An Application Data Sheet is filed concurrently with this specification as part of the present application. Each application that the present application claims benefit of or priority to as identified in the concurrently filed Application Data Sheet is incorporated by reference herein in its entirety and for all purposes.
Electrochromism is a phenomenon in which a material exhibits a reversible electrochemically-mediated change in an optical property when placed in a different electronic state, typically by being subjected to a voltage change. The optical property is typically one or more of color, transmittance, absorbance, and reflectance. One well known electrochromic material, for example, is tungsten oxide (WO3). Tungsten oxide is a cathodic electrochromic material in which a coloration transition, transparent to blue, occurs by electrochemical reduction.
Electrochromic materials may be incorporated into, for example, windows and mirrors. The color, transmittance, absorbance, and/or reflectance of such windows and mirrors may be changed by inducing a change in the electrochromic material. One well known application of electrochromic materials, for example, is the rear view mirror in some cars. In these electrochromic rear view mirrors, the reflectivity of the mirror changes at night so that the headlights of other vehicles are not distracting to the driver.
While electrochromism was discovered in the 1960's, electrochromic devices still unfortunately suffer various problems and have not begun to realize their full commercial potential. Advancements in electrochromic technology, apparatus and related methods of making and/or using them, are needed.
A typical electrochromic device includes an electrochromic (“EC”) electrode layer and a counter electrode (“CE”) layer, separated by an ionically conductive (“IC”) layer that is highly conductive to ions and highly resistive to electrons. In other words, the ionically conductive layer permits transport of ions but blocks electronic current. As conventionally understood, the ionically conductive layer therefore prevents shorting between the electrochromic layer and the counter electrode layer. The ionically conductive layer allows the electrochromic and counter electrodes to hold a charge and thereby maintain their bleached or colored states. In conventional electrochromic devices, the components form a stack with the ion conducting layer sandwiched between the electrochromic electrode and the counter electrode. The boundaries between these three stack components are defined by abrupt changes in composition and/or microstructure. Thus, the devices have three distinct layers with two abrupt interfaces.
Quite surprisingly, the inventors have discovered that high quality electrochromic devices can be fabricated without depositing an ionically conducting electrically insulating layer. In accordance with certain embodiments, the counter electrode and electrochromic electrodes are formed immediately adjacent one another, often in direct contact, without separately depositing an ionically conducting layer. It is believed that various fabrication processes and/or physical or chemical mechanisms produce an interfacial region between contacting electrochromic and counter electrode layers, and this interfacial region serves at least some functions of an ionically conductive electronically insulating layer in conventional devices. Certain mechanisms that may be key to forming the interfacial region are described below.
The interfacial region typically, though not necessarily, has a heterogeneous structure that includes at least two discrete components represented by different phases and/or compositions. Further, the interfacial region may include a gradient in these two or more discrete components. The gradient may provide, for example, a variable composition, microstructure, resistivity, dopant concentration (for example, oxygen concentration), and/or stoichiometry.
In addition to the above discoveries, the inventors have observed that in order to improve device reliability, two layers of an electrochromic device, the electrochromic (EC) layer and the counter electrode (CE) layer, can each be fabricated to include defined amounts of lithium. Additionally, careful choice of materials and morphology and/or microstructure of some components of the electrochromic device provide improvements in performance and reliability. In some embodiments, all layers of the device are entirely solid and inorganic.
Consistent with above observations and discoveries, the inventors have discovered that formation of the EC-IC-CE stack need not be done in the conventional sequence, EC→IC→CE or CE→IC→EC, but rather an ion conducting electronically insulating region, serving as an IC layer, can be formed after formation of the electrochromic layer and the counter electrode layer. That is, the EC-CE (or CE-EC) stack is formed first, then an interfacial region serving some purposes of an IC layer is formed between the EC and CE layers using components of one or both of the EC and CE layers at the interface of the layers. Methods of the invention not only reduce fabrication complexity and expense by eliminating one or more process steps, but provide devices showing improved performance characteristics.
