodiments described herein may be modified or revised in various ways without departing from the spirit and scope of the invention. The scope of the invention is to be measured by the appended claims.

Claims
  • 1. An optical system comprising: a lens element;a display unit displaced transversely from the lens element, said display unit containing a display;at least one actuator coupled to at least one of the lens element or the display unit and capable of changing position of the lens element relative to the display unit in a lateral direction; andan electronic control system capable of driving the at least one actuator to move in a programmed manner to control positioning of the lens element relative to the display unit.
  • 2. The optical system according to claim 1 further comprising at least one reflector.
  • 3. The optical system according to claim 1 further comprising at least a second actuator capable of changing the transverse displacement between the lens element and the display unit.
  • 4. The optical system according to claim 3, wherein the second actuator comprises an electroactive polymer actuator.
  • 5. The optical system according to any one of claims 1 to 3, wherein the lens element comprises multiple lenses.
  • 6. The optical system according to any one of claims 1 to 3, wherein the lens element comprises a lenticular lens.
  • 7. The optical system according to claim 6, wherein the display comprises multiple images integrated to exhibit separately when viewed through different positions of the lenticular lens.
  • 8. The optical system according to claim 7, wherein motion of the at least one actuator enables a user to view a sequence of images.
  • 9. The optical system according to any one of claims 1 to 3, wherein the display comprises an array of light sources.
  • 10. The optical system according to claim 9, wherein the light sources emit light of different colors.
  • 11. The optical system according to claim 9, wherein the display comprises an array of light emitting diode (LED) light sources.
  • 12. The optical system according to claim 11, wherein the array excites a phosphor layer to emit light of a color different from the color of the light emitting diode (LED) light sources.
  • 13. The optical system according to claim 12, wherein the phosphor layer comprises regions with different phosphor compositions to emit different colors when excited by the light emitting diode (LED) light sources.
  • 14. The optical system according to claim 10, wherein motion of the at least one actuator provides illumination comprising a mixture of different colors of the light sources based on the relative position of the array of light sources and the lens element.
  • 15. The optical system according to any one of claims 1 to 3, wherein motion of the at least one actuator is programmed to cycle between positions of the lens element relative to the display unit at one selected from the group consisting of a constant rate, a variable rate, and a combination thereof.
  • 16. The optical system according to any one of claims 1 to 3, wherein motion of the at least one actuator is programmed to set a fixed position of the lens element relative to the display unit.
  • 17. The optical system according to any one of claims 1 to 3, wherein the at least one actuator comprises an electroactive polymer actuator.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to International Patent Application No. PCT/US2012/030030, filed Mar. 22, 2012, entitled “ELECTROACTIVE POLYMER ACTUATOR LENTICULAR SYSTEM,” which application claims the benefit, under 35 USC §119(e), of U.S. provisional patent application No. 61/466,129 filed Mar. 22, 2011 entitled “ACTIVE LENTICULAR FOR LARGER SIZE USING BAR ACTUATOR”, the entire disclosures of which are hereby incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2012/030030 3/22/2012 WO 00 1/24/2014
Publishing Document Publishing Date Country Kind
WO2012/129357 9/27/2012 WO A
US Referenced Citations (678)
Number Name Date Kind
2430013 Hansell Nov 1947 A
2967914 Pye Jan 1961 A
3050034 Benton Aug 1962 A
3056932 Wood Oct 1962 A
3303750 Powell Feb 1967 A
3304773 Rogallo Feb 1967 A
3400281 Malik Sep 1968 A
3403234 Barnes, Jr. et al. Sep 1968 A
3463942 Mellon Aug 1969 A
3509714 Walton May 1970 A
3539841 Riff Nov 1970 A
3558936 Horan Jan 1971 A
3606241 Bornholdt Sep 1971 A
3783480 Booe Jan 1974 A
3798473 Murayama et al. Mar 1974 A
3801839 Yo Apr 1974 A
3816774 Ohnuki et al. Jun 1974 A
3821967 Sturman et al. Jul 1974 A
3832580 Yamamuro et al. Aug 1974 A
3851363 Booe Dec 1974 A
3903733 Murayama et al. Sep 1975 A
3935485 Yoshida et al. Jan 1976 A
3940637 Ohigashi et al. Feb 1976 A
3943614 Yoshikawa et al. Mar 1976 A
3947644 Uchikawa Mar 1976 A
3965757 Barrus Jun 1976 A
4011474 O'Neill Mar 1977 A
4028566 Franssen et al. Jun 1977 A
4051395 Taylor Sep 1977 A
4056742 Tibbetts Nov 1977 A
4088915 Kodama May 1978 A
4089927 Taylor May 1978 A
4127749 Atoji et al. Nov 1978 A
4140936 Bullock Feb 1979 A
4155950 Berezuk et al. May 1979 A
4158787 Forward Jun 1979 A
4170742 Itagaki et al. Oct 1979 A
4190336 Frank et al. Feb 1980 A
4216403 Krempl et al. Aug 1980 A
4227347 Tam Oct 1980 A
4234813 Iguchi et al. Nov 1980 A
4236416 Barcita Dec 1980 A
4240535 Pierce et al. Dec 1980 A
4245815 Willis Jan 1981 A
4257594 Conrey et al. Mar 1981 A
4266339 Kalt May 1981 A
4283461 Wooden et al. Aug 1981 A
4283649 Heinouchi Aug 1981 A
4284921 Lemonon et al. Aug 1981 A
4290983 Sasaki et al. Sep 1981 A
4297394 Wooden et al. Oct 1981 A
4315433 Edelman et al. Feb 1982 A
4322877 Taylor Apr 1982 A
4326762 Hockenbrock et al. Apr 1982 A
4330730 Kurz et al. May 1982 A
4342936 Marcus et al. Aug 1982 A
4344743 Bessman et al. Aug 1982 A
4346505 Lemonon et al. Aug 1982 A
4363991 Edelman Dec 1982 A
4376302 Miller Mar 1983 A
4384394 Lemonon et al. May 1983 A
4387318 Kolm et al. Jun 1983 A
4400634 Micheron Aug 1983 A
4401911 Ravinet et al. Aug 1983 A
4404490 Taylor et al. Sep 1983 A
4413202 Krempl et al. Nov 1983 A
4433359 Hamabe et al. Feb 1984 A
4434452 Hamabe et al. Feb 1984 A
4435667 Kolm et al. Mar 1984 A
4442372 Roberts Apr 1984 A
4469920 Murphy Sep 1984 A
4469978 Hamada et al. Sep 1984 A
4472255 Millington et al. Sep 1984 A
4473806 Johnston Sep 1984 A
4500377 Broussoux et al. Feb 1985 A
4518555 Ravinet et al. May 1985 A
4566135 Schmidt Jan 1986 A
4588998 Yamamuro et al. May 1986 A
4592383 Rikuta Jun 1986 A
4595338 Kolm et al. Jun 1986 A
4598338 Van Devender et al. Jul 1986 A
4605167 Maehara Aug 1986 A
4626730 Hubbard, Jr. Dec 1986 A
4638207 Radice Jan 1987 A
4654554 Kishi Mar 1987 A
4668449 Soni et al. May 1987 A
4678955 Toda Jul 1987 A
4686440 Hatamura et al. Aug 1987 A
4689614 Strachan Aug 1987 A
4704556 Kay Nov 1987 A
4715396 Fox Dec 1987 A
4733121 Hebert Mar 1988 A
4748366 Taylor May 1988 A
4762733 Thiel et al. Aug 1988 A
4783888 Fujii et al. Nov 1988 A
4784479 Ikemori Nov 1988 A
4785837 Hansen et al. Nov 1988 A
4786837 Kalnin et al. Nov 1988 A
4787411 Moldenhauer Nov 1988 A
4793588 Laverty, Jr. Dec 1988 A
4803671 Rochling et al. Feb 1989 A
4814661 Ratzlaff et al. Mar 1989 A
4820236 Berliner et al. Apr 1989 A
4824107 French Apr 1989 A
4825116 Itoh et al. Apr 1989 A
4833659 Geil et al. May 1989 A
4835747 Billet May 1989 A
4839872 Gragnolati et al. Jun 1989 A
4843275 Radice Jun 1989 A
4849668 Crawley et al. Jul 1989 A
4868447 Lee et al. Sep 1989 A
