Priority application DE 10 2009 005 124.4 is fully incorporated by reference into the present application.
The present invention relates to an electrochemical energy storage device according to the preamble of claim 1 or 77.
Batteries (primary storage devices) and storage batteries (secondary storage devices) for storing electric energy are known, which are assembled from one or more storage cells in which, when a charging current is applied, in an electrochemical charge reaction between a cathode and an anode in or between an electrolyte, electric energy is converted into chemical energy and thus is stored, and in which, when an electrical load is applied, in an electrochemical discharge reaction chemical energy is converted into electric energy. Primary storage devices are thereby charged only once as a rule and must be disposed of after discharge, while secondary storage devices permit several (from several 100 to over 10,000 cycles) of charging and discharging. It should be noted thereby that storage batteries are now also referred to as batteries, such as, e.g., vehicle batteries, which, as is known, undergo frequent charging cycles.
In recent years, primary and secondary storage devices based on lithium compounds have become increasingly important. They have a high energy density and thermal stability, provide a constant voltage with low automatic discharge and are free from the so-called memory effect.
It is known to produce energy storage devices and, in particular, lithium batteries and lithium storage batteries in the form of thin plates. We refer to this study by way of example for the functional principle of a lithium-ion cell.
In order to achieve the voltages and capacities desired in practice, for automobile batteries, for example, it is necessary to arrange several cells to form a stack and to connect their connectors in a suitable manner. The interconnection of the individual cells is usually carried out on a narrow side (generally defined as “top”) of the cells, from which the connectors project. Interconnection arrangements of this type are shown in WO 2008/128764 A1, WO 2008/128769 A1, WO 2008/128770 A1 and WO 2008/128771 A1, as is illustrated in
JP 07-282841 A shows a similar arrangement, in which the individual cells are inserted into a housing, as is shown in
From a development as yet unpublished it is known to combine several thin, rectangular galvanic cells to form one or more stacks such that their sides of greatest expansion are facing towards one another or touch one another and thus are sealed in a holding device. An arrangement of this type can no longer be dismantled.
The inventors are also aware of an arrangement not substantiated in further detail in print in which several flat cells are stacked between two pressure plates, the stack being held together by tension bars (stud bolts or fillister head screws), which extend between the pressure plates. An arrangement of this type is shown diagrammatically in
A patent application filed by the applicant of this application on the same day, which is tracked internally under file number 105907, describes the configuration of flat cells with flat connector projecting laterally from narrow sides located opposite one another, the extension of which along the respective narrow side is larger than half the length of this narrow side. These cells can be contacted to the connectors and at the same time can be assembled in a positionally stable manner. The disclosure of this patent application is hereby included by reference herein without the application of the present invention being restricted to the details described there.
A demand exists for an electrochemical energy storage device that has a stack of flat storage cells, which avoids the disadvantages of the prior art. Furthermore, a demand fundamentally exists, particularly for vehicles, for further space-saving, that is, for a reduction in the size of the total battery arrangement. Furthermore, with respect to the increased storage requirement particularly for electric or hybrid vehicles, an adjustment to the existing space available and the geometric conditions is required as well as adjustability to various voltage and capacity requirements.
The object of the present invention is therefore to create an electrochemical energy storage device of the above-mentioned type which is compact and rugged, can be easily and securely assembled, the individual cells of which are exposed to lower mechanical stress and the temperature of which is easy to regulate and which can be adapted flexibly to the different requirements.
The object is attained with the features of the independent claims. Advantageous further developments of the invention form the subject matter of the dependent claims.
An electric energy storage device according to one aspect of the invention has a plurality of storage cells with a flat shape, several storage cells being stacked in a stacking direction to form a cell block and being held together by a clamping device between two pressure plates, and the storage cells being connected to one another in parallel and/or in series inside the cell block. Each storage cell is held in its edge region between two frame elements.
In this manner a defined pressure zone is obtained, in which the cells are held.
Preferably, each storage cell has an active part in which a structure configured and adapted for absorbing and releasing electric energy by means of an electrochemical reaction is arranged, and the edge region surrounds the active part. The clamping pressure and possible impairments to the function by this are thus kept away from the active part.
Preferably, each storage cell has planar contact sections, which project in the edge region from two opposite narrow sides of the storage cell transversely to the stacking direction. In this manner the contact sections are configured in a comparatively rugged manner and can be utilized to hold the cell.
The invention can be applied particularly advantageously to electrochemical cells, such as, e.g., galvanic secondary cells. Preferably, the active part is thereby tightly enclosed by a membrane, which has at least one seam in the edge region, in particular at least on two opposite narrow sides of the storage cell, wherein the region enclosed by the membrane is preferably evacuated.
Preferably, the contact sections are respectively part of connectors that extend through the seams on the two opposite narrow sides and are in contact with the active part in the interior. Since the contact sections are connected to the active part, which accounts for the heaviest part of a cell, mechanical stress and the likelihood of damage to a casing are kept low.
This is advantageously attained in that the contact sections form pressure surfaces for the pressure applied by the clamping device via the frame elements.
The active part generally has a greater thickness than the edge region. If the frame elements have such a thickness that there is a free space between the active parts of adjacent storage cells, this free space can be used for temperature adjustment with a heat transfer medium.
If, for example, the frame elements respectively have at least one opening transversely to the stacking direction, which connects the free space between adjacent storage cells to an exterior space, a heat transfer medium can flow or circulate through these openings and realize a cooling circuit. This is achieved particularly effectively by arranging several openings in sections of the frame elements located opposite transversely to the stacking direction. In particular, a cooling medium can flow through the space between two storage cells, the cooling medium in particular entering and leaving through the openings in the frame elements.
The cooling medium is preferably flame-resistant or not combustible in order to improve safety. Thus, for example, air, deionized water or oil or the like can be used as a cooling medium.
A particularly effective heat transfer results when the cooling medium undergoes a phase transition when flowing through the space between two storage cells.
Preferably, the pressure plates are embodied in a frame-shaped manner. The pressure of the clamping device can thus be uniformly introduced into the cell stack via the frame elements with the slightest weight.
A suitable clamping device has several, in particular four or six, tension bars. These can extend in a particularly space-saving manner through holes running in the stacking direction in the pressure plates, the frame elements and the edge regions of the storage cells.
If the tension bars extend through holes running in the stacking direction in the contact sections of the storage cells, the pressure can be exerted particularly effectively on the contact sections of the storage cells. In this case it is particularly advantageous if the electrical connection of the storage cells is carried out by means of friction fit via the clamping device.
A contact connection element made of an electrically conducting material is arranged in particular where an electrical connection is to be produced between contact sections of adjacent storage cells, which element is pressed onto both contact sections by means of the clamping pressure exerted in the stacking direction via the clamping device. The contact connection element can be composed of a metal or a metal alloy, preferably copper, brass, bronze, and particularly preferably can be gold-plated or silver-plated in order to reduce the contact resistance between contacts.
A compact design and simple assembly result when the contact connection element is integrated into a frame element. This is in particular the case when the contact connection element is a plurality of cylindrical bodies, which are inserted into the through-holes in the frame element.
When the frame elements have a reduced thickness between regions in which contact connection elements are used, a concentration of the contact pressure on the end faces of the contact connection elements and a particularly effective contacting result. Furthermore, the regions of reduced thickness can form openings for a circulation of the heat transfer medium.
The contact connection element can be, for example, a plurality of sleeves through which respectively one of the tension bars runs. Alternatively, the contact connection element can have an elongated basic shape with a substantially rectangular cross section, wherein the contact connection element is inserted into a cut-out in the frame element between the contact sections of the two storage cells to be connected, substantially following the course thereof, and wherein parallel outer surfaces of the contact connection element contact the contact sections of the storage cells.
In the latter case, the contact connection element can have thickened regions in the stacking direction, the outer end surfaces of which contact the contact sections of the storage cells. This in turn produces a high contact pressure and contacting pressure and the openings already mentioned for a circulation of the heat transfer medium.
If the contact connection element has at least one cooling rib extending in the longitudinal direction and pointing into the interior of the device, an effective heat transfer can take place from the connectors to the heat transfer medium.
Advantageously, where no electrical connection is to be produced between two contact sections, spacer elements made of electrically insulating material are inserted between the contact sections into cutouts in the frame elements, which preferably has substantially the shape of the contact connection element.
The contact connection element preferably has at least two through-holes, through which respectively one of the tension bars runs. To avoid a short circuit, the tension bars are thereby preferably electrically insulated with respect to the contact connection element and the contact section. This can be accomplished, for example, by the tension bars having an electrically insulating coating on the shank surfaces, or by the tension bars each bearing sleeves made of electrically insulating material.
One embodiment is characterized in that spring elements are arranged in a free space between adjacent storage cells, which spring elements support the storage cells elastically with respect to one another in the stacking direction. The spring elements can be, for example, planar foam elements that are fixedly attached to one or both flat sides of the storage cells. An arrangement of this type reduces oscillations of the cells during use and mechanical stresses caused thereby at the points at which the cells are held.