Thus, one aspect of the invention is a method of fabricating an electrochromic device, the method including: forming an electrochromic layer including an electrochromic material; forming a counter electrode layer in contact with the electrochromic layer without first providing an ion conducting electronically insulating layer between the electrochromic layer and the counter electrode layer; and forming an interfacial region between the electrochromic layer and the counter electrode layer, wherein said interfacial region is substantially ion conducting and substantially electronically insulating. The electrochromic layer and counter electrode layer are typically, but not necessarily, made of one or more materials that are more electronically conductive than the interfacial region but may have some electronically resistive character. The interfacial region can contain component materials of the EC layer and/or the CE layer, and in some embodiments, the EC and CE layers contain component materials of the interfacial region. In one embodiment, the electrochromic layer includes WO3. In some embodiments, the EC layer includes WO3, the CE layer includes nickel tungsten oxide (NiWO), and the IC layer includes lithium tungstate (Li2WO4).
Heating may be applied during deposition of at least a portion of the electrochromic layer. In one embodiment, where the EC layer includes WO3, heating is applied after each of a series of depositions via sputtering in order to form an EC layer with a substantially polycrystalline microstructure. In one embodiment, the electrochromic layer is between about 300 nm and about 600 nm thick, but the thickness may vary depending upon the desired outcome which contemplates formation of the interfacial region after deposition of the EC-CE stack. In some embodiments, the WO3 is substantially polycrystalline. In some embodiments, an oxygen rich layer of WO3 can be used as a precursor to the interfacial region. In other embodiments the WO3 layer is a graded layer with varying concentrations of oxygen in the layer. In some embodiments, lithium is a preferred ion species for driving the electrochromic transitions, and stack or layer lithiation protocols are described. Specifics of the formation parameters and layer characteristics are described in more detail below.
Another aspect of the invention is a method of fabricating an electrochromic device, the method including: (a) forming either an electrochromic layer including an electrochromic material or a counter electrode layer including a counter electrode material; (b) forming an intermediate layer over the electrochromic layer or the counter electrode layer, where the intermediate layer includes an oxygen rich form of at least one of the electrochromic material, the counter electrode material and an additional material, where the additional material includes distinct electrochromic and/or counter electrode material, the intermediate layer not substantially electronically insulating; (c) forming the other of the electrochromic layer and the counter electrode layer; and (d) allowing at least a portion of the intermediate layer to become substantially electronically insulating and substantially ion conducting. Specifics of the formation parameters and layer characteristics for this method are also described in more detail below.
Another aspect of the invention is an apparatus for fabricating an electrochromic device, including: an integrated deposition system including: (i) a first deposition station containing a material source configured to deposit an electrochromic layer including an electrochromic material; and (ii) a second deposition station configured to deposit a counter electrode layer including a counter electrode material; and a controller containing program instructions for passing the substrate through the first and second deposition stations in a manner that sequentially deposits a stack on the substrate, the stack having an intermediate layer sandwiched in between the electrochromic layer and the counter electrode layer; wherein either or both of the first deposition station and the second deposition station are also configured to deposit the intermediate layer over the electrochromic layer or the counter electrode layer, and where the intermediate layer includes an oxygen rich form of the electrochromic material or the counter electrode material and where the first and second deposition stations are interconnected in series and operable to pass a substrate from one station to the next without exposing the substrate to an external environment. In one embodiment, apparatus of the invention are operable to pass the substrate from one station to the next without breaking vacuum and may include one or more lithiation stations operable to deposit lithium from a lithium-containing material source on one or more layers of the electrochromic device. In one embodiment, apparatus of the invention are operable to deposit the electrochromic stack on an architectural glass substrate. Apparatus of the invention need not have a separate target for fabrication of an ion conducting layer.
Another aspect of the invention is an electrochromic device including: (a) an electrochromic layer including an electrochromic material; (b) a counter electrode layer including a counter electrode material; and (c) an interfacial region between the electrochromic layer and the counter electrode layer, wherein the interfacial region includes an electronically insulating ion conducting material and at least one of the electrochromic material, the counter electrode material and an additional material, where the additional material includes distinct electrochromic and/or counter electrode material. In some embodiments the additional material is not included; in these embodiments the interfacial region includes at least one of the electrochromic material and the counter electrode material. Variations in the composition and morphology and/or microstructure of the interfacial region are described in more detail herein. Electrochromic devices described herein can be incorporated into windows, in one embodiment, architectural glass scale windows.
These and other features and advantages of the invention will be described in further detail below, with reference to the associated drawings.