4869282 Sittler et al. Sep 1989 A
4870868 Gastgeb et al. Oct 1989 A
4877957 Okada et al. Oct 1989 A
4877988 McGinniss et al. Oct 1989 A
4879698 Langberg Nov 1989 A
4885783 Whitehead et al. Dec 1989 A
4885830 Ohtaka Dec 1989 A
4904222 Gastgeb et al. Feb 1990 A
4906886 Breimesser et al. Mar 1990 A
4911057 Fishman Mar 1990 A
4911995 Belanger et al. Mar 1990 A
4958100 Crawley et al. Sep 1990 A
4961956 Simopoulos et al. Oct 1990 A
4969197 Takaya Nov 1990 A
4971287 Shaw Nov 1990 A
4980597 Iwao Dec 1990 A
4989951 Miyano et al. Feb 1991 A
5024872 Wilson et al. Jun 1991 A
RE33651 Blonder et al. Jul 1991 E
5030874 Saito et al. Jul 1991 A
5065067 Todd et al. Nov 1991 A
5076538 Mohr et al. Dec 1991 A
5085401 Botting et al. Feb 1992 A
5090246 Colla et al. Feb 1992 A
5090794 Hatano et al. Feb 1992 A
5100100 Benson et al. Mar 1992 A
5119840 Shibata Jun 1992 A
5132582 Hayashi et al. Jul 1992 A
5142510 Rodda Aug 1992 A
5148735 Veletovac Sep 1992 A
5149514 Sanjurjo Sep 1992 A
5153820 MacFarlane et al. Oct 1992 A
5153859 Chatigny et al. Oct 1992 A
5156885 Budd Oct 1992 A
5170089 Fulton Dec 1992 A
5171734 Sanjurjo et al. Dec 1992 A
5172024 Broussoux et al. Dec 1992 A
5188447 Chiang et al. Feb 1993 A
5199641 Hohm et al. Apr 1993 A
5206557 Bobbio Apr 1993 A
5229979 Scheinbeim et al. Jul 1993 A
5232196 Hutchings et al. Aug 1993 A
5240004 Walinsky et al. Aug 1993 A
5244707 Shores Sep 1993 A
5250784 Muller et al. Oct 1993 A
5254296 Perlman Oct 1993 A
5258201 Munn et al. Nov 1993 A
5281885 Watanabe et al. Jan 1994 A
5288551 Sato et al. Feb 1994 A
5291335 Ogino Mar 1994 A
5302318 Dutta et al. Apr 1994 A
5305178 Binder et al. Apr 1994 A
5321332 Toda Jun 1994 A
5350966 Culp Sep 1994 A
5352574 Guiseppi-Elie Oct 1994 A
5356500 Scheinbeim et al. Oct 1994 A
5361240 Pearce Nov 1994 A
5368704 Madou et al. Nov 1994 A
5369995 Scheinbeim et al. Dec 1994 A
5377258 Bro Dec 1994 A
5380396 Shikida et al. Jan 1995 A
5410210 Sato et al. Apr 1995 A
5417235 Wise et al. May 1995 A
5424596 Mendenhall et al. Jun 1995 A
5428523 McDonnal Jun 1995 A
5430565 Yamanouchi et al. Jul 1995 A
5438553 Wilson et al. Aug 1995 A
5440194 Beurrier Aug 1995 A
5452878 Gravesen et al. Sep 1995 A
5481152 Bushulte Jan 1996 A
5488872 McCormick Feb 1996 A
5493372 Mashtare et al. Feb 1996 A
5495137 Park et al. Feb 1996 A
5499127 Tsubota et al. Mar 1996 A
5500635 Mott Mar 1996 A
5504388 Kimura et al. Apr 1996 A
5509888 Miller Apr 1996 A
5515341 Toda et al. May 1996 A
5548177 Carroll Aug 1996 A
5559387 Beurrier Sep 1996 A
5563466 Rennex et al. Oct 1996 A
5571148 Loeb et al. Nov 1996 A
5578889 Epstein Nov 1996 A
5589725 Haertling Dec 1996 A
5591986 Niigaki et al. Jan 1997 A
5593462 Gueguen et al. Jan 1997 A
5632841 Hellbaum et al. May 1997 A
5636072 Shibata et al. Jun 1997 A
5636100 Zheng et al. Jun 1997 A
5642015 Whitehead et al. Jun 1997 A
5647245 Takei Jul 1997 A
5668703 Rossi et al. Sep 1997 A
5678571 Brown Oct 1997 A
5682075 Bolleman et al. Oct 1997 A
5684637 Floyd Nov 1997 A
5696663 Unami et al. Dec 1997 A
5703295 Ishida et al. Dec 1997 A
5717563 MacDougall et al. Feb 1998 A
5722418 Bro Mar 1998 A
5744908 Kyushima Apr 1998 A
5751090 Henderson May 1998 A
5755909 Gailus May 1998 A
5761782 Sager Jun 1998 A
5766934 Guiseppi-Elie Jun 1998 A
5777540 Dedert et al. Jul 1998 A
5788468 Dewa et al. Aug 1998 A
5800421 Lemelson Sep 1998 A
5801475 Kimura Sep 1998 A
5814921 Carroll Sep 1998 A
5828157 Miki et al. Oct 1998 A
5831371 Bishop Nov 1998 A
5835453 Wynne et al. Nov 1998 A
5847690 Boie et al. Dec 1998 A
5857694 Lazarus et al. Jan 1999 A
5876675 Kennedy Mar 1999 A
5883466 Suyama et al. Mar 1999 A
5889354 Sager Mar 1999 A
5892314 Sager et al. Apr 1999 A
5896287 Mihara et al. Apr 1999 A
5897097 Biegelsen et al. Apr 1999 A
5900572 Aeroe May 1999 A
5902836 Bennett et al. May 1999 A
5910107 Iliff Jun 1999 A
5912499 Diem et al. Jun 1999 A
5913310 Brown Jun 1999 A
5914901 Pascucci Jun 1999 A
5915377 Coffee Jun 1999 A
5918502 Bishop Jul 1999 A
5928262 Harber Jul 1999 A
5928547 Shea et al. Jul 1999 A
5933170 Takeuchi et al. Aug 1999 A
5971355 Biegelsen et al. Oct 1999 A
5977685 Kurita et al. Nov 1999 A
5984760 Marine Nov 1999 A
5988902 Holehan Nov 1999 A
6012961 Sharpe, III et al. Jan 2000 A
6037707 Gailus et al. Mar 2000 A
6048276 Vandergrift Apr 2000 A
6048622 Hagood, IV et al. Apr 2000 A
6055859 Kozuka et al. May 2000 A
6059546 Brenan et al. May 2000 A
6060811 Fox et al. May 2000 A
6069420 Mizzi et al. May 2000 A
6074178 Bishop et al. Jun 2000 A
6075504 Stoller Jun 2000 A
6078126 Rollins et al. Jun 2000 A
6084321 Hunter et al. Jul 2000 A
6089701 Hashizume et al. Jul 2000 A
6093078 Cook Jul 2000 A
6093995 Lazarus et al. Jul 2000 A
6094988 Aindow Aug 2000 A
6097821 Yokoyama et al. Aug 2000 A
6108275 Hughes et al. Aug 2000 A
6111743 Lavene Aug 2000 A
6117396 Demers Sep 2000 A
6130510 Kurihara et al. Oct 2000 A
6133398 Bhat et al. Oct 2000 A
6140131 Sunakawa et al. Oct 2000 A
6140740 Porat et al. Oct 2000 A
6140746 Miyashita et al. Oct 2000 A
6148842 Kappel et al. Nov 2000 A
6156842 Hoenig et al. Dec 2000 A
6157528 Anthony Dec 2000 A
6161966 Chang et al. Dec 2000 A
6165126 Merzenich et al. Dec 2000 A
6168133 Heinz et al. Jan 2001 B1
6181351 Merrill et al. Jan 2001 B1
6184044 Sone et al. Feb 2001 B1
6184608 Cabuz et al. Feb 2001 B1
6184609 Johansson et al. Feb 2001 B1
6184844 Filipovic et al. Feb 2001 B1
6190805 Takeuchi et al. Feb 2001 B1
6194815 Carroll Feb 2001 B1
6196935 Spangler et al. Mar 2001 B1
6198203 Hotomi Mar 2001 B1
6198204 Pottenger Mar 2001 B1
6201398 Takada Mar 2001 B1
6210827 Dopp et al. Apr 2001 B1
6228533 Ohashi et al. May 2001 B1
6232702 Newnham et al. May 2001 B1
6239535 Toda et al. May 2001 B1
6239536 Lakin May 2001 B1
6240814 Boyd et al. Jun 2001 B1
6248262 Kubotera et al. Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6252221 Kaneko et al. Jun 2001 B1
6252334 Nye et al. Jun 2001 B1
6252336 Hall Jun 2001 B1
6255758 Cabuz et al. Jul 2001 B1
6262516 Fukuda et al. Jul 2001 B1
6268219 McBride et al. Jul 2001 B1
6282074 Anthony Aug 2001 B1
6284435 Cao Sep 2001 B1
6286961 Ogawa Sep 2001 B1
6291155 Raguse et al. Sep 2001 B1
6291928 Lazarus et al. Sep 2001 B1
6294859 Jaenker Sep 2001 B1
6297579 Martin et al. Oct 2001 B1
6311950 Kappel et al. Nov 2001 B1
6316084 Claus et al. Nov 2001 B1
6321428 Toda et al. Nov 2001 B1
6330463 Hedrich Dec 2001 B1
6333595 Horikawa et al. Dec 2001 B1
6334673 Kitahara et al. Jan 2002 B1
6336880 Agner Jan 2002 B1
6339527 Farooq et al. Jan 2002 B1
6343129 Pelrine et al. Jan 2002 B1
6345840 Meyer et al. Feb 2002 B1
6349141 Corsaro Feb 2002 B1
6355185 Kubota Mar 2002 B1
6358021 Cabuz Mar 2002 B1
6359370 Chang Mar 2002 B1
6366193 Duggal et al. Apr 2002 B2
6369954 Berge et al. Apr 2002 B1
6375857 Ng et al. Apr 2002 B1
6376971 Pelrine et al. Apr 2002 B1
6377383 Whitehead et al. Apr 2002 B1
6379393 Marvroidis et al. Apr 2002 B1
6379809 Simpson et al. Apr 2002 B1
6385021 Takeda et al. May 2002 B1
6385429 Weber et al. May 2002 B1
6388043 Langer et al. May 2002 B1
6388553 Shea et al. May 2002 B1
6388856 Anthony May 2002 B1
6400065 Toda et al. Jun 2002 B1
6404107 Lazarus et al. Jun 2002 B1
6411009 Jaenker Jun 2002 B2
6411013 Horning Jun 2002 B1
6424079 Carroll Jul 2002 B1
6429573 Koopmann et al. Aug 2002 B2
6429576 Simes Aug 2002 B1
6433689 Hovind et al. Aug 2002 B1
6434245 Zimmermann Aug 2002 B1
6435840 Sharma et al. Aug 2002 B1
6436531 Kollaja et al. Aug 2002 B1
6437489 Shinke et al. Aug 2002 B1
6457697 Kolze Oct 2002 B1