In order to avoid undesirable contacts between current-carrying parts, it is necessary to position the components exactly with respect to one another in the radial direction during assembly. This is facilitated by a centering device, which establishes the relative position of the storage cells and the frame elements transversely to the stacking direction. The centering device can comprise projections arranged in end faces of the frame elements, which engage in matching recesses in the edge region of the storage cells. The projections can be pins, nubs, noses or the like, wherein the recesses can be arranged in the contact regions or in the non-conducting sections of the edge regions. The recesses can be through-holes or perforations.
In alternative designs, the centering device can comprise embossing in the edge region of the storage cells, which engage in a matching relief on the frame elements. The centering device can also be realized such that the tension bars run with fit through holes in the edge region of the storage cells with the exception of the contact regions, that the storage cells, in particular with the thicker active sections thereof, are supported against the frame elements transversely to the stacking direction, or that an elastic element, in particular foam, is inserted between the frame elements and the storage cells, which foam is preferably molded directly onto the frame elements in order to avoid slipping during the assembly.
Furthermore, it is important that the storage cells are always installed in the correct direction of polarity. In order to avoid errors here, a reverse polarity protection device can be provided, which codes an installation direction of the storage cells.
The reverse polarity protection device can be realized such that the centering device is configured non-symmetrically. Thus, for example, the projections and recesses or the embossing and counter-relief can be arranged at a greater distance on the side of one contact section or can be embodied in another shape or size than on the side of the other contact section. The components of the centering device can thus perform the function of reverse polarity protection at the same time, and no additional measures or components need to be provided for this.
Alternatively, the reverse polarity protection device can be realized in that the spring elements on both flat sides of the storage cells and, depending on the desired direction of polarity of several storage cells with respect to one another, are arranged on the half of the flat sides assigned to one and the same contact section or on halves of the flat sides assigned to different contact sections. The spring elements can thus take over the function of reverse polarity protection at the same time, and no additional measures or components need to be provided for this.
In a further embodiment, the frame elements can have at least one edge-side indentation arranged at respectively the same point, the indentations of several frame elements in the assembled state forming a channel open to the outside with a substantially U-shaped cross section, which extends in the stacking direction. A channel of this type can be used to guide lines advantageously and in a space-saving manner. Connection elements such as for sensors or thermo elements or control elements can be attached and connected via holes, which are respectively made on the base of the indentation perpendicular to the extension direction of the channel. It is advantageous thereby if the channel is accessible on the end face via at least one through-hole or perforation or notches arranged in at least one of the pressure plates.
The storage cells can be connected in series or at least part of the storage cells can be connected in parallel. In particular, several storage cells connected in parallel can form respectively one group and several groups comprising a respectively identical number of storage cells are connected in series. Through suitable combination and number of storage cells and groups of the same, within the scope of the available space virtually any desired voltage and capacity can be represented as a multiple of the cell voltage and cell capacity.
The pressure plates can be composed of an electrically conducting material and can be electrically connected via an above-mentioned contact connection element to a contact section of a storage cell. The pressure plates can thus serve as electric terminals. Furthermore, if the pressure plates have connection elements, which are equipped for connection to a connecting lead or a counterpart, a further interconnection of the cell blocks is particularly simple. The connection elements, for example, can thus be lugs, preferably provided with through-holes or bearing stud bolts, which laterally project transversely to the stacking direction or project at the end face in the stacking direction. To avoid short circuits, it is advantageous in this case if the tension bars are electrically insulated with respect to the pressure plates.
In an alternative embodiment it can be provided for the tension bars to be electrically insulated with respect to one of the pressure plate, while they are connected to the other pressure plate in an electrically conducting manner and have connection elements that preferably are screwed to the tension bars or embodied integrally at least on the side of the insulated pressure plate. The tension bars, which, insulated against the other components anyway, are guided through the cell block, can thus serve as one of the terminals, so that both of the terminals are on one and the same end face of a cell block. This can simplify the interconnection and the connection of the cell blocks.
It is advantageous thereby if the tension bars on at least one side have connection elements, which preferably are screwed to the tension bars or are embodied integrally.
The connection elements of the tension bars on at least one side can be electrically connected to one another for the purpose of a potential equalization.
A particularly simple and self-centering construction results when the tension bars are screwed directly into one of the pressure plates.
Preferably, the frame elements and pressure plates collectively define a substantially prismatic contour, which completely surrounds the storage cells arranged therein. This thus results in a closed body, which is easy to handle. Advantages also result with respect to the possibilities of embodying a cooling circuit with a heat transfer medium.
Furthermore, it is advantageous if, at the end-face ends of a cell block, the two frame elements have transverse braces of reduced thickness, which span the space left free by the respective frame element. This results in a reinforcement of this end frame element and furthermore a defined exposed surface of the respective end storage cell.
The electric energy storage device preferably has a control unit for monitoring and balancing the storage cells. This control unit is particularly preferably attached to the cell block, preferably to one of the transverse braces described above.
The channel formed by the indentations described above can be advantageously used for guiding lines, which are with the control unit.
An advantageous modularity and flexibility results if several cell blocks are connected to one another in series and/or in parallel.
If, furthermore, the cell blocks have a different number of storage cells, the installation space available can be utilized particularly effectively. For this purpose it is advantageous if the number of storage cells in the cell blocks is selected on the basis of the geometry of an available installation space. The cell blocks can be arranged in respective stacking directions one behind the other and/or with respect to the respective stacking directions next to one another and/or one above the other and/or at, in particular, a right angle of the respective stacking directions to one another and connected to one another via their connection elements.
A housing can accommodate the entire arrangement. The connection elements described above can thereby be advantageously used at least in part to attach the cell blocks to the housing.
An electric energy storage device of a further aspect of the invention has a plurality of storage cells with a flat shape, several storage cells being stacked in a stacking direction to form a cell block and held together by a clamping fixture, and the storage cells inside the cell block being connected to one another in parallel and/or in series. In this electric energy storage device, each storage cell has connectors in its edge region, and an electric contacting takes place between connectors of consecutive storage cells by means of friction fit via the clamping fixture.
To this end, a pressure-transferring component is preferably arranged between connectors in the stacking direction, which component is composed of either an electrically conducting material or an electrically insulating material, and on which the force of the clamping fixture acts.
In particular the storage cells are held by the pressure-transferring components.
The further features, functions and advantages of the present invention and those cited in the claims are more clearly described in the following description of preferred embodiments, which was prepared with reference to the attached drawings.
In the drawings:
It should be noted that the representations in the figures are diagrammatic and are limited to the presentation of the features most important for understanding the invention. It should also be noted that the dimensions and size ratios given in the figures are solely for clarifying the representation and on no account are to be understood as limiting or mandatory.
description of concrete embodiments and possible modifications thereof is provided below. If the same components are used in different embodiments, they are provided with the same or corresponding reference numbers. A repetition of the explanation of features already explained in connection with one embodiment has been largely omitted. Nevertheless, unless explicitly stated otherwise or evidently technically illogical, the features, arrangements and effects of one embodiment can also be applied to other embodiments.
A first embodiment of the present invention will now be explained on the basis of
A number of in all eleven storage cells 2 are arranged as a stack in the cell block 1. Each storage cell 2 is composed substantially of one active part 4, one inactive edge region 6 and two connectors 8, 10 arranged in the edge zone 6. The storage cells 2 are electrochemical storage cells within the meaning of the invention, the connectors 8, 10 are contact sections within the meaning of the invention and the edge zone together with the connectors 8, 10 forms an edge region within the meaning of the invention.
An electrochemical reaction takes place for storing and releasing electric energy (charge and discharge reaction) in the active part 4. The internal structure of the active part 4, not shown in greater detail in the figure, corresponds to a flat, laminated stack of electrochemically active electrode films of two types (cathode and anode), electrically conducting films for collecting and supplying or discharging electric current to and from the electrochemically active regions, and separator films for separating the electrochemically active regions of the two types from one another. This structure is well known in the art and will not be discussed in greater detail here. As a reference we refer to a storage cell that is described in an application (internal reference no. 105907) filed on the same day as the present application, the disclosure of which is thus incorporated in full by reference.
The active part 4 of the cell 2 is covered in a sandwich-like manner by two films, not designated in further detail in the Figure. The two films are sealed in a gas-tight and moisture-tight manner at their free ends and form a so-called sealed seam, which surrounds the active part 4 as a peripheral, inactive edge zone 6. The sealed seam is folded on two opposite narrow sides and there forms respectively a fold 50, which stabilizes the sealed seam at this point and prevents tearing (cf.
Two connector 8, 10 project outwards from the interior of the cell 2 on two opposite narrow sides of the cell 2 through the sealed seam and extend as a flat formation in opposite directions. The connectors 8, 10 are connected to the electrochemically active cathodes and anode regions in the interior of the active region 6 and thus serve as cathode and anode connections of the cell 2.