The following detailed description can be more fully understood when considered in conjunction with the drawings in which:
Again referring to
One notable challenge with above procedure is the processing required to form the IC layer. In some prior approaches it is formed by a sol gel process which is difficult to integrate into a CVD or PVD process employed to form the EC and CE layers. Further, IC layers produced by sol gel and other liquid-based processes are prone to defects that reduce the quality of the device and may need to be removed by, for example, scribing. In other approaches, the IC layer is deposited by PVD from a ceramic target, which can be difficult to fabricate and use.
One of ordinary skill in the art would recognize that
As mentioned above, the inventors have discovered that formation of the EC-IC-CE stack need not be conducted in the conventional sequence, EC→IC→CE or CE→IC→EC, but rather an interfacial region serving as the ion conducting layer can be formed after deposition of the electrochromic layer and the counter electrode layer. That is, the EC-CE (or CE-EC) stack is formed first, then an interfacial region, which may possess at least some functions of an IC layer, is formed between the EC and CE layers using components of one or both of the layers (and or another electrochromic or counter electrode material in some embodiments) at the interface of the layers. The interfacial region serves at least some function of a conventional IC layer because it is substantially ion conducting and substantially electronically insulating. It should be noted, however, that interfacial regions as described can have higher than conventionally accepted leakage currents but the devices show good performance nonetheless.
In one embodiment the electrochromic layer is formed with an oxygen rich region which is converted to the interfacial region or layer serving as an IC layer upon subsequent processing after the counter electrode layer is deposited. In some embodiments, a distinct layer which includes an oxygen rich version of an electrochromic material is used to (ultimately) form an interfacial layer serving as an IC layer between the EC and CE layers. In other embodiments, a distinct layer which includes an oxygen rich version of a counter electrode material is used to (ultimately) form an interfacial region serving as an IC layer between the EC and CE layers. All or a portion of the oxygen rich CE layer is converted to the interfacial region. In yet other embodiments, a distinct layer which includes an oxygen rich version of a counter electrode material and an oxygen rich form of an electrochromic material is used to (ultimately) form an interfacial region serving as an IC layer between the EC and CE layers. In other words, some or all of oxygen rich material serves as a precursor to the interfacial region that serves as an IC layer. Methods of the invention can not only reduce process steps, but produce electrochromic devices showing improved performance characteristics.
As mentioned, it is believed that some of the EC and/or CE layer in an interfacial region is converted to a material that provides one or more functions of an IC layer, notably high conductivity for ions and high resistivity for electrons. The IC functional material in the interfacial region may be, for example, a salt of the conductive cations; for example, a lithium salt.
It should be noted that, for example, that the nickel tungsten oxide CE layer in
As mentioned above in the Summary of Invention, the EC and CE layers may include material components that impart some electrical resistivity to the EC and CE layers; the lithium tungstate in described in
The amount of electrochromic and/or counter electrode material in the interfacial region can be significant, in one embodiment as much as 50% by weight of the interfacial region. However, in many embodiments, the ion-conducting electrically-insulating material is typically the majority component, while the remainder of the interfacial region is electrochromic and/or counter electrode material. In one embodiment, the interfacial region includes between about 60% by weight and about 95% by weight of the ion-conducting electrically-insulating material while the remainder of the interfacial region is electrochromic and/or counter electrode material. In one embodiment, the interfacial region includes between about 70% by weight and about 95% by weight of the ion-conducting electrically-insulating material while the remainder of the interfacial region is electrochromic and/or counter electrode material. In one embodiment, the interfacial region includes between about 80% by weight and about 95% by weight of the ion-conducting electrically-insulating material while the remainder of the interfacial region is electrochromic and/or counter electrode material.