6459088 Yasuda et al. Oct 2002 B1
6471185 Lewin et al. Oct 2002 B2
6475931 Bower et al. Nov 2002 B2
6486589 Dujari et al. Nov 2002 B1
6492762 Pant et al. Dec 2002 B1
6495945 Yamaguchi et al. Dec 2002 B2
6499509 Berger et al. Dec 2002 B2
6502803 Mattes Jan 2003 B1
6504286 Porat et al. Jan 2003 B1
6509802 Kasperkovitz Jan 2003 B2
6514237 Maseda Feb 2003 B1
6522516 Anthony Feb 2003 B2
6523560 Williams et al. Feb 2003 B1
6528928 Burns et al. Mar 2003 B1
6530266 Adderton et al. Mar 2003 B1
6532145 Carlen et al. Mar 2003 B1
6543110 Pelrine et al. Apr 2003 B1
6545384 Pelrine et al. Apr 2003 B1
6562513 Takeuchi et al. May 2003 B1
6583533 Pelrine et al. Jun 2003 B2
6586859 Kombluh et al. Jul 2003 B2
6590267 Goodwin-Johansson et al. Jul 2003 B1
6593155 Mohler et al. Jul 2003 B2
6613816 Mahdi et al. Sep 2003 B2
6617759 Zumeris et al. Sep 2003 B1
6617765 Lagier et al. Sep 2003 B1
6619799 Blum et al. Sep 2003 B1
6628040 Pelrine et al. Sep 2003 B2
6631068 Lobo Oct 2003 B1
6637276 Adderton et al. Oct 2003 B2
6640402 Vooren et al. Nov 2003 B1
6644027 Kelly Nov 2003 B1
6646077 Lyons Nov 2003 B1
6650455 Miles Nov 2003 B2
6652938 Nishikawa et al. Nov 2003 B1
6654004 Hoggarth Nov 2003 B2
6664718 Pelrine et al. Dec 2003 B2
6668109 Nahum et al. Dec 2003 B2
6673533 Wohlstadter et al. Jan 2004 B1
6680825 Murphy et al. Jan 2004 B1
6682500 Soltanpour et al. Jan 2004 B2
6690101 Magnussen et al. Feb 2004 B2
6700314 Cuhat et al. Mar 2004 B2
6701296 Kramer et al. Mar 2004 B1
6707236 Pelrine et al. Mar 2004 B2
6720710 Wenzel et al. Apr 2004 B1
6733130 Blum et al. May 2004 B2
6743273 Chung et al. Jun 2004 B2
6762050 Fukushima et al. Jul 2004 B2
6768246 Pelrine et al. Jul 2004 B2
6781284 Pelrine et al. Aug 2004 B1
6784227 Simon et al. Aug 2004 B2
6791205 Woodbridge Sep 2004 B2
6800155 Senecal et al. Oct 2004 B2
6804068 Sasaki et al. Oct 2004 B2
6806621 Heim et al. Oct 2004 B2
6806806 Anthony Oct 2004 B2
6806808 Watters et al. Oct 2004 B1
6809462 Pelrine et al. Oct 2004 B2
6809928 Gwin et al. Oct 2004 B2
6812624 Pei et al. Nov 2004 B1
6824689 Wang et al. Nov 2004 B2
6847153 Balizer Jan 2005 B1
6847155 Schwartz et al. Jan 2005 B2
6856305 Nagano Feb 2005 B2
6864592 Kelly Mar 2005 B1
6866242 Hirota Mar 2005 B2
6867533 Su et al. Mar 2005 B1
6869275 Dante et al. Mar 2005 B2
6876135 Pelrine et al. Apr 2005 B2
6879318 Chan et al. Apr 2005 B1
6882086 Kornbluh et al. Apr 2005 B2
6891317 Pei et al. May 2005 B2
6902048 Chung Jun 2005 B1
6911764 Pelrine et al. Jun 2005 B2
6935287 Shinogle Aug 2005 B2
6938945 Wald et al. Sep 2005 B2
6940211 Pelrine et al. Sep 2005 B2
6940212 Mueller Sep 2005 B2
6940221 Matsukiyo et al. Sep 2005 B2
6944931 Shcheglov et al. Sep 2005 B2
6952313 Schrader Oct 2005 B2
6967430 Johansson Nov 2005 B2
6994314 Garnier et al. Feb 2006 B2
6997870 Couvillon, Jr. Feb 2006 B2
7008838 Hosking et al. Mar 2006 B1
7011378 Maluf et al. Mar 2006 B2
7011760 Wang et al. Mar 2006 B2
7029056 Browne et al. Apr 2006 B2
7034432 Pelrine et al. Apr 2006 B1
7037270 Seward May 2006 B2
7038357 Goldenberg et al. May 2006 B2
7049732 Pei et al. May 2006 B2
7052594 Pelrine et al. May 2006 B2
7062055 Pelrine et al. Jun 2006 B2
7063268 Chrysler et al. Jun 2006 B2
7063377 Brei et al. Jun 2006 B2
7064472 Pelrine et al. Jun 2006 B2
7071596 Krill Jul 2006 B2
7075162 Unger Jul 2006 B2
7075213 Krill Jul 2006 B2
7092238 Saito et al. Aug 2006 B2
7099141 Kaufman et al. Aug 2006 B1
7104146 Benslimane et al. Sep 2006 B2
7109643 Hirai et al. Sep 2006 B2
7113318 Onuki et al. Sep 2006 B2
7113848 Hanson Sep 2006 B2
7115092 Park et al. Oct 2006 B2
7140180 Gerber et al. Nov 2006 B2
7141888 Sabol et al. Nov 2006 B2
7142368 Kim et al. Nov 2006 B2
7142369 Wu et al. Nov 2006 B2
7144616 Unger et al. Dec 2006 B1
7148789 Sadler et al. Dec 2006 B2
7164212 Leijon et al. Jan 2007 B2
7166952 Topliss et al. Jan 2007 B2
7166953 Heim et al. Jan 2007 B2
7170665 Kaneko et al. Jan 2007 B2
7190016 Cahalen et al. Mar 2007 B2
7193350 Blackburn et al. Mar 2007 B1
7195393 Potter Mar 2007 B2
7195950 Taussig Mar 2007 B2
7196688 Schena Mar 2007 B2
7199302 Raisanen Apr 2007 B2
7199501 Pei et al. Apr 2007 B2
7205704 Audren et al. Apr 2007 B2
7205978 Poupyrev et al. Apr 2007 B2
7209280 Goossens Apr 2007 B2
7211937 Kornbluh et al. May 2007 B2
7220785 Saito May 2007 B2
7224106 Pei et al. May 2007 B2
7233097 Rosenthal et al. Jun 2007 B2
7235152 Bell et al. Jun 2007 B2
7237524 Pelrine et al. Jul 2007 B2
7242106 Kelly Jul 2007 B2
7245440 Peseux Jul 2007 B2
7256943 Kobrin et al. Aug 2007 B1
7259495 Asai et al. Aug 2007 B2
7259503 Pei et al. Aug 2007 B2
7276090 Shahinpoor et al. Oct 2007 B2
7291512 Unger Nov 2007 B2
7298054 Hirsch Nov 2007 B2
7298559 Kato et al. Nov 2007 B2
7298603 Mizuno et al. Nov 2007 B2
7301261 Ifuku et al. Nov 2007 B2
7310874 Higuchi et al. Dec 2007 B2
7312917 Jacob Dec 2007 B2
7320457 Heim et al. Jan 2008 B2
7321185 Schultz Jan 2008 B2
7323790 Taylor et al. Jan 2008 B2
7332688 Browne et al. Feb 2008 B2
7339285 Negron Crespo Mar 2008 B2
7339572 Schena Mar 2008 B2
7342573 Ryynanen Mar 2008 B2
7355293 Bernhoff et al. Apr 2008 B2
7359124 Fang et al. Apr 2008 B1
7362031 Maita et al. Apr 2008 B2
7362032 Pelrine et al. Apr 2008 B2
7362889 Dubowsky et al. Apr 2008 B2
7368862 Pelrine et al. May 2008 B2
7371596 Warner, Jr. et al. May 2008 B2
7373454 Noe May 2008 B1
7378783 Pelrine et al. May 2008 B2
7392876 Browne et al. Jul 2008 B2
7394182 Pelrine et al. Jul 2008 B2
7394282 Sinha et al. Jul 2008 B2
7394641 Won et al. Jul 2008 B2
7397166 Morgan et al. Jul 2008 B1
7401846 Browne et al. Jul 2008 B2
7411332 Kornbluh et al. Aug 2008 B2
7426340 Seo Sep 2008 B2
7429074 McKnight et al. Sep 2008 B2
7429495 Wan Sep 2008 B2
7436099 Pei et al. Oct 2008 B2
7436646 Delince et al. Oct 2008 B2
7442421 Li et al. Oct 2008 B2
7442760 Roberts et al. Oct 2008 B2
7444072 Seo Oct 2008 B2
7446926 Sampsell Nov 2008 B2
7449821 Dausch Nov 2008 B2
7454820 Nakamura Nov 2008 B2
7456549 Heim et al. Nov 2008 B2
7468575 Pelrine et al. Dec 2008 B2
7481120 Gravesen et al. Jan 2009 B2
7492076 Heim et al. Feb 2009 B2
7498729 Ogino Mar 2009 B2
7499223 Berge et al. Mar 2009 B2
7511706 Schena Mar 2009 B2
7513624 Yavid et al. Apr 2009 B2
7515350 Berge et al. Apr 2009 B2
7518284 Benslimane et al. Apr 2009 B2
7521840 Heim Apr 2009 B2
7521847 Heim Apr 2009 B2
7537197 Heim et al. May 2009 B2
7548015 Benslimane et al. Jun 2009 B2
7548232 Shahoian et al. Jun 2009 B2
7567681 Pelrine et al. Jul 2009 B2
7573064 Benslimane et al. Aug 2009 B2
7585122 Eromaki et al. Sep 2009 B2
7586242 Yokoyama et al. Sep 2009 B2
7595580 Heim Sep 2009 B2
7608989 Heydt et al. Oct 2009 B2
7626319 Heim Dec 2009 B2
7646544 Batchko et al. Jan 2010 B2
7648118 Ukpai et al. Jan 2010 B2
7659918 Turner Feb 2010 B2
7679267 Heim Mar 2010 B2
7679839 Polyakov et al. Mar 2010 B2
7690622 Ito et al. Apr 2010 B2
7702227 Ito et al. Apr 2010 B2
7703740 Franklin Apr 2010 B1
7703742 Heim et al. Apr 2010 B2
7703839 McKnight et al. Apr 2010 B2
7705521 Pelrine et al. Apr 2010 B2
7714701 Altan et al. May 2010 B2
7732999 Clausen et al. Jun 2010 B2
7733575 Heim et al. Jun 2010 B2
7750532 Heim Jul 2010 B2
7750617 Omi Jul 2010 B2
7761981 Rosenthal et al. Jul 2010 B2
7785656 Pei et al. Aug 2010 B2
7787646 Pelrine et al. Aug 2010 B2
7813047 Wang et al. Oct 2010 B2
7824580 Boll et al. Nov 2010 B2
7886993 Bachmaier et al. Feb 2011 B2
7893965 Heim et al. Feb 2011 B2
7898159 Heydt et al. Mar 2011 B2
7911115 Pelrine et al. Mar 2011 B2