To form the cell block 1, holding frames 12, 14, 16 and pressure plates 18, 20 are furthermore provided, the edges of which, seen from a flat side, respectively describe approximately the same contour. In this order a first pressure plate 18, a first end frame (holding frame) 12, an alternating sequence of storage cells 2 and intermediate frames (holding frame) 14, the sequence beginning and ending with a cell 2, so the number of intermediate frames is smaller by one than the number of cells 2, a second end frame (holding frame) 16 and a second pressure plate 20 are arranged. The entire arrangement described above is held together by four fillister head screws 22 with nuts 24, which act via washers 26 on the pressure plates 18, 20. The pressure plates 18, 20 transfer the pressure exerted by the fillister head screws 22 to the end frames 12, 16 and thus to the arrangement of intermediate frames 14 and storage cells 2. The pressure is thereby substantially exerted by the lateral sections of the holding frames 12, 14, 16 on the connectors 8, 10 of the storage cell 2 respectively located therebetween. The cells 2 are thereby respectively held between two holding frames 12, 14 or 14, 14 or 14, 16. The first end frame 12, the intermediate frames 14 and the second end frame 16 (holding frame) are frame elements within the meaning of the invention. The first and the second pressure plate 18, 20 have a frame form corresponding to the end frames 12, 16. They are pressure plates within the meaning of the invention and with the fillister head screws 22 and nuts 24 as well as the washers 26 jointly form a clamping device within the meaning of the invention. The fillister head screws 22 are thereby tension bars within the meaning of the invention.
The holding frames 12, 14, 16 are made of an insulating material. They therefore form an effective electrical separation between the individual cells 2. The pressure plates 18, 20 however, are made of a conductor material, in particular steel or aluminum or an alloy thereof, and serve at the same time as a potential collector and connector of the entire cell block 1, as is explained below.
The fillister head screws 24 run through through-holes (not designated in greater detail) in the pressure plates 18, 20, through-holes 28, 29 in the holding frames 12, 14, 16 and through-holes 30 in the connectors 8, 10 of the cells 2. The fillister head screws 24 have a smaller diameter than the through-holes 28, 29, 30. Due to the annular distance realized hereby between the outer contour of the fillister head screws 24 and the inner edge of the through-holes 30, an electrical insulation of the fillister head screws 24 and the connectors 8, 10 is realized, so that an accidental connection between connectors 8, 10 of different cells 2 is avoided. The same applies to an electrical insulation with respect to the pressure plates 18, 20, which will be explained in more detail.
In the holding frames 12, 14, 16 on one side through-holes 28 with a comparatively small diameter and on the other side through-holes 29 with a larger diameter are arranged. Contact sleeves 32 of a conductor material are arranged in the larger through-holes 29, while the through-holes 28 on the other side remain free. The contact sleeves 32 are contact connection elements within the meaning of the invention and provide an electrical connection between the connectors of two adjacent storage cells on the same side of the cell block 1. Copper, brass, bronze or the like have proven to be useful as conductor material, however, other materials are also conceivable, such as, for instance steel, aluminum, nickel silver or the like. A silver-plating or gold-plating of the contacts has proven to be useful for reducing the contact resistance between contacts. This applies to all contact elements within the scope of this description.
As is clearly discernible in
As shown in the figure, the connector 8 of the last cell 2n is electrically connected via the contact sleeve 32 in the second end frame 16 to the metallic second pressure plate 20. On the left (not shown in the detail of
The through-holes 29 for accommodating the contact sleeves 32 have a larger diameter than the through-holes 28 in which no contact sleeves are accommodated. The inside diameter of the contact sleeves 32 corresponds approximately to the diameter of the through-holes 28 in which no contact sleeves are accommodated, and these are larger than the outside diameter of the fillister head screw 22. In this manner an air gap 56 is formed between the fillister head screw 22 and current-carrying parts 32, 20, (, 18), which provides an electric insulation of the fillister head screw 22. The air gap 56 is also formed between the fillister head screw 22 and the holding frame 14, 16 (, 12) not current-carrying per se, so that there is a clearance here during assembly, which simplifies the assembly of the parts. The washer 26 is an insulating washer, which provides an electric insulation between the nut 24 and the second pressure plate 20 (and on the other side between the fillister head screw 22 and the first pressure plate 18, although not shown in greater detail in this figure). The electric insulation of the fillister head screw from the pressure plates 18, 20 prevents a short circuit between the pressure plates 18, 20 serving as terminals.
In a modification, an insulation, such as in the form of a heat-shrinking sleeve, can also be provided instead of the air gap 56.
Back to the embodiment and to
Respectively three radially extending slots 40 are arranged in the long sides of the intermediate frames 14 (at the top and bottom in
The end frames 12, 16 have braces 46, which extend between the longer sides and are aligned in the thickness direction with the surfaces facing towards the pressure plates 18, 20. The width of these braces 46 defines an opening cross section for the air fed to the first and last cell on the outside, stabilizes the geometry of the end frames 12, 16, screens the first and last cell 2 in the stack arrangement from the outside. As seen in
It can be clearly seen in
Lugs 52 are also shown there which are embodied in one piece with the end frames 18, 20, and by being bent away therefrom project in the stacking direction S. These lugs 52 serve as terminal connections of the cell block 1. The lugs 52 have respectively one bore 54, which can accommodate a connecting screw 58. Further connecting means, such as a connecting lug 60, can be attached by means of the connecting screw 58. In this manner the cell block 1 can be connected to a supply network, e.g., an onboard power supply of a vehicle. A connection with suitably embodied seats in a housing can also be produced first, which housing has connection terminals for connection to a supply network. These lugs 52 with screws 58 or similar connection means can also be used to attach the cell block 1 in a battery housing. For instance, threaded sleeves located in the battery housing can be used, which accommodate the connecting screws 58. In this manner a special power rail can be omitted.
The figure shows nine cells 2 with alternating directions of polarity, which cells are connected to one another in series. The connection is carried out according to the embodiment via respectively two contact sleeves 32 (cf.
The number of cells 2 in a cell block is fundamentally arbitrary. Since the individual storage cells 2 have a uniform cell voltage, the terminal voltage can be adjusted via the number of the cells 2 connected in series. Apart from unavoidable losses, the terminal voltage Up corresponds to the total of the cell voltages Ui, in the present case, therefore, 9×Ui. However, the charging capacity of the total arrangement corresponds only to the charging capacity of the individual cell.
Each group of cells 2 connected in parallel has the voltage of an individual cell, but with threefold charging capacity. The total arrangement of groups connected in series therefore has a terminal voltage that corresponds to three times the cell voltage, i.e., only 3×Ui or a third of the terminal voltage in the first embodiment. However, the total capacity is three times as high as in the first embodiment.
By varying and combining parallel connections and series connections, virtually any multiple of the cell voltage and cell capacity can therefore be realized in a very simple manner.
Further variation and combination possibilities result from the series connection and/or parallel connection of entire cell blocks.
As shown in the figures, four cell blocks 1 are arranged one behind the other such that the second pressure plate 20 of one cell block is facing towards the first pressure plate 18 of a next cell block. The cell blocks 1 differ from the cell blocks 1 of the first embodiment in that lugs 52a project away from the pressure plate 18 and lugs 52b project away from the pressure plate 20, the tabs 52a, 52b projecting at different heights. The difference in height is measured such that when the cell blocks 1 are pushed together on the front, the lugs 52b of the second pressure plate 20 of the one cell block just fit under the lugs 52a of the first pressure plate 18 of the other cell block. The cell blocks 1 can therefore be respectively connected by means of only two connecting screws 58, which are placed through the respectively aligned bores 54 (not visible) of the lugs 52a, 52b. A connecting sheet is therefore not necessary and between cell blocks 1 arranged one behind the other, and the distance between the cell blocks 1 can be kept to a minimum. For the further connection to a supply network (not shown in further detail), respectively one connecting sheet is provided on lugs 52a, 52b pointing outward of the first and last cell block 1, 1.
As shown in
The terminal voltage of the arrangement is four times the terminal voltage of an individual cell block 1.
A series connection of several cell blocks is also possible by arranging cell blocks next to one another.
Two cell blocks 1 are respectively assembled like the cell blocks of one of the previous embodiments. They are arranged alternately such that the first pressure plate 18 of the one cell block 1, which here is assumed to be the negative terminal thereof, comes to rest next to the second pressure plate 20 of the other cell block 1, as the positive terminal thereof. A connection between the lugs 52 of a first and a second pressure plate 18, 20 is produced on a end face of the cell blocks 1 by means of a connecting sheet 60. On the other end face the lugs 52 of the respective pressure plates 18, 20 are connected to a supply network via connecting sheets 60 and thus form the negative and positive terminal of the arrangement. The connecting sheets 60 are respectively connected to the respective lugs 52 with the aid of connecting bolts 58 (not shown in further detail).