In some embodiments, interfacial regions in devices described herein may be relatively distinct, that is, when analyzed, for example by microscopy, there are relatively distinguishable boundaries at adjoining layers, even though the interfacial region contains amounts of the electrochromic and/or counter electrode material. In such embodiments the interfacial region's thickness can be measured. In embodiments where the interfacial region is formed from an oxygen-rich (super-stoichiometric) region of an EC and/or CE layer, the ratio of the thickness of the interfacial region as compared to the layer or layers it is formed from is one metric for characterizing the interfacial region. For example, an electrochromic layer is deposited with an oxygen-rich upper layer. The EC layer may include a single metal oxide or two or more metal oxides mixed homogenously or heterogeneously in layers or more diffuse regions. The EC layer is 550 nm thick, including the oxygen-rich layer (or region). If about 150 nm of the EC layer is converted to interfacial region, then about 27% of the EC is converted to interfacial region, that is, 150 nm divided by 550 nm. In another example, the EC layer includes a first metal oxide region (or layer) and a second metal oxide layer (or region) that is oxygen-rich. If all or a portion of the oxygen-rich metal oxide layer is converted to interfacial region, then the thickness of the interfacial region divided by the total thickness of the first and second metal oxide layers (prior to formation of the interfacial region) is a metric for the interfacial region. In one embodiment, the interfacial region includes between about 0.5% and about 50% by thickness of a precursor region (EC and/or CE, including oxygen-rich portion) used to form it, in another embodiment, between about 1% and about 30%, in yet another embodiment, between about 2% and about 10%, and in another embodiment between about 3% and about 7%.
The inventors have discovered that graded compositions serving as the IC layer have many benefits. While not wishing to be bound by theory, it is believed that by having such graded regions, the efficiency of the electrochromic transitions is improved dramatically. There are other benefits as described in more detail below.
While not wishing to be bound to theory, it is believed that one or more of the following mechanisms may affect the transformation of EC and/or CE material to an IC functioning material in the interfacial region. However, the performance or application of the invention is not limited to any of these mechanisms. Each of these mechanisms is consistent with a process in which IC layer material is never deposited during fabrication of the stack. As is made clear elsewhere herein, apparatus of the invention need not have a separate target comprising material for an IC layer.
In a first mechanism, the direct lithiation of the electrochromic material or the counter electrode material produces an IC material (for example, a lithium tungstate) in the interfacial region. As explained more fully below various embodiments employ direct lithiation of one of the active layers at a point in the fabrication process between the formation of the EC and CE layers. This operation involves exposure of the EC or CE layer (whichever is formed first) to lithium. According to this mechanism, a flux of lithium passing through the EC or CE layer produces an ionically conductive, electronically resistive material such as a lithium salt. Heating or other energy can be applied to drive this flux of lithium. This described mechanism converts the top or exposed portion of the first formed layer (EC or CE layer) prior to formation of the second layer (CE or EC layer).
In a second mechanism, lithium diffusing from one of the EC or CE to the other layer, after both layers have formed and/or during formation of a second layer upon a lithiated first layer, causes conversion of part of one of the EC and/or CE at their interface to the interfacial region having the IC functioning material. The lithium diffusion may take place after all the second layer has formed or after only some fraction of the second layer has formed. Further, the diffusion of lithium and consequent conversion to IC functional material take place in either the first or second deposited layers and in either the EC or CE layer. In one example, the EC layer is formed first and then lithiated. As the CE layer is subsequently deposited on top of the EC layer, some lithium diffuses from the underlying EC layer toward and/or into the CE layer causing a transformation to an interfacial region which contains an IC functioning material. In another example, the EC layer formed first (optionally with an oxygen rich upper region), then the CE layer is formed and lithiated. Subsequently some lithium from the CE layer diffuses into the EC layer where it forms the interfacial region having the IC functioning material. In yet another example, the EC layer is deposited first and then lithiated to produce some IC functioning material according to first the mechanism described above. Then, when the CE layer is formed, some lithium diffuses from the underlying EC layer toward the CE layer to produce some IC material in an interfacial region of the CE layer. In this manner, the IC functioning material nominally resides in both the CE and EC layers proximate their interface.
In a third mechanism, the EC and CE layers are formed to completion (or at least to the point where the second formed layer is partially complete). Then, the device structure is heated and the heating converts at least some of the material in the interfacial region to an IC functioning material (for example, a lithium salt). Heating, for example as part of a multistep thermochemical conditioning (MTCC) as described further herein, may be performed during deposition or after deposition is completed. In one embodiment, the heating is performed after a transparent conductive oxide is formed on the stack. In another embodiment, heating is applied after the second layer is partially or wholly complete, but before a transparent conductive oxide is applied thereto. In some cases, the heating is directly and primarily responsible for the transformation. In other cases, the heating primarily facilitates the diffusion or flux of lithium ions that creates the IC-functioning material region as described in the second mechanism.