7911761 Biggs et al. Mar 2011 B2
7915789 Smith Mar 2011 B2
7915790 Heim et al. Mar 2011 B2
7921541 Pei et al. Apr 2011 B2
7923064 Pelrine et al. Apr 2011 B2
7923902 Heim Apr 2011 B2
7923982 Sumita Apr 2011 B2
7940476 Polyakov et al. May 2011 B2
7952261 Lipton et al. May 2011 B2
7971850 Heim et al. Jul 2011 B2
7980671 Nystrom et al. Jul 2011 B2
7986466 Lee et al. Jul 2011 B2
7990022 Heim Aug 2011 B2
8004339 Barrow Aug 2011 B2
8026023 Hamada Sep 2011 B2
8042264 Rosenthal et al. Oct 2011 B2
8049333 Alden et al. Nov 2011 B2
8054566 Heim et al. Nov 2011 B2
8058861 Pelrine et al. Nov 2011 B2
8072121 Heim et al. Dec 2011 B2
8074939 Hyde et al. Dec 2011 B2
8093783 Rosenthal et al. Jan 2012 B2
8127437 Lipton et al. Mar 2012 B2
8133932 Kijlstra et al. Mar 2012 B2
8164835 Heim et al. Apr 2012 B2
8172998 Bennett et al. May 2012 B2
8183739 Heim May 2012 B2
8221944 Shirasaki et al. Jul 2012 B2
8222799 Polyakov et al. Jul 2012 B2
8237324 Pei et al. Aug 2012 B2
8248750 Biggs et al. Aug 2012 B2
8258238 Boersma et al. Sep 2012 B2
8283839 Heim Oct 2012 B2
8294600 Peterson et al. Oct 2012 B2
8310444 Peterson et al. Nov 2012 B2
8316526 Pei et al. Nov 2012 B2
8319403 Lipton et al. Nov 2012 B2
8419822 Li Apr 2013 B2
8421316 Tryson et al. Apr 2013 B2
8508109 Kurihara et al. Aug 2013 B2
8545987 Strader et al. Oct 2013 B2
8585007 Schapeler et al. Nov 2013 B2
8594839 Hanson Nov 2013 B2
8679575 Biggs et al. Mar 2014 B2
8679621 Blaiszik et al. Mar 2014 B2
8779650 Jenninger et al. Jul 2014 B2
8842355 Lipton et al. Sep 2014 B2
8975888 Pelrine et al. Mar 2015 B2
8981621 Pelrine et al. Mar 2015 B2
RE45464 Kornbluh et al. Apr 2015 E
20010007449 Kobachi et al. Jul 2001 A1
20020083858 MacDiarmid et al. Jul 2002 A1
20040014860 Meier et al. Jan 2004 A1
20040046739 Gettemy Mar 2004 A1
20040124738 Pelrine et al. Jul 2004 A1
20050002113 Berge Jan 2005 A1
20050046312 Tetsu Mar 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050113892 Sproul May 2005 A1
20050140922 Bekerman et al. Jun 2005 A1
20050200984 Browne et al. Sep 2005 A1
20060057377 Harrison et al. Mar 2006 A1
20060079619 Wang et al. Apr 2006 A1
20060122954 Podlasek et al. Jun 2006 A1
20060138371 Garnier Jun 2006 A1
20060197741 Biggadike Sep 2006 A1
20060238069 Maruyama et al. Oct 2006 A1
20060258912 Belson et al. Nov 2006 A1
20070080435 Lin Apr 2007 A1
20070122132 Misawa et al. May 2007 A1
20070152982 Kim et al. Jul 2007 A1
20070170910 Chang et al. Jul 2007 A1
20070173602 Brinkman et al. Jul 2007 A1
20070189667 Wakita et al. Aug 2007 A1
20070200457 Heim et al. Aug 2007 A1
20070219285 Kropp et al. Sep 2007 A1
20070230222 Drabing et al. Oct 2007 A1
20080062589 Drabing Mar 2008 A1
20080143696 Goulthorpe Jun 2008 A1
20080152921 Kropp Jun 2008 A1
20080303782 Grant et al. Dec 2008 A1
20090184606 Rosenthal et al. Jul 2009 A1
20090250021 Zarrabi et al. Oct 2009 A1
20090297829 Pyles et al. Dec 2009 A1
20100236843 Englund Sep 2010 A1
20110021917 Morita Jan 2011 A1
20110128239 Polyakov et al. Jun 2011 A1
20110155307 Pelrine et al. Jun 2011 A1
20110256383 Cochet et al. Oct 2011 A1
20110285247 Lipton et al. Nov 2011 A1
20120128960 Büsgen May 2012 A1
20140014715 Moran et al. Jan 2014 A1
20140176753 Hillis et al. Jun 2014 A1
20140290834 Egron et al. Oct 2014 A1
20140319971 Yoo et al. Oct 2014 A1
20140322522 Yoo Oct 2014 A1
20140352879 Yoo et al. Dec 2014 A1
20150009009 Zarrabi et al. Jan 2015 A1
20150034237 Biggs et al. Feb 2015 A1
20150043095 Lipton et al. Feb 2015 A1
20150084483 Yoo et al. Mar 2015 A1
20150096666 Yoo et al. Apr 2015 A1
Foreign Referenced Citations (158)
Number Date Country
2329804 Nov 1999 CA
2330384 Nov 1999 CA
2535833 Feb 1977 DE
4408618 Sep 1995 DE
19636909 Mar 1998 DE
19952062 May 2000 DE
10058096 Jun 2002 DE
10161349 Jul 2003 DE
10335019 Feb 2005 DE
0196839 Oct 1986 EP
0295907 Dec 1988 EP
0522882 Jan 1993 EP
0833182 Apr 1998 EP
0980103 Feb 2000 EP
1050955 Nov 2000 EP
1090835 Nov 2000 EP
1481467 Dec 2004 EP
1512215 Mar 2005 EP
1528609 May 2005 EP
1602135 Dec 2005 EP
1698876 Sep 2006 EP
1751843 Feb 2007 EP
1843406 Oct 2007 EP
1976036 Oct 2008 EP
2119747 Nov 2009 EP
2511314 Oct 2012 EP
2745476 Sep 1997 FR
2338513 Dec 1999 GB
2470006 Nov 2010 GB
S 5181120 Jul 1976 JP
S 52120840 Oct 1977 JP
S 5445593 Apr 1979 JP
S 5542474 Mar 1980 JP
S 5565569 May 1980 JP
S 5661679 May 1981 JP
S 56101788 Aug 1981 JP
S 59126689 Jul 1984 JP
S 6199499 May 1986 JP
S 61239799 Oct 1986 JP
S 6397100 Apr 1988 JP
H 02162214 Jun 1990 JP
02222019 Sep 1990 JP
03173022 Jul 1991 JP
H 04353279 Dec 1992 JP
H 05202707 Aug 1993 JP
H 05244782 Sep 1993 JP
H 07111785 Apr 1995 JP
H 07240544 Sep 1995 JP
H 09275688 Oct 1997 JP
H 10137655 May 1998 JP
H 10207616 Aug 1998 JP
H 10321482 Dec 1998 JP
H 112764 Jan 1999 JP
11134109 May 1999 JP
H 11133210 May 1999 JP
2000-081504 Mar 2000 JP
2001-130774 May 2001 JP
2001-136598 May 2001 JP
2001-286162 Oct 2001 JP
2003-040041 Feb 2003 JP
3501216 Mar 2004 JP
2004-516966 Jun 2004 JP
2004-221742 Aug 2004 JP
2004-296154 Oct 2004 JP
2004-353279 Dec 2004 JP
2005-202707 Jul 2005 JP
2005-522162 Jul 2005 JP
3709723 Aug 2005 JP
2005-527178 Sep 2005 JP
2006-048302 Feb 2006 JP
2006-509052 Mar 2006 JP
2006-178434 Jul 2006 JP
2006-520180 Aug 2006 JP
2006-244490 Sep 2006 JP
2007-206362 Aug 2007 JP
2007-287670 Nov 2007 JP
2008-262955 Oct 2008 JP
2009-249313 Oct 2009 JP
2010-273524 Dec 2010 JP
5415442 Feb 2014 JP
2004-0097921 Dec 2004 KR
10-0607839 Aug 2006 KR
10-0650190 Nov 2006 KR
2008-0100757 Nov 2008 KR
2010-0121801 Nov 2010 KR
20110122244 Nov 2011 KR
WO 8707218 Dec 1987 WO
WO 8902658 Mar 1989 WO
WO 9418433 Aug 1994 WO
WO 9508905 Mar 1995 WO
WO 9626364 Aug 1996 WO
WO 9715876 May 1997 WO
WO 9819208 May 1998 WO
WO 9835529 Aug 1998 WO
WO 9845677 Oct 1998 WO
WO 9917929 Apr 1999 WO
WO 9923749 May 1999 WO
WO 9937921 Jul 1999 WO
WO 0101025 Jan 2001 WO
WO 0106575 Jan 2001 WO
WO 0106579 Jan 2001 WO
WO 0158973 Aug 2001 WO
WO 0159852 Aug 2001 WO
WO 0191100 Nov 2001 WO
WO 0227660 Apr 2002 WO
WO 0237660 May 2002 WO
WO 0237892 May 2002 WO
WO 02071505 Sep 2002 WO
WO 03056274 Jul 2003 WO
WO 03056287 Jul 2003 WO
WO 03081762 Oct 2003 WO
WO 03107523 Dec 2003 WO
WO 2004009363 Jan 2004 WO
WO 2004027970 Apr 2004 WO
WO 2004053782 Jun 2004 WO
WO 2004074797 Sep 2004 WO
WO 2004079832 Sep 2004 WO
WO 2004086289 Oct 2004 WO
WO 2004093763 Nov 2004 WO
WO 2005027161 Mar 2005 WO
WO 2005053002 Jun 2005 WO
WO 2005079187 Sep 2005 WO
WO 2005079353 Sep 2005 WO
WO 2005081676 Sep 2005 WO
WO 2005086249 Sep 2005 WO
WO 2006040532 Apr 2006 WO
WO 2006102273 Sep 2006 WO
WO 2006121818 Nov 2006 WO
WO 2006123317 Nov 2006 WO
WO 2007029275 Mar 2007 WO
WO 2007072411 Jun 2007 WO
WO 2008052559 May 2008 WO
WO 2008105861 Sep 2008 WO
WO 2008150817 Dec 2008 WO
WO 2009006318 Jan 2009 WO
WO 2009076477 Jun 2009 WO
WO 2009112988 Sep 2009 WO
WO 2010104953 Sep 2010 WO
WO 2010115549 Oct 2010 WO
WO 2011118315 Sep 2011 WO
WO 2012044419 Apr 2012 WO
WO 2012099854 Jul 2012 WO
WO 2012118916 Sep 2012 WO
WO 2012148644 Nov 2012 WO
WO 2013055733 Apr 2013 WO
WO 2013103470 Jul 2013 WO
WO 2013142552 Sep 2013 WO
WO 2013155377 Oct 2013 WO
WO 2013192143 Dec 2013 WO
WO 2014028819 Feb 2014 WO
WO 2014028822 Feb 2014 WO
WO 2014028825 Feb 2014 WO
WO 2014062776 Apr 2014 WO
WO 2014066576 May 2014 WO
WO 2014074554 May 2014 WO
WO 2014089388 Jun 2014 WO
WO 2014187976 Nov 2014 WO
WO 2015051291 Apr 2015 WO
Non-Patent Literature Citations (194)
Entry
International Search Report for PCT/US2012/030030, dated Oct. 29, 2012 (3 pages).