If even more cell blocks 1 are to be connected in this manner, they must be arranged next to one another respectively with alternating direction of polarity and connected to one another by alternating end faces. The end faces of the first and last cell block not connected to one another respectively form the terminals of the arrangement.
A parallel connection of several cell blocks is possible in a similar manner in order to increase the total capacity of the arrangement.
Two cell blocks 1 are respectively structured like the cell bocks of one of the previous embodiments. Unlike the fourth embodiment, they are arranged in the same direction in that respective first pressure plates 18, which here are assumed to be positive terminals of the cell blocks 1, and respective second pressure plates 20, as negative terminals of the cell blocks 1, come to rest next to one another. Respectively one connection between the lugs 52 of first pressure plates 18 located next to one another and between the lugs 52 of pressure plates 20 located next to one another of the cell blocks 1 is produced by means of connecting sheets 60. The free lugs 52 of the pressure plates 18, 20 of one of the cell block are connected to a supply network via connecting sheets 60 and thus form negative and positive terminal of the arrangement. The connecting sheets 60 are respectively connected to the respective lugs 52 with the aid of connecting screws 58 (not shown in greater detail).
If even more cell blocks 1 are to be connected in this manner, the arrangement shown is simply to be expanded by adding further blocks.
The arrangements of the third, fourth and fifth embodiment can be combined in order to realize any voltage and capacity values. The concept of the second embodiment can also be incorporated.
A sixth embodiment of the present invention is shown in
An expansion and adaptation is also possible here by additionally applying the concept of the second, third, fourth and/or fifth embodiment.
The next embodiments are further developments of individual aspects of the first and second embodiment.
In contrast to the first embodiment, the nut is not tightened on the pressure plate 20 via a washer 24, but via an insulating bushing 64. The insulating bushing 64 has a collar with sufficient outside diameter to provide a suitable bearing surface for the nut and extends, accommodating the fillister head screw 22, through a through-hole (not designated in greater detail) in the pressure plate 20 and a little into the through-hole 28 in the end frame 16. Where a contact sleeve 32 produces a contact between a storage cell 2 and the end frame 20 (, 18) on the opposite side, the insulating bushing 64 extends a little into the air gap 56 between the fillister head screw 22 and the contact sleeve 32.
In this manner a secure electrical separation of the fillister head screws 22 from the pressure plates 18, 20 as well as a centering of the pressure plates 18, 20 in the radial direction is achieved.
With reference to
The signal cable 66 is used for the connection of the controller 62, which in this embodiment is screwed to the second pressure plate 20. In the same manner a second controller 72, from which a further signal cable (not shown in further detail) is guided in the other of the channels 68, is screwed to the second pressure plate 20. The second controller is preferably used for the regulation of the heat balance and is connected, e.g., to thermo elements that are attached, for instance, to the storage cells 2 or at another suitable location in the interior of the cell block 1c.
In one modification, the passage 80 can also be embodied as a through-hole. All of the passages thus form an inner channel under the channel 68 accessible from outside, in which an interior control line or control elements can be accommodated.
Another difference to the first embodiment relates to the position of the fitted bores and centering pins.
On the one hand, the pairs of fitted bores on different lateral sides of the intermediate frame 14 have different distances from one another. That is, the first pair of fitted bores 34a, which is located on the one of the lateral sides of the intermediate frame 14, has a distance x1 from one another, which is greater than a distance x2 of the second pair of fitted bores 34b, which is located on the lateral side located opposite. In a corresponding manner the fitted bores in the connectors of the storage cells 2 also have different distances (not shown in greater detail). In order to code the assembling position of the storage cells 2 in this manner, i.e., to realize a reverse polarity protection within the meaning of the invention, e.g., the fitted bores are always arranged on the positive connector of a storage cell 2 at the larger distance x1, while on the negative connector of a storage cell 2 they are always arranged at the smaller distance x2.
To code the circuit, several types of intermediate frames 14 are to be provided. To this end, for orientation in
In a first type of intermediate frame 14, the fitted bores 34a, 34b are embodied in the intermediate frame 14 as blind holes and different in a crosswise manner. That is, fitted bores 34a are embodied as blind holes at the larger distance x1 on the left front side V:L and the right rear side H:R, while fitted bores 34b are embodied as blind holes at the smaller distance x2 on the left rear side H:L and the right front side V:R. The through-holes 28 with the smaller diameter are thereby embodied on the right lateral side R, and the through-holes 29 with the larger diameter to accommodate the contact sleeves 32 are embodied on the left lateral side L.
In a second type of intermediate frame (14′, not shown in the figure), the fitted bores 34a, 34b in the intermediate frame 14 likewise differ crosswise as blind holes, but embodied the other way around from the first type. That is, fitted bores 34a are embodied as blind holes at the larger distance x1 on the right front side V:R and the left rear side H:L, while fitted bores 34b are embodied as blind holes at the smaller distance x2 on the right rear side H:R and the left front side V:L. The position of the through-holes 28, 29 and contact sleeves 32 is likewise the reverse of those in the first type 14. That is, the through holes 28 with the smaller diameter are embodied on the left side L and the through-holes 29 with the larger diameter to accommodate the contact sleeves 32 are embodied on the right side R.
A series connection of two cells 2 is coded by alternating arrangement of the intermediate frames of the first and the second type. Fitted bores with the same distance always lie opposite one on two sides of the intermediate frames facing one another, but only two consecutive cells 2 with opposite terminal location can be arranged on the front and rear side of an intermediate frame, since the fitted bores arranged on the front and rear side have a different distance on each lateral side, i.e., code different terminal locations. Furthermore, the sides with contact sleeves are always arranged alternately on the left and right in consecutive intermediate frames. This ensures that on one lateral side, L, R of an intermediate frame a connector of a first polarity is always connected on the front V to a connector of the second polarity on the rear H, while no connection of the connectors on the front and rear is carried out on the other lateral side R, L. This corresponds to the series connection in
In a third type of intermediate frame (14″, not shown in the figure) all of the fitted bores 34a, 34b are embodied continuously, for example, the fitted bores 34a are embodied continuously at the larger distance x1 on the left side L, while the fitted bores 34 are embodied continuously at the smaller distance x2 on the right side R. Furthermore, the larger through-holes 29 are arranged with the contact sleeves 32 (not shown in the figure) on both lateral sides L, R. A parallel connection of two cells 2 is coded hereby, since two consecutive cells 2 can be arranged only with the same terminal location. That is, a connector with a first polarity is always arranged on the rear H of an intermediate frame 14′ and a connector with the same polarity is always arranged on the front V of the next intermediate frame 14′.
The third type of intermediate frame is used, for instance, in an arrangement according to the second embodiment according to
In the end frames 12a, 16 fitted bores 34a, 34b are embodied as blind holes only on the side facing towards an intermediate frame. Their location results from the desired direction of polarity of the first or last storage cell 2.
On the other hand, the fitted bores 34a, 34b are embodied in the region of the jogs 42, thus in the areas of reduced material thickness, while the through-holes 28, 29 are embodied in areas of full material thickness, which form pressure surfaces 86 for transferring the clamping pressure of the fillister head screws 22 to the edge regions 6, in particular the connectors 8, 10 of the storage cells 2. This permits a slight clearance during assembly and a slight “give” of the elements relative to one another during operation, since the centering pins 38 run through free space over a small distance.
In a modification of the eighth embodiment, the fitted bores 34a, 34b are also embodied as blind holes in the third type of intermediate frame, the bore depth being less than half of the material thickness. This simplifies assembly, since the centering pins 38 come across a stop during insertion.
In a further modification of the eighth embodiment, the fitted bores 34a, 34b, like the through-holes 28, 29, are embodied in the pressure surfaces 86. The centering can hereby be realized more precisely, but also requires a higher manufacturing accuracy. One could also say that in this modification the centering pins 38 are used for reverse polarity protection at the same time.
In a further modification of the eighth embodiment, the lower corners of the frame elements 12a, 14, 16, 18, 20 are provided with a clearer bevel (like the bevels 48 of the first embodiment), for reasons of weight, for example, instead of the chamfers 84.
In
The cell block 1d shown in
The connection of several cell blocks 1d of this embodiment in series is shown in
The pressure plates 18, 20 furthermore have depressions 82 for accommodating the heads of the fillister head screws 22 or of the washers 26. The necessary distance between the cell blocks 1d can hereby be reduced.
The storage cell 2 according to the representation in
In this embodiment, the fold 50 is embodied such that its thickness t is equal to the thickness of the connectors 8, 10. That is, the thickness t of the fold 50 is somewhat less than the thickness of the thickened regions 92.
In this manner the end faces of the frame elements 12, 14, 16 exert a uniform pressure on the connectors 8, 10 and the fold 50 and hold the storage cell 2 particularly securely. The transitions and connections between connectors 8, 10 and the casing films in the edge region 6 as well as the connections between the connectors 8, 10 and the current-carrying films in the interior of the active part 4, are exposed to lower mechanical stresses.