Finally, in a fourth mechanism, current flowing between the EC and CE layers drives the transformation of at least one of the electrochromic material and the counter electrode material to the IC-functioning material in the interfacial region. This may occur because, for example, an ion flux associated with the flowing current is so large it drives a chemical transformation of EC and/or CE material to IC material in the interfacial region. For example, as explained below, a large lithium flux through tungsten oxide in an EC layer may produce lithium tungstate, which serves as an IC material. The lithium flux may be introduced during, for example, an initial activation cycle of a newly formed device. However, this need not be the case, as other opportunities for driving high ionic fluxes may be more appropriate for effecting the conversion. Methods of the invention can be performed by one of ordinary skill in the art without resort to any one or more of the above mechanisms.
Thus, as mentioned, one aspect of the invention is a method of fabricating an electrochromic device, the method including: forming an electrochromic layer including an electrochromic material; forming a counter electrode layer in contact with the electrochromic layer without first providing an ion conducting electronically insulating layer between the electrochromic layer and the counter electrode layer, wherein the counter electrode layer includes a counter electrode material; and forming an interfacial region between the electrochromic layer and the counter electrode layer, wherein said interfacial region is substantially ion conducting and substantially electronically insulating. The interfacial region can contain component materials of the EC layer, the CE layer or both. The interfacial region can be formed in a number of ways, as described in more detail below.
Because organic materials tend to degrade over time, for example when exposed to ultraviolet light and heat associated with window applications, inorganic materials offer the advantage of a reliable electrochromic stack that can function for extended periods of time. Materials in the solid state also offer the advantage of not having containment and leakage issues, as materials in the liquid state often do. It should be understood that any one or more of the layers in the stack may contain some amount of organic material, but in many implementations one or more of the layers contains little or no organic matter. The same can be said for liquids that may be present in one or more layers in small amounts. It should also be understood that solid state material may be deposited or otherwise formed by processes employing liquid components such as certain processes employing sol-gels or chemical vapor deposition.
Referring again to
Referring to each of
In some embodiments, the optical transmittance (i.e., the ratio of transmitted radiation or spectrum to incident radiation or spectrum) of substrate 402 is about 90 to 95%, for example, about 90-92%. The substrate may be of any thickness, as long as it has suitable mechanical properties to support the electrochromic device. While the substrate 402 may be of any size, in some embodiments, it is about 0.01 mm to 10 mm thick, preferably about 3 mm to 9 mm thick.
In some embodiments of the invention, the substrate is architectural glass. Architectural glass is glass that is used as a building material. Architectural glass is typically used in commercial buildings, but may also be used in residential buildings, and typically, though not necessarily, separates an indoor environment from an outdoor environment. In certain embodiments, architectural glass is at least 20 inches by 20 inches, and can be much larger, for example, as large as about 72 inches by 120 inches. Architectural glass is typically at least about 2 mm thick. Architectural glass that is less than about 3.2 mm thick cannot be tempered. In some embodiments of the invention with architectural glass as the substrate, the substrate may still be tempered even after the electrochromic stack has been fabricated on the substrate. In some embodiments with architectural glass as the substrate, the substrate is a soda lime glass from a tin float line. The percent transmission over the visible spectrum of an architectural glass substrate (i.e., the integrated transmission across the visible spectrum) is generally greater than 80% for neutral substrates, but it could be lower for colored substrates. Preferably, the percent transmission of the substrate over the visible spectrum is at least about 90% (for example, about 90-92%). The visible spectrum is the spectrum that a typical human eye will respond to, generally about 380 nm (purple) to about 780 nm (red). In some cases, the glass has a surface roughness of between about 10 nm and about 30 nm. In one embodiment, substrate 402 is soda glass with a sodium diffusion barrier (not shown) to prevent sodium ions from diffusing into the electrochromic device. For the purposes of this description, such an arrangement is referred to as “substrate 402.”