Ajluni, Cheryl, “Pressure Sensors Strive to Stay on Top, New Silicon Micromachining Techniques and Designs Promise Higher Performance,” Electronic Design—Advanced Technology Series, Oct. 3, 1994, pp. 67-74.
Akle, Barbar J., et al., “Ionic Electroactive Hybrid Transducers,” Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD), Proceedings of SPIE, Bellingham, WA, vol. 5759, 2005, pp. 153-164.
Anderson, R.A., “Mechanical Stress in a Delectric Solid From a Uniform Electric Field,” The American Physical Society, 1986, pp. 1302-1307.
Aramaki, S., S. Kaneko, K. Arai, Y. Takahashi, H. Adachi, and K. Yanagisawa. 1995. “Tube Type Micro Manipulator Using Shape Memory Alloy (SMA),” Proceedings of the IEEE Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 115-120.
Ashley, S., “Artificial Muscles”, Scientific American 2003, pp. 53-59.
Ashley, S., “Smart Skis and Other Adaptive Structures,” Mechanical Engineering, Nov. 1995, pp. 77-81.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymer Actuators Webhub webpages 1-7, http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-web.htm, downloaded Jul. 23, 2001 (7 pages).
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 1, No. 1, Jun. 1999.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 1, No. 2, Dec. 1999.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 2, No. 1, Jul. 2000.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 2, No. 2, Dec. 2000.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 3, No. 1, Jun. 2001.
Baughman, R., L. Shacklette, R. Elsenbaumer, E. Plichta, and C. Becht “Conducting Polymer Electromechanical Actuators,” Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics and Molecular Electronics, eds. J.L. Bredas and R.R. Chance, Kluwer Academic Publishers, The Netherlands, pp. 559-582, 1990.
Baughman, R.H., L.W. Shacklette, R.L. Elsenbaumer, E.J. Plichta, and C. Becht “Micro electromechanical actuators based on conducting polymers,” in Molecular Electronics, Materials and Methods, P.I. Lazarev (ed.), Kluwer Academic Publishers, pp. 267-289 (1991).
Beckett, J., “New Robotics Tap the Mind, Help the Heart, SRI shows of latest technologies,” San Francisco Chronicle, Aug. 27, 1998.
Begley, M. et al., “The Electro-Mechanical Response to Highly Compliant Substrates and Thin Stiff Films with Periodic Cracks,” International Journal of Solids and Structures, 42:5259-5273, 2005.
Benslimane, M and P. Gravesen, “Mechanical Properties of Dielectric Elastomer Actuators with Smart Metallic Compliant Electrodes,” Proceedings of SPIE, International Society for Optical Engineering, vol. 4695, Jan. 1, 2002, pp. 150-157.
Bharti, V., H.S. Xu, G. Shanthi and Q.M. Zhang, “Polarization and Structural Properties of High Energy Electron Irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer Films,” to be published in J. Appl. Phys. (2000).
Bharti, V., Y. Ye, T.-B. Xu and Q.M. Zhang, “Correlation Between Large Electrostrictive Strain and Relaxor Behavior with Structural Changes Induced in P(VDF-TrFE) Copolymer by Electron Irradiation,” Mat. Res. Soc. Symp. Proc. vol. 541, pp. 653-659 (1999).
Bharti, V., Z.-Y.Cheng S. Gross, T.-B. Xu and Q.M. Zhang, “High Electrostrictive Strain Under High Mechanical Stress in Electron-Irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer,” Applied Physics Letters, vol. 75, No. 17, pp. 2653-2655 (Oct. 25, 1999).
Bharti, V.,X.-Z. Zhao, Q.M. Zhang, T. Romotowski, F. Tito, and R. Ting, “Ultrahigh Field Induced Strain and Polarization Response in Electron Irradiated Poly(Vinylidene Fluoride-Trifluoroethylene) Copolymer,”Mat. Res. Innovat. vol. 2, pp. 57-63 (1998).
Bobbio, S., M. Kellam, B. Dudley, S. Goodwin Johansson, S. Jones, J. Jacobson, F. Tranjan, and T. DuBois, “Integrated Force Arrays,” in Proc. IEEE Micro Electro Mechanical Systems Workshop, Fort Lauderdale, Florida, Feb. 7-10, 1993, pp. 146-154.
Bohon, K. and S. Krause, “An Electrorheological Fluid and Siloxane Gel Based Electromechanical Actuator: Working Toward an Artificial Muscle,” to be published in J. Polymer Sci., Part B. Polymer Phys. (2000).
Boyle, W. et al., “Departure from Paschen's Law of Breakdown in Gases,” The Physical Review, Second Series, 97(2): 255-259, Jan. 15, 1955.
Brock, D.L., “Review of Artifical Muscle based on Contractile Polymers,” MIT Artificial Intelligence Laboratory, A.I. Memo No. 1330, Nov. 1991.
Caldwell, D., G. Medrano-Cerda, and M. Goodwin, “Characteristics and Adaptive Control of Pneumatic Muscle Actuators for a Robotic Elbow,” Proc. IEEE Int. Conference on Robotics and Automation, San Diego, California (May 8-13, 1994).
Calvert, P. and Z. Liu, “Electrically Stimulated Bilayer Hydrogels as Muscles,” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Plymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA, pp. 236-241.
Chen et al., “Active control of low-frequency sound radiation from vibrating panel using planar sound sources,” Journal of Vibration and Acoustics, vol. 124, pp. 2-9, Jan. 2002.
Chen, Zheng et al., “Quasi-Static Positioning of Ionic Polymer-Metal Composite (IPMC) Actuators,” Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, California, Jul. 24-28, 2005, pp. 60-65.
Cheng, Z.-Y., H.S. Xu, J. Su, Q. M. Zhjang, P.-C. Wang and A.G. MacDiarmid, “High Performance of All-Polymer Electrostrictive Systems,” Proceedings of the SPIE Ineternational Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA, pp. 140-148.
Cheng, Z.-Y., T.-B. Xu, V. Bharti, S. Wang, and Q.M. Zhang, “Transverse Strain Responses in the Electrostrictive Poly(Vinylidene Fluoride-Trifluorethylene) Copolymer,” Appl. Phs. Lett. vol. 74, No. 13, pp. 1901-1903, Mar. 29, 1999.
Chiarelli, P., A. Della Santa, D. DeRossi, and A. Mazzoldi, “Actuation Properties of Electrochemically Driven Polypyrrole Free-Standing Films,” Journal of Intelligent Material Systems and Structures, vol. 6, pp. 32-37, Jan. 1995.
De Rossi, D., and P. Chiarelli, “Biomimetic Macromolecular Actuators,” Macro-Ion Characterization, American Chemical Society Symposium Series, vol. 548, Ch. 40, pp. 517-530 (1994).
Delille, R. et al., “Novel Compliant Electrodes Based on Platinum Salt Reduction,” Smart Structures and Materials 2006: Electroactive Polymer Actuators and Devices (EAPAD), edited by Yoseph Bar-Cohen, Proceedings of SPIE, 6168 (6168Q), 2006.
Dowling, K., Beyond Faraday-NonTraditional Actuation, available on the World Wide Web at http://www.frc.ri.cmu.edu/˜nivek/OTH/beyond-faraday/beyondfaraday.html, 9 pages, 1994.
Egawa, S. and T. Higuchi, “Multi-Layered Electrostatic Film Actuator,” Proc. IEEE Micro Electra Mechanical Systems, Napa Valley, California, pp. 166-171 (Feb. 11-14, 1990).
Elhami, K. B. Gauthier-Manuel, “Electrostriction of the Copolymer of Vinylidene-Fluoride and Trifluoroethylene,” J. Appl. Phys. vol. 77 (8), 3987-3990, Apr. 15, 1995.
Flynn, Anita M., L.S. Tavrow, S.F. Bart, R.A. Brooks, D.J. Ehrlich, Kr.R. Udayakumar, and L.E. Cross. 1992. “Piezoelectric Micromotors for Microrobots,” IEEE Journal of Microelectromechanical Systems, vol. 1, No. 1, pp. 44-51 (Mar. 1992); also published as MIT AI Laboratory Memo 1269, Massachusetts Institute of Technology (Feb. 1991).
Ford, V. and J. Kievet, “Technical Support Package on Traveling-Wave Rotary Actuators”, NASA Tech Brief, vol. 21, No. 10, Item #145, from JPL New Technology Report NPO-19261, Oct. 1997.
Full, R.J. and K. Meijer, “Artificial Muscles Versus Natural Actuators from Frogs to Flies,” Proceedings of the 7th SPIE Symposium on Smart Structures and Materials-Electroactive Polymers and Devices (EAPAD) Conference, Mar. 6-8, 2000, Newport Beach, California, USA, pp. 2-9.