Furthermore, two elastic cushions 94 are attached to a end face of the cell 2 of this embodiment in the region of the active part 4. The cushions 94 are made of an elastic material such as foam, sponge rubber or the like and attached directly, i.e., adhered or sprayed on, to the oversheath of the active region 4. This simplifies assembly and prevents the cushions 94 from slipping or falling off during handling or in operation. The thickness thereof is somewhat greater than the distance between two cells 2 in a cell block 1, so that a reliable and gentle elastic support in the axial, i.e., stacking direction of the cells 2 is given. In this manner oscillations of the cells 2 are effectively buffered. For reasons of stability the cushions 94 are arranged in the stacking direction aligned with the braces 46.
The cushions 94 are spring elements within the meaning of the invention. The spring behavior can be adapted by means of the use of several elastomer materials and the surfaces.
Elastic cushions 95 are attached to the flat sides of the active parts 4 of the cells 2. These are smaller than the elastic cushions 94 of the tenth embodiment. In particular, they have a shorter length and two cushions 95 are arranged one above the other in the direction of the height of the cells 2. The arrangement of the cushions 95 further differs from that of the cushions 94 of the tenth embodiment in that respectively two cushions 95 are arranged on the front as well as on the rear of the cells 2, but only on the lateral half of the connector 8, while no cushions are arranged on half of the connector 10. The function of the cushions 95 corresponds to that of the cushions 94 of the tenth embodiment. In addition, in this embodiment the direction of polarity of the cells 2 is coded, so that for instance the cushions 95 are arranged only on the side of the positive terminal. In this manner, by alternating installation, such that the cushions 95 lie once on the right side and next time on the left side, the cells 2 are always arranged such that the terminals are correctly oriented for a series connection. In this embodiment the cushions 95 are therefore also a reverse polarity protection device within the meaning of the invention.
The contacting of the connectors 8, 10 in this embodiment is not carried out by sleeves, but by bar-shaped contact strips 96. These have the basic shape of a cuboid, elevations projecting from two opposite long sides, which form contact surfaces and pressure surfaces 100 for contacting with the connectors 8, 10. There are corresponding recesses or jogs 102 between the pressure surfaces 100. The pressure surfaces 100 of opposite elevations are connected by through-holes 98. The fillister head screws (22, not shown in greater detail here) for bracing the cell block run through these through-holes 98, which are aligned with corresponding through-holes 30 in the connectors 8, 10.
The contact strips 96 are made of a conductive material, such as, for instance, copper, brass, bronze or the like, and are contact connection elements within the meaning of the invention. Compared to the contact sleeves 32 of other embodiments, the pressure surfaces 100 of the contacts trips 96 are used completely as contact surfaces. The transition resistance between connected connectors 8, 10 is therefore lower in this embodiment.
As in the first embodiment, the depressions 102 form lateral openings, through which air can flow in the interior of the cell block to regulate the temperature of the cells 2.
Several ribs 104 running in a longitudinal manner project from a long side of the contact strips 96, which stands perpendicular to the pressure surfaces 100. The ribs 104 point in the direction of the interior of the cell block and serve as cooling surfaces, which are flowed around by the cooling fluid flowing through the openings 102. The ribs 104 are embodied in a suitable manner so that the best possible heat transfer is generated. The conventional methods of heat engineering can be applied here. For example, the ribs 104 are particularly effective if they are arranged in the flow direction (with forced convection) or in the direction of gravitational force (with natural convection). Furthermore, the flow paths are designed so that the most turbulent flow possible is opposed. In this manner the contact strips 96 serve overall as heat sinks, with the aid of which heat generated in the active parts 4 of the cells 2 can be dissipated via the connectors 8, 10.
It should be noted that with this embodiment three fillister head screws (22) are provided for each lateral side. That is, in the contact strips 96 respectively three through-holes 98 are provided in corresponding elevations, in the frame elements 12, 14, 16 respectively three through-holes 28 are provided on those of the lateral sides which lie opposite the indentation 106 to accommodate a contact strip 96, with the storage cells 2 respectively three through-holes 30 are provided in each connector 8, 10, and the pressure plates 18, 20 also have three through-holes on each lateral side.
It should also be noted that in this embodiment all of the through-holes 30, 28, 98 have the same diameter and larger through-holes (29 in the first embodiment) to accommodate contact sleeves are not necessary, since the contact strips 96 already produce the contact between adjacent connectors 8, 10.
The modification is also conceivable in this embodiment that the fitted bores 34 and centering pins 38 are arranged in the region of the pressure surfaces 86 instead of the jogs 42.
Insulating sleeves 116 and coding pins 118 project from each contacting bar through respective holes in the connectors 8, 10 of the cell 2. The arrangement of these components is clearer from the exploded drawing of
Furthermore, three through-holes 121 are respectively arranged in the surface of the connectors 8, 10, through which through-holes the insulating sleeves 116 of the contacting bars 114, 122 extend. On the other side of the connector 10, an insulating bar 124 is shown. This has through-holes 138, into which the insulating sleeves 116 of the contacting bar 122 extend in assembly. The diameter of the through-holes 138 of the insulating bar 124 corresponds to the outside diameter of the insulating sleeves 116. The inside diameter of the insulating sleeves 122 corresponds to the diameter of the fillister head screws. The insulating sleeves 116 with the through-holes 121, 140 thus realize a centering device within the meaning of the invention.
The structure of the contacting bars and the insulating bar is now explained in more detail based on the sectional representations of
If two semi-bars 126 are arranged with their rears towards one another such that respectively the dowel pin 132 of a semi-bar 126 lies opposite a free fitted bore 131 of the other semi-bar, the two semi-bars 126 can be joined to form a contacting bar plus-to-plus 114.
If two semi-bars 134 are arranged with their rears towards one another such that respectively the dowel pin 132 of the one semi-bar 134 lies opposite a free fitted bore 131 of the other semi-bar, the two semi-bars 134 can be joined to form a contacting bar minus-to-minus 122.
If one semi-bar plus 126 and one semi-bar minus 134 are arranged with their rears towards one another such that the dowel pin 132 of the semi-bar 126 lies opposite the free fitted bore 131 of the other semi-bar 134 and vice versa, and if the semi-bars are joined in this manner, a contacting bar plus-to-minus (not shown in greater detail) is formed, which is used in a series connection.
In a parallel connection of several cells 2, the contacting bars 114, 122 are arranged such that a contacting bar 114, 122 with insulating sleeves 116 and coding pins 118 is followed by a contacting bar 114, 122 without insulating sleeves and coding pins, etc. In a modification, in each contacting bar 114, 122 a semi-bar 126, 132 can also be respectively provided with insulating sleeves 116 and coding pins 118, and the other semi-bar 126, 132 not. In this manner it is ensured that a projecting element (insulating sleeve 116, coding pin 118) always meets a corresponding hole 129, 131.
With the transition from a parallel connection to a series connection, and in a series connection anyway, it is necessary on one side to connect a positive terminal (connector 8) of a cell 2 to a negative terminal (connector 10) of an adjacent cell 2, and to insulate the two other terminals of these adjacent cells from one another. The insulating bar 124 is used for this purpose, which is shown in section in
The insulating bar 124 is substantially composed of a plate 137 made of insulating material, such as plastic, hard rubber, ceramic material or the like, and is twice as thick as the semi-bars 126, 134. Three through-holes 138 are provided at distances that correspond to the positions of the fillister head screws (22). Two coding bores 140a having the distance x1 are arranged on one side of the plate 137, and two coding bores 140b having the distance x2 are provided on the other side.
The diameter of the through-holes 138 corresponds to the outside diameter of the insulating sleeves 116, and the diameter of the coding bores 140a, 140b corresponds to the diameter of the coding pins 18. When assembled, the insulating sleeves 116 and coding pins 18, which are disposed in the respective next contacting bars, extend through corresponding bores 121, 120a, 120b of the connectors 8, 10 of a secondary cell 2 and into the through-holes 138 and coding bores 140a, 140b of the insulating bar. In this way, the relative positions of the elements in the cell block are radially centered and the elements can be mounted protected against polarity reversal. Because the fillister head screws are always guided in insulating sleeves 116, they are reliably insulated with respect to the connectors 8, 10, the contacting bars 114, 122 and the pressure plates 118, 120.
It should be noted that in this embodiment only one kind of intermediate frame 14 is required, which is symmetrical and has a particularly simple geometry. The manufacturing complexity is thus low, fewer differing individual parts must be stored, and during assembly no attention is required in terms of the correct installation position because contacting takes place solely by way of the contacting and insulating bars.