Referring again to layered structures, 400, 403 and 409, on top of substrate 402 is deposited a first TCO layer, 404, for example made of fluorinated tin oxide or other suitable material, that is, among other things, conductive and transparent. Transparent conductive oxides include metal oxides and metal oxides doped with one or more metals. Examples of such metal oxides and doped metal oxides include indium oxide, indium tin oxide, doped indium oxide, tin oxide, doped tin oxide, zinc oxide, aluminum zinc oxide, doped zinc oxide, ruthenium oxide, doped ruthenium oxide and the like. In one embodiment this second TCO layer is between about 20 nm and about 1200 nm thick, in another embodiment, between about 100 nm and about 600 nm thick, in another embodiment about 350 nm thick. The TCO layer should have an appropriate sheet resistance (Rs) because of the relatively large area spanned by the layers. In some embodiments, the sheet resistance of the TCO layers is between about 5 and about 30 Ohms per square. In some embodiments, the sheet resistance of TCO layers is about 15 Ohms per square. In general, it is desirable that the sheet resistance of each of the two conductive layers be about the same. In one embodiment, the two layers, for example 404 and 412, each have a sheet resistance of about 10-15 Ohms per square.
Each of layered structures 400, 403 and 409, include a stack 414a, 414b and 414c, respectively, each of which include the first TCO layer 404 on top of substrate 402, a CE layer 410, and a second TCO layer 412. The difference in each of layered structures 400, 403 and 409 is how the EC layer was formed, which in turn affects the morphology of the resultant interfacial region in each scenario.
Consistent with process flow 325 of
In some embodiments, tungsten oxide or doped tungsten oxide is used for the electrochromic layer. In one embodiment of the invention, the electrochromic layer is made substantially of WOx, where “x” refers to an atomic ratio of oxygen to tungsten in the electrochromic layer, and x is between about 2.7 and 3.5. It has been suggested that only sub-stoichiometric tungsten oxide exhibits electrochromism; i.e., stoichiometric tungsten oxide, WO3, does not exhibit electrochromism. In a more specific embodiment, WOx, where x is less than 3.0 and at least about 2.7 is used for the electrochromic layer. In another embodiment, the electrochromic layer is WOx, where x is between about 2.7 and about 2.9. Techniques such as Rutherford Backscattering Spectroscopy (RBS) can identify the total number of oxygen atoms which include those bonded to tungsten and those not bonded to tungsten. In some instances, tungsten oxide layers where x is 3 or greater exhibit electrochromism, presumably due to unbound excess oxygen along with sub-stoichiometric tungsten oxide. In another embodiment, the tungsten oxide layer has stoichiometric or greater oxygen, where x is 3.0 to about 3.5. In some embodiments of the invention, at least a portion of the EC layer has an excess of oxygen. This more highly oxygenated region of the EC layer is used as a precursor to formation of an ion conducting electron insulating region which serves as an IC layer. In other embodiments a distinct layer of highly oxygenated EC material is formed between the EC layer and the CE layer for ultimate conversion, at least in part, to an ion conducting electrically insulating interfacial region.
In certain embodiments, the tungsten oxide is crystalline, nanocrystalline, or amorphous. In some embodiments, the tungsten oxide is substantially nanocrystalline, with grain sizes, on average, from about 5 nm to 50 nm (or from about 5 nm to 20 nm), as characterized by transmission electron microscopy (TEM). The tungsten oxide morphology or microstructure may also be characterized as nanocrystalline using x-ray diffraction (XRD) and/or electron diffraction, such as selected area electron diffraction (SAED) For example, nanocrystalline electrochromic tungsten oxide may be characterized by the following XRD features: a crystal size of about 10 to 100 nm, for example, about 55 nm. Further, nanocrystalline tungsten oxide may exhibit limited long range order, for example, on the order of several (about 5 to 20) tungsten oxide unit cells.