Furuhata, T., T. Hirano, and H. Fujita, “Array-Driven Ultrasonic Microactuators,” Solid State Sensors and Actuators, 1991, Digest of Tech. Papers, Transducers, pp. 1056-1059.
Furukawa, T. and N. Seo, “Electrostriction as the Origin of Piezoelectricity in Ferroelectric Polymers,” Japanese J. Applied Physics, vol. 29, No. 4, pp. 675-680 (Apr. 1990).
Ghaffarian, S.R., et al., “Electrode Structures in High Strain Actuator Technology,” Journal of Optoelectronics and Advanced Materials, Nov. 2007, 9(11), pp. 3585-3591.
Gilbertson, R.G. and J.D. Busch. “Survey of MicroActuator Technologies for Future Spacecraft Missions,” presented a the conference entitled “Practical Robotic Interstellar Flight: Are We Ready?” New York University and The United Nations, New York. (Aug. 29 and Sep. 1, 1994); also published on the World Wide Web at http://nonothinc.com/nanosci/microtech/mems/ten-actuators/gilbertson.html.
Goldberg, Lee, “Adaptive-Filtering Developments Extend Noise-Cancellation Applications,” Electronic Design, Feb. 6, 1995, pp. 34 and 36.
Greene, M. J.A. Willett, and R. Kornbluh, “Robotic Systems,” in ONR Report 32198-2, Ocean Engineering and Marine Systems 1997 Program (Dec. 1997).
Greenland, P. Allegro Microsystems Inc., and B. Carsten, Bruce Carsten Associates, “Stacked Flyback Converters Allow Lower Voltage MOSFETs for High AC Line Voltage Operation,” Feature PCIM Article, PCIM, Mar. 2000.
Hansen, G., “High Aspect Ratio Sub-Micron and Nano-Scale Metal Filaments,” SAMPE Journal, 41(2): 24-33, 2005.
Heydt, R., R. Kornbluh, R. Pelrine, and B. Mason, “Design and Performance of an Electrostrictive Polymer Film Acoustic Actuator,” Journal of Sound and Vibration (1998) 215(2), 297-311.
Heydt, R., R. Pelrine, J. Joseph, J. Eckerle, and R. Kornbluh, “Acoustical Performance of an Electrostrictive Polymer Film Loudspeaker,” Journal of the Acoustical Society of America, vol. 107(2), pp. 833-839 (Feb. 2000).
Hirano, M., K. Yanagisawa, H. Kuwano, and S. Nakano, “Microvalve with Ultra-Low Leakage,” Tenth Annual International Workshop on Micro Electromechanical Systems, Nagoya, Japan, IEEE Proceedings (Jan. 26-30, 1997), pp. 323-326.
Hirose, S., Biologically Inspired Robots: Snake-like Locomotors and Manipulators, “Development of the ACM as a Manipulator,” Oxford University Press, New York, 1993, pp. 170-172.
http://www.neurosupplies.com/pdf—files/transducers.pdf, printed from web Jul. 25, 2001.
Huang, Cheng et al., “Colossal Dielectric and Electromechanical Responses in Self-Assembled Polymeric Nanocomposites”, Applied Physics Letters 87, 182901 (2005), pp. 182901-1 through 182901-3.
Hunter, I., S. Lafontaine, J. Hollerbach, and P. Hunter, “Fast Reversible NiTi Fibers for Use in MicroRobotics,” Proc. 1991 IEEE Micro Electro Mechanical Systems-MEMS '91, Nara, Japan, pp. 166-170.
Hunter, I.W. and S. Lafontaine, “A Comparison of Muscle with Artificial Actuators,” Technical Digest of the IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, South Carolina, Jun. 22-25, 1992, pp. 178-185.
Jacobsen, S., R. Price, J. Wood, T. Rytting and M. Rafaelof, “A Design Overview of an Eccentric-Motion Electrostatic Microactuator (the Wobble Motor)”, Sensors and Actuators, 20 (1989) pp. 1-16.
Joseph, J., R. Pelrine, J. Eckerle, J. Bashkin, and P. Mulgaonkar, “Micro Electrical Composite Sensor”, SRI International, printed from web Jul. 25, 2001.
Kaneto, K., M. Kaneko, Y. Min, and A.G. MacDiarmid, “Artifical Muscle: Electromechanical Actuators Using Polyaniline Films,” Synthetic Metals 71, pp. 2211-2212, 1995.
Kawamura, S., K. Minani, and M. Esashi, “Fundamental Research of Distributed Electrostatic Micro Actuator,” Technical Digest of the 11th Sensor Symposium, pp. 27-30 (1992).
Khuri-Yakub et al., “Silicon micromachined ultrasonic transducers,” Japan Journal of Applied Physics, vol. 39 (2000), pp. 2883-2887, Par 1, No. 5B, May 2000.
Kinsler et al., Fundamentals of Acoustics, Third Edition, John Wiley and Sons, 1982.
Kondoh, Y., and T. Ono. 1991. “Bimorph Type Actuators using Lead Zinc Niobate-based Ceramics,” Japanese Journal of Applied Physics, vol. 30, No. 9B, pp. 2260-2263, Sep. 1991.
Kornbluh et al., “Electrostrictive Polymer Artificial Muscle Actuators,” May 1998, Proc. of the 1998 IEEE Conf. on Robotics & Automation, 2147-2154.
Kornbluh et al., “Medical Applications of New Electroactive Polymer Artificial Muscles,” SRI International, Menlo Park, CA, JSPP , v. 16, 2004.
Kornbluh, R. “Presentation to Medtronic”, Jan. 2000.
Kornbluh, R. D and R. E. Pelrine., “Dexterous Multiarticulated Manipulator with Electrostrictive Polymer Artificial Muscle,” ITAD-7247-QR-96-175, SRI Project No. 7247, Prepared for Office of Naval Research, Nov. 1996.
Kornbluh, R. et al., “Electroactive polymers: An emerging technology for MEMS,” (invited) in MEMS/MOEMS Components and Their Applications, eds. S. Janson, W. Siegfried, and A. Henning, Proc. SPIE, 5344:13-27, 2004.
Kornbluh, R. et al., “Electroelastomers: Applications of dielectric elastomer transducers for actuation, generation and smart structures,” Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, ed., A. McGowan, Proc. SPIE, 4698:254-270, 2002.
Kornbluh, R. et al., “Shape control of large lightweight mirrors with dielectric elastomer actuation,” Actuation Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices, ed. Y. Bar-Cohen, Proc. SPIE, 5051, 2003.
Kornbluh, R., “Presentation to Colin Corporation”, Jan. 1997.
Kornbluh, R., “Use of Artificial Muscle Butterfly for Chronicle Newpaper Photograph,” Aug. 1998.
Kornbluh, R., G. Andeen, and J. Eckerle, “Artificial Muscle: The Next Generation of Robotic Actuators,” presented at the Fourth World Conference on Robotics Research, SME Paper M591-331, Pittsburgh, PA, Sep. 17-19, 1991.
Kornbluh, R., Pelrine, R. Joseph, J., Pei, Q. and Chiba., “Ultra-High Strain Response of Elastomeric Polymer Dielectrics”, Proc. Materials Res. Soc., Fall meeting, Boston, MA, pp. 1-12, Dec. 1999.
Kornbluh, R., Pelrine, R., Eckerie, J., Joseph, J., “Electrostrictive Polymer Artificial Muscle Actuators,” IEEE International Conference on Robotic and Automation, Leuven, Belgium, 1998.
Kornbluh, R., R. Pelrine, J. Joseph, “Elastomeric Dielectric Artificial Muscle Actuators for Small Robots,” Proceedings of the Third IASTED International Conference on Robotics and Manufacturing, Jun. 14-16, 1995, Cancun, Mexico.
Kornbluh, R., R. Pelrine, Jose Joseph, Richard Heydt, Qibing Pei, Seiki Chiba, 1999. “High-Field Electrostriction of Elastomeric Polymer Dielectrics for Actuation”, Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA. pp. 149-161.
Kornbluh, R., R. Pelrine, Q. Pei, S. Oh, and J. Joseph, 2000. “Ultrahigh Strain Response of Field-Actuated Elastomeric Polymers,” Proceedings of the 7th SPIE Symposium on Smart Structures and Materials-Electroactive Polymers and Devices (EAPAD) Conference, Mar. 6-8, 2000, Newport Beach, California, USA, pp. 51-64.
Kornbluh, R., R. Pelrine, R. Heydt, and Q. Pei, “Acoustic Actuators Based on the Field-Activated Deformation of Dielectric Elastomers,” (2000).
Kornbluh, Roy D., Robotic Systems, Ocean Engineering and Marine Systems, 1997 Program, Dec. 1997, Office of Naval Research Public Release, ONR-32198-2.
Kornbluh, Roy D., Robotic Systems, Ocean Engineering and Marine Systems, 1998 Program, Feb. 1999, Office of Naval Research Public Release, ONR-32199-4.
Kornbluh, Roy D., Robotic Systems, Ocean Engineering and Marine Systems, 1999 Program, Feb. 2000, Office of Naval Research Public Release, ONR-32100-2.
Kornbluh, Roy D., Robotic Systems, Ocean Engineering and Marine Systems, 2000 Program, Jan. 2001, Office of Naval Research Public Release, ONR-32100-1.
Ktech's PVDF Sensors, http://www.ktech.com/pvdf.htm, Jun. 6, 2001, pp. 1-5.
Kymissis et al., “Parasitic Power Harvesting in Shoes,” XP-010312825—Abstract, Physics and Media Group, MIT Media Laboratory E15-410, Cambridge, MA, Oct. 19, 1998, pp. 132-139.
Lacour, S. et al., “Mechanisms of Reversible Stretchability of Thin Metal Films on Elastomeric Substrates, ” Applied Physics Letters 88, 204103, 2006.
Lacour, S. et al., “Stretchable Interconnects for Elastic Electronic Surfaces,” Proceedings of the IEEE on Flexible Electronics Technology, 93(8): 1459-1467, 2005.
Lakes, R.S., “Extreme damping in compliant composites with a negative stiffness phase” or “Extreme Damping in Composite Materials with a Negative Stiffness Phase”, Physical Review Letters, 86, 2897-2900, Mar. 26 (2001).