For assembly, merely sub-assembled semi-bars plus 126, sub-assembled semi-bars minus 134 and insulating bars 124 must be available, which are each sub-assembled with insulating sleeves 116 and coding pins 118. The semi-bars can be assembled into contacting bars plus-to-minus without the risk of confusion and mounted with correct polarity. If, in addition to series connections, parallel connections of secondary cells 2 are also to be implemented within a cell stack, the semi-bars 126, 134 must additionally be available with insulating sleeves 116 and coding pins 118, and without the same. In this case as well, mix-ups of parts or incorrect installation positions become apparent during assembly, or such errors become impossible. Of course it is also possible to individually store base plates 128, 136, insulating sleeves 116, coding pins 118 and dowel pins 132, and they can be mounted not until the installation of the cell block, which offers the greatest possible flexibility.
The insulating sleeves 116 are introduced in the through-holes 129 of the semi-bars 126, 134 with comparatively low friction. Assembly, for example, requires only little force, and disassembly is possible. The dowel pins 132 are firmly seated in the fitted bores thereof and reliably hold the semi-bars 126, 134 together. The coding pins 118 are likewise firmly seated in the blind holes 131a, 131b thereof. To prevent jamming in opposing semi-bars, the coding pins are considerably undersized at one end, or even have a smaller diameter than at the other end. Because the centering of the components in the radial direction is already achieved by the insulating sleeves 116, the coding pins 118 no longer have to fulfill this task. They should therefore only have a firm seat in the blind holes in the sub-assembled contacting bars, so that they cannot fall out; loose play in the opposing bores in the completely assembled state of the cell stack does not impair the coding function.
A thirteenth embodiment uses the same frames 14 as is described in the twelfth embodiment with reference to
When two semi-bars plus 126 are disposed with the backs thereof relative to one another such each dowel pin 132 of the one semi-bar 126 is located opposite of an open fitted bore 131 of the other semi-bar, the two semi-bars 126 can be joined to form a contacting bar plus-to-plus. However, when two semi-bars minus 134 are disposed with the backs thereof relative to one another such each dowel pin 132 of the one semi-bar 134 is located opposite of an open fitted bore 131 of the other semi-bar, the two semi-bars 134 can be joined to form a contacting bar minus-to-minus. Contacting bars plus-to-plus and minus-to-minus are used in a parallel connection of secondary cells 2.
When a semi-bar plus 126 and a semi-bar minus 134 are disposed with the backs thereof relative to one another such that the dowel pin 132 of the semi-bar 126 is located opposite of the open fitted bore 131 of the other semi-bar 134, and conversely, and when the semi-bars are joined, a contacting bar plus-to-minus is formed, which is used in a series connection and for a transition between a parallel connection and a series connection.
As in the semi-bar plus 126 of this embodiment, the front of the base plate 150 further comprises a fitted bore 131a and a coding bore 146a, each being designed as blind a hole, having the distance x1, wherein the fitted bore 131a is the upper one of the two bores. Moreover, a fitted bore 131b and a coding bore 146b are introduced as blind holes having the distance x2 on the back of the base body 150, wherein the fitted bore 131b is the lower one of the two bores. The positions of the bores 131b and 146b thus correspond to the situation of the semi-bar 134 in this embodiment when it is placed upside down as compared with the illustration in
The diameter of the through-holes 129 of the semi-bars 126, 134 corresponds to the outside diameter of the insulating sleeves 116, and the outside diameter of the elevations 152 of the insulating bar 150 corresponds to the diameter of the through-holes 129 of the semi-bars 126, 134. Like the inside diameter of the insulating sleeves 116, the diameter of the through-hole 154 of the elevation 150 corresponds to the diameter of the fillister head screws (22). The diameter of the coding bores 146a, 146b is greater than the diameter of the coding pins 18.
Given the special asymmetrical arrangement of the projecting components, regardless of whether the semi-bars 126, 134 are assembled to form contacting bars plus-to-plus, minus-to-minus or plus-to-minus, and regardless of whether a series connection or parallel connection or a transition between a parallel connection and a series connection is to be implemented, when properly assembled the insulating sleeves 116, elevations 152 and coding pins 18 will project through the corresponding bores 121, 120a, 120b of the connectors 8, 10 of a secondary cell on the one hand, and will always project into an open through-hole 130 of a contacting bar or into a depression 156 of an insulating bar 148, or into open coding bores 146a, 146b of a contacting or insulating bar, on the other hand. This radially centers the relative positions of the elements in the cell block and they can be mounted protected against polarity reversal, and the fillister head screws are reliably insulated with respect to the connectors 8, 10, the contacting bars 114, 122 and the pressure plates 118, 120.
For assembly, therefore semi-bars plus 126, semi-bars minus 134 and insulating bars 148 that are merely sub-assembled with insulating sleeves 116 and coding pins 118 must be stored with respect to the contacting of the cells 2. The semi-bars can be assembled into contacting bars without the risk of confusion regardless of the desired type of interconnection and mounted with correct polarity.
A fourteenth embodiment relates to a modular design of the contact connection elements using the intermediate frame 14 of the twelfth embodiment, as shown in
A spacer semi-plate plus 158 and a spacer semi-plate minus 160 are plates that have identical outside contours made of an electrically insulating material. As is shown in
Analogous to the two preceding embodiments, the spacer semi-plates 158, 160 can be assembled to form spacer bars in such a way that they are coded for plus-to-plus, minus-to-minus or plus-to-minus.
The elements described above in connection with this embodiment are typically sufficient to implement the interconnection of the secondary cells 2 to form a cell block.
For a series connection, spacer semi-plates 158, 160 are assembled to form spacer bars plus-to-minus. Contacting sleeves 164 are inserted in the through-holes 162 in one spacer bar and double pin collars 170 are inserted in the other spacer bar. The spacer bars are inserted in the recesses 142 of the intermediate frame 14 (
For a parallel connection, only the contacting sleeves 164 and inside collars 176 are used. To this end, a respective inside collar 176 is placed in a depression 166 of a contacting sleeve 164, inserted in the spacer bars assembled from two identical spacer semi-plates 158 or 160, and the components are mounted in the pole direction predefined in this way.
In a mixed parallel and series connection of secondary cells, as that which is shown in
The insulating sleeve 182 can replace a double pin collar 170 or a single pin collar 178 by inserting one or both inside collars 176 in the depressions 168.
The above-described components of this embodiment are provided as a kit for assembly. Because of the small and compact dimensions of the sleeves and collars, they can be easily handled as bulk material.
In a fifteenth embodiment of the present invention, which is not shown in detail in the drawings, inside collars 176 are present in two designs having differing outside diameters, the contacting sleeve 164 and the insulating sleeve 182 comprise two depressions having differing diameters in keeping with the outside diameters of the inside collars, and the double pin collar 170 comprises two shoulders having differing inside diameters in keeping with the depressions of the contacting sleeve 164 and insulating sleeve 182. Optionally, two designs of single pin collars 178 are provided, wherein one design comprises a shoulder having a larger outside diameter and a depression having a smaller diameter, and the other design has a shoulder having a smaller outside diameter and a depression having a larger diameter, wherein the diameters of the shoulders and depressions are adapted to the differing diameters of the depressions of the contacting sleeve, or the differing outside diameters of the two designs of inside collars.
In this embodiment, no coding pins and coding bores are provided. Instead, the through-holes in the connectors 8 of the cells 2 have differing diameters in keeping with the differing outside diameters of the inside collars 176. In this way, the contacting sleeves 164 form contact connection elements within the meaning of the present invention, and the collars form both a centering unit and a reverse polarity protection unit within the meaning of the invention.
It also applies to this embodiment that the insulating sleeves 182 and the inside collars 176 in the two designs can replace both the double pin collars 170 and the single pin collars 178 when assembled appropriately.
Since the coding of the pole direction takes place via the differing outside diameters of the inside collars 176, and optionally the shoulders of the double and single pin collars 170, 178, no spacer semi-plates are provided for in this embodiment, but single-piece spacer bars, which are inserted in the symmetrical recesses 142 of the frame elements (see
In a sixteenth embodiment, the sleeves and collars of the fifteenth embodiment are used. No spacer bars are provided, however. Rather, the frame elements have three through-holes, instead of recesses, for receiving the spacer bars on both lateral sides. All through-holes have the same diameter, which corresponds to the outside diameter of the contacting sleeve 164 and insulating sleeve 182.
In this embodiment, the number of different components is even further reduced, and assembly is further simplified.
In a seventeenth embodiment of the present invention, no frame elements are used at all. Rather the secondary cells 2 are threaded on fillister head screws between two pressure plates, wherein insulating and contacting bars according to the twelfth or thirteenth embodiment, or spacer bars comprising sleeves and collars according to the fourteenth or fifteenth embodiment, are disposed between the connectors 8, 10 of the cells 2. The distance between the cells 2 is defined and the necessary holding and contacting pressure is transmitted via the bars.
In an eighteenth embodiment, the use of bars is also dispensed with. Rather only the sleeves and collars of the fifteenth embodiment are used to transmit the holding and contacting pressure, to define the distance between cells 2, to contact and/or insulate connectors 8, 10, for polarity reversal protection and for radial centering.