Lakes, R.S., “Extreme damping in compliant composites with a negative stiffness phase” or “Extreme Damping in Composite Materials with Negative Stiffness Inclusions”, Nature, 410, 565-567, Mar. (2001).
Lakes, R.S., “Extreme damping in compliant composites with a negative stiffness phase”, Philosophical Magazine Letters, 81, 95-100 (2001).
Lang, J, M. Schlect, and R. Howe, “Electric Micromotors: Electromechanical Characteristics,” Proc. IEEE Micro Robots and Teleoperators Workshop, Hyannis, Massachusetts (Nov. 9-11, 1987).
Lawless, W. and R. Arenz, “Miniature Solid-state Gas Compressor,” Rev. Sci Instrum., 58(8), pp. 1487-1493, Aug. 1987.
Liu, C. & Y. Bar-Cohen, “Scaling Laws of Microactuators and Potential Aplications of Elecroactive Polymers in MEMS”, SPIE, Conference on Electroactive Polymer Actuators and Devices, Newport Beach, CA Mar. 1999.
Liu, C., Y. Bar-Cohen, and S. Leary, “Electro-statically stricted polymers (ESSP),” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA., pp. 186-190.
Liu, Y., T. Zeng, Y.X. Wang, H. Yu, and R. Claus, “Self-Assembled Flexible Electrodes on Electroactive Polymer Actuators,” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA., pp. 284-288.
Madden et al., “Conducting polymer actuators as engineering materials,” SPIE: Smart Materials and Structures, ed. Yoseph Bar-Cohen, Bellingham, WA, pp. 176-190, Pub 2002.
Madden, J.D. et al., “Fast contracting polypyrrole actuators”, Jan. 6, 2000, Elsevier Science S.A., pp. 185-192.
Martin, J. and R. Anderson, 1999. “Electrostriction in Field-Structured Composites: Basis for A Fast Artificial Muscle?”, The Journal of Chemical Physics, vol. 111, No. 9, pp. 4273-4280, Sep. 1, 1999.
Measurements Specialties, Inc.-Piezo Home, http://www.msiusa.com/piezo/index.htm, Jun. 6, 2001.
Möller, S. et al., A Polymer/semiconductor write-once read-many-times memory, Nature, vol. 26, Nov. 13, 2003, pp. 166-169, Nature Publishing Group.
Nguyen, T., Green, M., and Kornbluh, R., “Robotic Systems,” in ONR Ocean, Atmosphere, and Space Fiscal Year 1999 Annual Reports (Dec. 1999).
Nguyen, T., J. A. Willett and Kornbluh, R., “Robotic systems,” in ONR Ocean, Atmosphere, and Space Fiscal Year 1998 Annual Reports (Dec. 1998).
Nguyen, T.B., C.K. DeBolt, S.V. Shastri and A. Mann, “Advanced Robotic Search,” in ONR Ocean, Atmosphere, and Space Fiscal Year 1999 Annual Reports (Dec. 1999).
Nihon Kohden Corporation, Operators Manual, available Oct. 1, 2001.
NXT plc, Huntingdon, UK (www.nxtsound.com) Sep. 17, 2008.
Ohara, K., M. Hennecke, and J. Fuhrmann, “Electrostriction of polymethylmethacrylates,” Colloid & Polymer Sci. vol. 280, 164-168 (1982).
Olsson, A., G. Stemme, and E. Stemme, “The First Valve-less Diffuser Gas Pump,” Tenth Annual International Workshop on Micro Electromechanical Systems, Nagoya, Japan, IEEE Proceedings (Jan. 26-30, 1997), pp. 108-113.
Olsson, A., O. Larsson, J. Holm, L. Lundbladh, O. Ohinan, and G. Stemme. 1997. “Valve-less Diffuser Micropumps Fabricated using Thermoplastic Replication,” Proc. IEEE Micro Electro Mechanical Systems, Nagoya, Japan, pp. 305-310 (Jan. 26-30, 1997).
Osterbacka, R. et al., “Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals,” Science, vol. 287:839-842, Feb. 4 2000.
Otero, T.F., J. Rodriguez, and C. Santamaria, “Smart Muscle Under Electrochemical Control of Molecular Movement in Polypyrrole Films,” Materials Research Society Symposium Proceedings, vol. 330, pp. 333-338, 1994.
Otero, T.F., J. Rodriguez, E. Angulo and C. Santamaria, “Artificial Muscles from Bilayer Structures,” Synthetic Metals, vol. 55-57, pp. 3713-3717 (1993).
Park, S.E., and T. Shrout., “Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals,” J. Appl. Phys., vol. 82, No. 4, pp. 1804-1811, Aug. 15, 1997.
Pei et al., “Electrochemical Applications of the Bending Beam Method. 1. Mass Transport and Volume Changes in Polypyrrole During Redox,” J. Phys. Chem., 1992, 96, pp. 10507-10514.
Pei, Q. et al., “Multifunctional Electroelastomer Roll Actuators and Their Application for Biomimetic Walking Robots,” Smart Structures and Materials 2003. Electroactive Polymer Actuators and Devices, San Diego, CA, USA, Mar. 3-6, 2003, vol. 5051, 2003, pp. 281-290, XP002291729, Proceedings of the SPIE, ISSN: 0277-786X, the whole document.
Pei, Q. et al., “Multifunctional Electroelastomer Rolls,” Mat. Res. Soc. Symp. Proc., vol. 698, Nov. 26-30, 2001, Boston, MA, pp. 165-170.
Pei, Q. et al., “Recent Progress on Electroelastomer Artificial Muscles and Their Application for Biomimetic Robots”, SPIE, Pub. Jun. 2004, 11 pages.
Pei, Q., O. Inganäs, and I. Lundström, “Bending Bilayer Strips Built From Polyaniline for Artificial Electrochemical Muscles,” Smart Materials and Structures, vol. 2, pp. 1-6., Jan. 22, 1993.
Pei, Q., Pelrine, R., Kornbluh, R., Jonasdottir, S., Shastri, V., Full, R., “Multifunctional Electroelastomers: Electroactive Polymers Combining Structural, Actuating, and Sensing Functions,” ITAD-433-PA-00-123, University of California at Berkeley, Berkeley, CA, available at www.sri.com-publications, Jan. 17, 2001.
Pei, Qibing “Description of Conference Demonstration” Mar. 2001.
Pelrine et al., “Electrostrictive Polymer Artificial Muscle Actuators,” May 1998, Proc. of the 1998 IEEE Conf. On Robotics & Automation, 2147-2154.
Pelrine, R. and Kornbluh, R., and. 1995. “Dexterous Multiarticulated Manipulator with Electrostrictive Polymer Artificial Muscle Actuator,” EMU 95-023, SRI International, Menlo Park, California, Apr. 28, 1995.
Pelrine, R. et al., “Applications of dielectric elastomer actuators,” (invited paper) in Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, ed., Y. Bar Cohen, Proc. SPIE, 4329:335-349, 2001.
Pelrine, R., R. Kornbluh, and G. Kofod, “High Strain Actuator Materials Based on Dielectric Elastomers,” submitted to Advanced Materials (May 2000).
Pelrine, R., R. Kornbluh, and J. Joseph, “Electrostriction of Polymer Dielectrics with Compliant Electrodes as a Means of Actuation,” Sensors and Actuators A: Physical, vol. 64, No. 1, 1998, pp. 77-85.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1992 Final Report on Artifical Muscle for Small Robots, ITAD-3393-FR-93-063, SRI International, Menlo Park, California, Mar. 1993.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1993 Final Report on Artifical Muscle for Small Robots, ITAD-4570-FR-94-076, SRI International, Menlo Park, California, 1994.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1994 Final Report on Artifical Muscle for Small Robots, ITAD-5782-FR-95-050, SRI International, Menlo Park, California, 1995.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1995 Final Report on Artifical Muscle for Small Robots, ITAD-7071-FR-96-047, SRI International, Menlo Park, California, 1996.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1996 Final Report on Artifical Muscle for Small Robots, ITAD-7228-FR-97-058, SRI International, Menlo Park, California, 1997.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1997 Final Report on Artifical Muscle for Small Robots, ITAD-1612-FR-98-041, SRI International, Menlo Park, California, 1998.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1998 Final Report on Artifical Muscle for Small Robots, ITAD-3482-FR-99-36, SRI International, Menlo Park, California, 1999.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1999 Final Report on Artifical Muscle for Small Robots, ITAD-10162-FR-00-27, SRI International, Menlo Park, California, 2000.
Pelrine, R., R. Kornbluh, J. Joseph and S. Chiba, “Electrostriction of Polymer Films for Microactuators,” Proc. IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya, Japan, Jan. 26-30, 1997, pp. 238-243.
Pelrine, R., R. Kornbluh, J. Joseph and S. Chiba, “Review of Artificial Muscle Approaches,” invited paper, in Proc. Third International Symposium on Micro Machine and Human Science, Nagoya, Japan, Oct. 14-16, 1992.
Pelrine, R., R. Kornbluh, Q. Pei, and J. Joseph, “High Speed Electrically Actuated Elastomers with Over 100% Strain,” Science, vol. 287, No. 5454, pp. 1-21, 2000.
Pelrine, R., R. Kornbluh, Q. Pei, and J. Joseph. “High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%”, Science, Reprint Series, Feb. 4, 2000, vol. 287, pp. 836-839.
Pelrine, R., Roy Kornbluh, Jose Joseph, Qibing Pei, Seiki Chiba “Recent Progress in Artificial Muscle Micro Actuators,” SRI Interational, Tokyo, 1999 MITI/NEEDOIMNIC, 1999.
Piezoflex(TM) PVDF Polymer Sensors, http://www.airmar.com/piezo/pvdf.htm. Jun. 6, 2001.
PowerLab ADlnstruments, MLT001 High-Sensitivity Force Transducers, AD Instruments Transducers Series, printed from web Jul. 25, 2001.
Puers et al, “A Capacitive Pressure Sensor with Low Impedance Output and Active Suppression of Parasitic Effects,” Sensors and Actuators, A21-A23 (1990) 108-114.