By dispensing with the intermediate frames in the seventeenth and eighteenth embodiments, the total weight of a cell block can be reduced, which is further promoted by dispensing with spacer bars in the eighteenth embodiment. The stability of the arrangement is ensured solely by the pressure plates 18, 20 and the fillister head screws 22, as well as by the pressure surfaces of the spacer bars (158+160, 2×158 or 2×160) (seventeenth embodiment), or the contact sleeves 164 and insulating sleeves 182 and/or single and double pin collars 178, 170 (eighteenth embodiment), which are supported by way of the pressure surfaces of the connectors 8, 10 of the cells 2.
The temperature of the exposed secondary cells 2 can be controlled particularly effectively in the seventeenth and eighteenth embodiments. A housing, which extends between the pressure plates 18, 20, can be provided in order to lend an individual atmosphere to the cell block and protect the edge regions of the cells 2 from damage. However, it is also possible for a plurality of cell blocks without individual housings to be inserted in an installation space, which is in turn enclosed, wherein during installation the protection of the edge regions of the cells 2 must be ensured.
The following embodiments relate to establishing the radial position of the secondary cells 2 in the cell block.
A twenty-fourth embodiment of the invention will be described with reference to
In a modification of the twenty-fourth embodiment, which is not shown in detail, an embossing is configured in a section of the edge region that is free of connectors, that is in the region of the free sealed seam of the cell.
A twenty-fifth embodiment of the invention will be described with reference to
According to the illustration in
The contacting sleeves 212 are made of an electrically conducting material and have a continuous hollow-cylindrical cross-section. They are inserted in through-holes having a corresponding diameter in a holding frame or in a spacer bar and are seated with the end faces thereof on a respective connector. The inside diameter of the contacting sleeves 212 is greater than the diameter of the fillister head screws 22.
The insulating sleeves 210 are made of an electrically insulating material. According to the illustration of
Because of the insulating sleeves 210, radial centering of the holding frames 12, 14, 16 and of the secondary cells 2 in relation to one another and the pressure plates 18, 20 is ensured. (Instead of the insulating sleeve 210, a modified insulating sleeve having two pins is disposed in one of the end frames; as an alternative, hollow-cylindrical inside collars are shown on the side of one of the pressure plates 18, 20, with the inside diameter of the inside collars corresponding to that of the insulating sleeves and the outside diameter corresponding to that of the depressions 214, and are inserted on the side of the one pressure plate 18, 20 into the depressions 214 of the insulating sleeves 210). Moreover, centering of all components and electrical insulation with respect to the two central fillister head screws 22 is ensured.
The interconnection of the secondary cells 2 is implemented via the contacting sleeves 212. The alternate arrangement on the left and right sides in consecutive holding frames shown here represents a series connection. The outer through-holes around the fillister head screws 22 are left open on the respective other lateral side of a holding frame. Provided that the four outer fillister head screws 22 are centered and insulated by suitable means (see the insulating sleeve in
In the embodiments described above, importance was always attached to ensuring that the fillister head screws 22, which hold the cell block together, are de-energized or potential-free, while the pressure plates formed the poles (+) and (−) of the cell block.
The arrangement is held together by a plurality of clamping screws, which in this embodiment are configured as eyelet bolts 222. An eyelet bolt here is a hexagon bolt having a long shank, to the head of which an eye 226 is attached (welded on). The eyelet bolts 222 are insulated and centered with respect to the first pressure plate 18 by means of insulating bushings 64. The eyelet bolts 222 are tightened on the side of the second pressure plate 20 by way of nuts 24. Contact washers 224 are disposed between the nuts 24 and the second pressure plate 20. The contact washers 224 are made of an electrically conducting material, which at the connecting points to the surface of the second pressure plate 20 and the nuts 24 has low contact resistance. They can be simple steel screws, or copper or brass washers, which start to flow when tightened and thereby establish a good connection.
In this way, the eyelet bolts 222 are in electrical contact with the second pressure plate 20, but are insulated with respect to the first pressure plate 18 and all current-carrying parts in the interior of the cell block 1e, in particular with respect to the connectors of the cells 2 and the cell contact connection elements 218. On the side of the first pressure plate 18, the lug 52 is thus connected to the potential of the first pressure plate 18, while the eyes 226 of the eyelet bolts 222 are connected to the potential of the second pressure plate 20. In this way, both poles are accessible on the same end face of the cell block 1e.
Additional cell blocks can be connected in series or in parallel via the lug 52 of the second pressure plate 20, as was already described above. In this way, it is possible to tap a total voltage via the lugs 52 of a first pressure plate 18 of a first cell block and a second pressure plate 20 of a last cell block in the circuit, while a partial voltage can be tapped via the lug 52 and the eyes 226 of the eyelet bolts 222 on the side of the first pressure plate 18 of the first cell block.
Of course, not all clamping screws have to be connected to the potential of the second pressure plate 20. It suffices if one or two of the clamping screws are designed as eyelet bolts 222 and connected to the second pressure plate 20, while the other clamping screws are insulated with respect to the two pressure plates 18, 20 in the manner described before.
Potential equalization on the side of the insulated screw ends is achieved when the screw ends are connected there, for example by a connecting sheet, which is screwed on beneath the screw heads, or the like.
In this embodiment, the clamping screws are simple fillister head screws, which are screwed into internal threads in the second pressure plate 20 and thereby have reliable electrical contact therewith. On the head side, the fillister head screws 22 are insulated and centered with respect to the first pressure plate 18 by way of insulating bushings 64. Moreover, angle brackets 228 are screwed in between the screw heads and the insulating bushings 64. The angle brackets are angled metal plates made of electrically conducting material, which in one limb comprises a through-hole for receiving a screw shank and in the other limb comprises a through-hole for receiving a connecting pin (not shown in detail).
In this way, the eyelet bolts 222 are in electrical contact with the second pressure plate 20, but are insulated with respect to the first pressure plate 18 and all current-carrying parts in the interior of the cell block 1f, in particular with respect to the connectors of the cells 2 and the cell contact connection elements 218. On the side of the first pressure plate 18, the lug 52 is thus connected to the potential of the first pressure plate 18, while the angle brackets 228 are connected to the potential of the second pressure plate 20. In this way, both poles are accessible on the same end face of the cell block 1f.
In this embodiment, the second pressure plate 20 does not comprise a lug, in order to implement a short length to the extent possible. However, for the purpose of interconnecting to additional cell blocks, the pressure plates 18, 20 may comprise lugs projecting on one lateral side, or both lateral sides (shown in
In a twenty-eighth embodiment, which is shown in
A first cell block 1g of this embodiment is generally composed as is shown in
A random number of additional cell blocks 1h are composed differently from the first cell block 1g. All screws are insulated with respect to all poles (that is all pressure plates 18, 20) of the respective cell block 1h (that is they are screwed together via insulating bushings 64). With a pair of screws, an angle bracket 228 is screwed in each case beneath the screw heads and beneath the nuts, and these screws are connected to one another by suitable means for potential equalization, in this example potential equalization plates 230, for example.
So as to implement a series connection, as it is shown by way of example in
In a modification of the twenty-eighth embodiment, analogously intermediate potentials that are several times the terminal voltage of a cell block can be tapped. For example, an additional pair of screws of the central cell block 1h could be connected to the second pressure plate 20 of this cell block and the potential present there could be conducted to the side of the first pressure plate 18 of the last cell block (on the left in the drawing). Moreover, the potential present at the second pressure plate 20 of the last (left) cell block 1h could be conducted via a third pair of screws from the second pressure plate 20 of this cell block to the side of the first pressure plate 18 thereof. In this way, the terminal voltage of the last cell block, the added terminal voltages of the last and second to the last cell blocks, and the added terminal voltages of the first to the last cell blocks could be tapped on the side of the first pressure plate 18 of the last cell block.
In a further modification of the twenty-eighth embodiment, only one screw of a cell block is used in each case for conducting a potential.
It should be pointed out that some of the angle brackets 228 could be dispensed with in the cell blocks 1g, 1h of the twenty-eighth embodiment. However, if all current-carrying screws carry angle brackets 228, this will contribute to increased modularity and flexibility in the connection situation and prevent remounting if different connections are required, for example if the cell blocks are not supposed to be arranged next to, but behind one another. For protection purposes, the angle brackets that are not used may carry insulating caps.
In a cell block 1k according to this embodiment, the fillister head screws 22 run above and below the secondary cells 2a. The cells 2a comprise a thin edge region 6 designed as a peripheral sealed seam. The cells 2a are held at this edge region (sealed seam) 6 by frame elements 12, 14, 16. The sealed seam notably has a substantially constant, well-defined and known thickness peripherally.
Pressure frames 18, 20 rest on the first end frame 12 and the last end frame 16, respectively, the frames being acted on by the fillister head screws 22.
The intermediate frames 14 comprise openings 40 not only on the upper and lower faces (not shown in detail), but also comprise openings 231 on the lateral sides, with a coolant (generally air) flowing through these openings.
Except for the thin edge region, the cells 2a can be designed and contacted as in the prior art (see, for example,
A thirtieth embodiment of the invention will be described hereinafter with reference to
The cell block 1l according to this embodiment is substantially composed like the cell block 1k of the twenty-ninth embodiment. The fillister head screws 22 again run above and below the secondary cells 2b. The cells 2b have a peripheral sealed seam 50 and are held at this sealed seam 50 by frame elements 12, 14, 16. Pressure frames 18, 20 rest on the first end frame 12 and the last end frame 16, respectively, the frames being acted on by the fillister head screws 22.
Like the cells 2, the cells 2b comprise connectors 8, 10 projecting laterally on opposing sides, which protrude beyond the contour defined by the frame elements 12, 14, 16 and the pressure frames 18, 20. The connectors 8, 10 of the cells 2b notably protrude laterally between two frame elements 12, 14, 16. The cells 2b are stacked in the customary manner with alternate polarities in the stacking direction. that is connectors 8 having a first polarity (for example positive) and connectors 10 having a second polarity (for example negative) alternately protrude on one side of the cell block 1l.
To implement a series connection, two consecutive connectors 8, 10 at a time are connected using a contacting clamp 232. Each contacting clamp 232 comprises an insulating body 233 and two contact springs 234 (of which only one is visible in the sectional view).
The first and last cells 2b are connected to the first and second pressure plates 18, by way of an end contacting clamp 236 (the figure shows only the end contacting clamps 236 for the second pressure plate 20). Each end contacting clamp 236 comprises an insulating body 237 and two contact springs 238 (of which only one is visible in the sectional view).
A projection 244 is configured toward the inside at each end face. Together with the U-profile, the projections 244 form a receiving slot 245 having likewise a U-shaped cross-section. An upper and a lower contact spring 234a, 234b, which are each secured to the respective projection 244 by means of a screw 246, are accommodated in the upper and lower receiving slots 245, respectively. Each of the contact springs 234a, 234b has a U-shaped cross-section with curved flanks. The contact springs 234a, 234b are slightly shorter than half the inside length of the U-profiles, minus the length of one of the projections 244; the contact springs 234a, 234b can thus be easily mounted for producing the contacting clamps 232. Windows 239 are incorporated in the contact springs 234a, 234b in areas where the contact springs 234a, 234b cover the opening 242 in the insulating body 233 in the installed state.
As is shown in
The end contacting clamps 236 differ from the contacting clamps 232 in that the shape of the insulating body 237 thereof corresponds approximately to an insulating body 233 of a contacting clamp 232 cut lengthwise in half. The contact springs 238 thus protrude beyond the insulating body 237 and are elongated on one side and designed in terms of the width such that they establish a secure spring-loaded contact with the respective pressure plate 18, 20.
The contact springs 238 can also be clamped to the pressure plates 18, 20 by way of locking screws.
In a modification of this embodiment, contacting clamps could be provided which connect a plurality of contact sections to one another to implement a parallel connection. These contacting clamps, that is the U-profiles thereof, are accordingly wider, and in each case the number of pairs of projections 244 (and optionally openings 242) that is configured corresponds to the number of connections to be established between cells 2b. A contact spring is received and secured in each of the receiving slots 245 formed by the projections 244. This means that the contacting clamps are placed on the respective connectors 8, 10 such that these are enclosed in pairs by the limbs of two contact springs 234 disposed next to one another. So as to implement the exemplary circuitry of
A cell block 1p of this embodiment comprises a plurality of secondary cells (not visible), which are held between frame elements and interconnected by way of contact connection elements in a suitable manner as described in the present application. Contrary to the previous embodiments, no tension screws are present here. Rather the entire stack is held together by a collar, which is formed by two semi-collars 248. The semi-collars are metal sheets bent in a U shape, or flat bodies formed into a U shape in another manner, comprising flange sections 250 that perpendicularly project outwardly. Through-holes 252 that are located opposite of and aligned with one another are configured in the flange sections 250 of the two semi-collars 248. The semi-collars 248 are screwed to one another by way of the through-holes 252 (not shown in detail). In the rigidly screw-fastened state, the flange sections of the two semi-collars 248 have a predefined minimum distance from one another. This ensures that the cell stack is rigidly braced by the pressure of the collar.
In this embodiment, of course, no contacting or insulating elements can be used which require screws of any kind for holding or centering. Contact connection elements described as sleeves, for example, in the preceding embodiments can be configured as solid bodies and thus have a larger contact surface. Insulating problems associated with long fillister head screws that extend through the entire stack cannot occur.
The semi-collars 248 are insulated with respect to the pressure plates so as to prevent short circuits. Moreover, the semi-collars 248, notably the transitions to the flange sections 250, are configured with sufficient rigidity to withstand the tension of the connecting means.
In a modification of this embodiment, the semi-collars 248 directly form the poles, that is the first and last cells are each contacted directly with one of the semi-collars 248. To prevent a short circuit, the screw assembly elements are suitably insulated at the flange sections; the frame elements are already composed of electrically insulating material. Separate pressure plates are eliminated. For the connection to a supply network or additional cell blocks 1p, the flange sections 250 or the end faces of the semi-collars 248 can comprise lugs.
The invention was described above based on preferred embodiments. The specific embodiments, of course, only illustrate and exemplify the claimed invention, without limiting the same. The characteristics of various embodiments can, of course, also be combined and/or exchanged in order to benefit from the respective advantages.
The above exemplary embodiments describe storage devices for electric energy of the type of a secondary lithium-ion storage device (rechargeable battery). The invention, however, can be applied to any type of storage devices for electric energy. It can be applied to primary storage devices (batteries) and to secondary storage devices. Likewise, the type of the electrochemical reaction for storing and delivering electric energy is not limited to lithium metal oxide reactions, but instead the individual storage cells can be based on any electrochemical reaction.
Above, several embodiments were described which use four or six fillister head screws as tensioning elements. However, wherever six fillister head screws were described, it is also possible to use four fillister head screws, and in most cases the reverse also applies.
Instead of the washers 25, or in addition to the washers, it is possible to use disk springs or disk spring sets together with the fillister head screws to compensate for the thermal expansion.
The cooling fluid described in the embodiments can be air, water (notably deionized water), oil or another suitable heat transfer medium. It can flow in a suitably designed and configured cooling circuit and used to control the temperature of the cell blocks, or of the individual cells. It is conceivable to utilize phase transition, for example evaporation, of the heat transfer medium. As an alternative, solid matters, such as metal plates, can be used as the heat transfer medium.
Several essential characteristics of the invention will be summarized again hereinafter. This is done to provide an overview.
A electric energy storage device comprises a plurality of storage cells with a flat shape, wherein a plurality of storage cells are stacked in a stacking direction to form a cell block and held together by a clamping device between two pressure plates, and wherein the storage cells are connected to one another in parallel and/or in series inside the cell block. Each storage cell is held in the edge region thereof between two frame elements.
According to another aspect, each storage cell comprises connectors in the edge region, and electric contacting between connectors of consecutive storage cells is carried out via the clamping device by way of friction fit. In this aspect, the frame elements can be replaced with support elements, however these have higher strength.
The frame elements are produced from electrically insulating material, such as plastic, and electric contact elements are integrated therein for connecting the cells to one another. (All the features apply analogously to support elements, which are produced from ceramic material or glass, for example, for higher strength.).
The clamping elements (such as tension bars, and the like) are used to connect a cell block made of pouch cells and frames both mechanically and electrically.
Connectors, the contact elements connected thereto and/or the insulating or holding elements (these also being the frames) connected thereto are provided with a geometric coding that prevents polarity reversal of the cells.
Heat sinks are fastened to the connectors, with these heat sinks increasing the heat transfer surface to the cooling fluid.
The cell is laterally (radially) oriented and fixed by the frame elements. In addition, the frames and/or cells can optionally be coated with foam or the like.
The dead zones, which are caused by the fact that the connectors do not take up the entire length of a lateral edge of the rectangular cell, are used for arranging fastening elements in a neutral manner in terms of the installation space. These elements generally engage in recesses or jogs of the packaging of the cell.
The frame elements are designed so as to form one or more at least partially closed (cable) ducts when arranged next to one another.
The cell blocks within one battery, or different batteries, are composed of standard elements (frames, end plates, contact elements, . . . ), the number of which is dependent upon the properties (voltage, capacitance) of the cells to be installed.
The electronics (cell voltage and temperature monitoring, balancing, . . . ) electrically connected directly to the individual cells are arranged fixed in the cell block.
The cell blocks are fastened in the housing or electrically connected among one another at the electric poles thereof.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 005 124.4 | Jan 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/000176 | 1/14/2010 | WO | 00 | 2/28/2012 |