Puers, Robert, “Capacitive sensors: when and how to use them,” Sensors and Actuators A, 37-38 (1993) 93-105.
Reed, C. et al., “The Fundamentals of Aging HV Polymer-Film Capacitors, ” IEEE Transactions on Dielectrics and Electrical Insulation, 1(5): 904-922, 1994.
“The Rubbery Ruler”, http://www.ph.unimelb.edu.au, printed from web Jul. 25, 2001.
Sakarya, S., “Micromachining Techniques for Fabrication of Integrated Light Modulting Devices”, Netherlands 2003, pp. 1-133.
Scheinbeim, J., B. Newman, Z. MA, and J. Lee, “Electrostrictive Response of Elastomeric Polymers,” ACS Polymer Preprints, 33(2), pp. 385-386, 1992.
Schlaberg, H. I., and J. S. Duffy, “Piezoelectric Polymer Composite Arrays for Ultrasonic Medical Imaging Applications,” Sensors and Actuators, A 44, pp. 111-117, Feb. 22, 1994.
Shahinpoor, M., “Micro-electro-mechanics of Ionic Polymer Gels as Electrically Controllable Artificial Muscles,” J. Intelligent Material Systems and Structures, vol. 6, pp. 307-314, May 1995.
Shkel, Y. and D. Klingenberg, “Material Parameters for Electrostriction,” J. Applied Physics, vol. 80(8), pp. 4566-4572, Oct. 15, 1996.
Smela, E., O. Inganas, and I. Lundstrom, “Controlled Folding of Micrometer-size Structures,” Science, vol. 268, pp. 1735-1738 (Jun. 23, 1995).
Smela, E., O. Inganas, Q. Pei and I. Lundstrom, “Electrochemical Muscles: Micromachinging Fingers and Corkscrews,” Advanced Materials, vol. 5, No. 9, pp. 630-632, Sep. 1993.
Smith, S. et al., A low switching voltage organic-on-inorganic heterojunction memory element utilizing a conductive polymer fuse on a doped silicon substrate, Applied Physics Letters, vol. 84, No. 24, May 28, 2004, pp. 5019-5021.
Sokolova, M. et al., “Influence of a Bias Voltage on the Characteristics of Surface Discharges in Dry Air,” Plasma Processes and Polymers, 2: 162-169, 2005.
Sommer-Larsen, P. and A. Ladegaard Larsen, “Materials for Dielectric Elastomer Actuators,” SPIE, vol. 5385, Mar. 1, 2004, pp. 68-77.
Standard Test Methods for Rubber Deterioration—Cracking in an Ozone Controlled Environment, ASTM International, D 1149-07.
Su, J, Z. Ounaies, J.S. Harrison, Y. Bara-Cohen and S. Leary, “Electromechanically Active Polymer Blends for Actuation,” Proceedings of 7th SPIE Symposium on Smart Structures and Materials-Electroactive Polymers and Devices (EAPAD) Conference, Mar. 6-8, 2000, Newport Beach, CA, USA, pp. 65-72.
Su, J., Q.M. Zhang, C.H. Kim, R.Y. Ting and R. Capps, “Effects of Transitional Phenomena on the Electric Field induced Strain-electrostrictive Response of a Segmented Polyurethane elastomer,” pp. 1363-1370, Jan. 20, 1997.
Suzuki et al., “Sound radiation from convex and concave domes in infinite baffle,” Journal of the Acoustical Society of America, vol. 69(2), Jan. 1981.
Technology, http://www.micromuscle.com/html/technology.html, Jun. 6, 2001.
Tobushi, H., S. Hayashi, and S. Kojima, “Mechanical Properties of Shape Memory Polymer of Polyurethane Series,” in JSME International Journal, Series I, vol. 35, No. 3, 1992.
Todorov et al, “WWWeb Application for Ferropiezoelectric Ceramic Parameters Calculation”, Proceedings 24th International Conference on Microelectronics, vol. 1, May 2004, pp. 507-510.
Treloar, L.R.G., “Mechanics of Rubber Elasticity,” J Polymer Science, Polymer Symposium, No. 48, pp. 107-123, 1974.
Uchino, K. 1986. “Electrostrictive Actuators: Materials and Applicaions,” Ceramic Bulletin, 65(4), pp. 647-652, 1986.
Unger et al. (2000), “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science 288:113-116, no month.
Wade, Jr., W.L., R.J. Mannone and M. Binder, “Increased Dielectric Breakdown Strengths of Melt-Extruded Polyporphlene Films,” Polymer vol. 34, No. 5, pp. 1093-1094 (1993).
Wax, S.G. and R.R. Sands, “Electroactive Polymer Actuators and Devices,” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, CA, USA, pp. 2-10.
Whitesides et al. (2001), “Flexible Methods for Microfluidics,” Physics Today 52(6):42-47, no month.
Winters, J., “Muscle as an Actuator for Intelligent Robots,” Robotics Research: Trans. Robotics International of SME, Scottsdale, AZ (Aug. 18-21, 1986).
Woodard, Improvements of ModalMax High-Fidelity Peizoelectric Audio Device (LAR-16321-1), NASA Tech Briefs, May 2005, p. 36.
Xia, Younan et al., “Triangular Nanoplates of Silver: Synthesis, Characterization, and Use as Sacrificial Templates for Generating Triangular Nanorings of Gold,” Adv. Mater., 2003, 15, No. 9, pp. 695-699.
Yam, P., “Plastics Get Wired,” Scientific American, vol. 273, pp. 82-87, Jul. 1995.
Yoshio, O., “Ablation Characteristics of Silicone Insulation,” Journal of Polymer Science: Part A: Polymer Chemistry, 36: 233-239, 1998.
Yuan, W. et al. “New Electrode Materials for Dielectric Elastomer Actuators, ” Proc. SPIE, 6524 (6524ON), 2007.
Zhang, Q., V. Bharti and X. Zhao, “Giant Electrostriction and Relaxor Ferroelectric Behavior in Electron-irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer,” Science, vol. 280, pp. 2101-2104 (Jun. 26, 1998).
Zhang, Q.M., V. Bharti, Z.Y. Cheng, T.B. Xu, S. Wang, T.S. Ramotowski, F. Tito, and R. Ting, “Electromechanical Behavior of Electroactive P(VDF-TrFE) Copolymers,” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, CA, USA, pp. 134-139.
Zhang, Q.M., Z.Y. Cheng, V. Bharti, T.B. Xu, H. Xu, T. Mai and S.J. Gross, “Piezoelectric and Electrostrictive Polymeric Actuator Materials,” Proceedings of the 7th SPIE Symposium on Smart Structures and Materials: Electroactive Polymers and Devices (EAPAD) Conference, Mar. 6-8, 2000, Newport Beach, CA, USA, pp. 34-50.
Zhenyi, M., J.I. Scheinbeim, J.W. Lee, and B.A. Newman. 1994. “High Field Electrostrictive Response of Polymers,” Journal of Polymer Sciences, Part B-Polymer Physics, vol. 32, pp. 2721-2731, 1994.
U.S. Appl. No. 14/421,448, filed Feb. 13, 2015.
U.S. Appl. No. 14/421,450, filed Feb. 13, 2015.
U.S. Appl. No. 14/421,452, filed Feb. 13, 2015.
U.S. Appl. No. 14/435,761, filed Apr. 15, 2015.
U.S. Appl. No. 14/437,741, filed Apr. 22, 2015.
U.S. Appl. No. 14/440,991, filed May 6, 2015.
U.S. Appl. No. 14/649,743, filed Jun. 4, 2015.
Bar-Cohen, Y., “Electro Polymer Actuators and Devices (EAPAD)”, Proceedings of SPIE—International Society of Optical Engineering, vol. 3987, presented at a conference Mar 6-8, 2000. (cited in U.S. Pat. No. 8,042,264, unable to locate).
Biomimetic Products, Inc., hhtp://www.biomimetic.com, no. date. (cited in U.S. Pat. No. 7,211,937, unable to locate).
Gardner, J.W., “Microsensors: Principles and Applications,” John Wiley, 1994. (cited in U.S. Pat. No. 6,809,462, unable to locate).
Kornbluh, R., “Description of Children's Tour,” Aug. 20, 2000. (cited in U.S. Pat. No. 7,211,937, unable to locate).
Kornbluh, R., “Elastomeric Polymer Actuator and Transducers: The Principles, Performance and Applications of a New High-Strain Smart Material Technology”, SRI International Medtronic Forum, Brooklyn Center, Minnesota, Jan. 2000. (cited in U.S. Pat. No. 6,768,246, unable to locate).
Kornbluh, R., R. Pelrine, Q. Pei, and V. Shastri “Electroactive Polymer (EAP) Actuators as Artificial Muscles—Reality, Potential and Challenges”, Chapter 16, available from SPIE Press on May 2001. (cited in U.S. Pat. No. 6,882,086, unable to locate).
Nguyen, T., Green, M., and Kornbluh, R., “Robotic Systems,” in ONR Ocean, Atmosphere, and Space Fiscal Year 2000 Annual Reports (Jan. 2001). (cited in U.S. Pat. No. 7,211,937, unable to locate).
Pei, Q. et al., “Multifunctional Electroelastomer Rolls and Their Application for Biomimetic Walking Robots,” Smart Structures and Materials 2002. Industrial and Commercial Applications of Smart Structures Technologies, San Diego, CA, USA, Mar. 18-21, 2002, vol. 4698, 2002, pp. 246-253, XP002291728, Proceedings of the SPIE, ISSN: 0277-786X, the whole document. (cited in U.S. Pat. No. 7,761,981, unable to locate).
Prahlad, H. et al., “Programmable Surface Deformation: Thickness-Mode Electroactive Polymer Actuators and their Applications,” Proc. SPIE, vol. 5759, 102, 2005, 12 pages. (cited in U.S. Appl. No. 13/205,888, unable to locate).
Seoul et al., “Electrospinning of Poly(vinylidene fluoride) Dimethylformamide Solutions with Carbon Nanotubes,” Department of Textile Engineering, Inha University, Mar. 31, 2003. (cited in U.S. Pat. No. 7,911,115, unable to locate).
Related Publications (1)
Number Date Country
20150070740 A1 Mar 2015 US
Provisional Applications (1)
Number Date Country
61466129 Mar 2011 US