Thus, for convenience, the remainder of process flow 320, in
As mentioned with reference to
In embodiments described in relation to
As mentioned, a number of materials are suitable for the EC layer. Generally, in electrochromic materials, the colorization (or change in any optical property—for example, absorbance, reflectance, and transmittance) of the electrochromic material is caused by reversible ion insertion into the material (for example, intercalation) and a corresponding injection of a charge balancing electron. Typically some fraction of the ion responsible for the optical transition is irreversibly bound up in the electrochromic material. As described herein, some or all of the irreversibly bound ions are used to compensate “blind charge” in the material. In most electrochromic materials, suitable ions include lithium ions (Li+) and hydrogen ions (H+) (i.e., protons). In some cases, however, other ions will be suitable. These include, for example, deuterium ions (D+), sodium ions (Na+), potassium ions (K+), calcium ions (Ca++), barium ions (Ba++), strontium ions (Sr++), and magnesium ions (Mg++). In various embodiments described herein, lithium ions are used to produce the electrochromic phenomena. Intercalation of lithium ions into tungsten oxide (WO3-y (0<y≤˜0.3)) causes the tungsten oxide to change from transparent (bleached state) to blue (colored state). In a typical process where the EC layer includes or is tungsten oxide, lithium is deposited, for example via sputtering, on EC layer 406 to satisfy the blind charge (as will be discussed in more detail below with reference to
Referring again to
In some embodiments, suitable materials for the counter electrodes include nickel oxide (NiO), nickel tungsten oxide (NiWO), nickel vanadium oxide, nickel chromium oxide, nickel aluminum oxide, nickel manganese oxide, nickel magnesium oxide, chromium oxide (Cr2O3), manganese oxide (MnO2) and Prussian blue. Optically passive counter electrodes include cerium titanium oxide (CeO2—TiO2), cerium zirconium oxide (CeO2—ZrO2), nickel oxide (NiO), nickel-tungsten oxide (NiWO), vanadium oxide (V2O5), and mixtures of oxides (for example, a mixture of Ni2O3 and WO3). Doped formulations of these oxides may also be used, with dopants including, for example, tantalum and tungsten. Because counter electrode layer 410 contains the ions used to produce the electrochromic phenomenon in the electrochromic material when the electrochromic material is in the bleached state, the counter electrode preferably has high transmittance and a neutral color when it holds significant quantities of these ions. The counter electrode morphology may be crystalline, nanocrystalline, or amorphous.
In some embodiments, where the counter electrode layer is nickel-tungsten oxide, the counter electrode material is amorphous or substantially amorphous. Substantially amorphous nickel-tungsten oxide counter electrodes have been found to perform better, under some conditions, in comparison to their crystalline counterparts. The amorphous state of the nickel-tungsten oxide may be obtained through the use of certain processing conditions, described below. While not wishing to be bound to any theory or mechanism, it is believed that amorphous nickel-tungsten oxide is produced by relatively higher energy atoms in the sputtering process. Higher energy atoms are obtained, for example, in a sputtering process with higher target powers, lower chamber pressures (i.e., higher vacuum), and smaller source to substrate distances. Under the described process conditions, higher density films, with better stability under UV/heat exposure are produced.
In certain embodiments, the amount of nickel present in the nickel-tungsten oxide can be up to about 90% by weight of the nickel tungsten oxide. In a specific embodiment, the mass ratio of nickel to tungsten in the nickel tungsten oxide is between about 4:6 and 6:4, in one example, about 1:1. In one embodiment, the NiWO is between about 15% (atomic) Ni and about 60% Ni, and between about 10% W and about 40% W. In another embodiment, the NiWO is between about 30% (atomic) Ni and about 45% Ni, and between about 15% W and about 35% W. In another embodiment, the NiWO is between about 30% (atomic) Ni and about 45% Ni, and between about 20% W and about 30% W. In one embodiment, the NiWO is about 42% (atomic) Ni and about 14% W.
In one embodiment, CE layer 410 is NiWO as described above, see 335 of
In a typical process, lithium is also applied to the CE layer until the CE layer is bleached. It should be understood that reference to a transition between a colored state and bleached state is non-limiting and suggests only one example, among many, of an electrochromic transition that may be implemented. Unless otherwise specified herein, whenever reference is made to a bleached-colored transition, the corresponding device or process encompasses other optical state transitions such non-reflective-reflective, transparent-opaque, etc. Further the term “bleached” refers to an optically neutral state, for example, uncolored, transparent or translucent. Still further, unless specified otherwise herein, the “color” of an electrochromic transition is not limited to any particular wavelength or range of wavelengths. As understood by those of skill in the art, the choice of appropriate electrochromic and counter electrode materials governs the relevant optical transition.
In a particular embodiment, lithium, for example via sputtering, is added to a NiWO CE layer, see 340 of
Referring again to
After the multistep thermochemical conditioning, process flow 320 is complete and a functional electrochromic device is created. As mentioned, and while not wishing to be bound by theory, it is believed that the lithium in stack 414a along with a portion of EC layer 406 and/or CE layer 410 combine to form interfacial region 408 which functions as an IC layer. Interfacial region 408 is believed to be primarily lithium tungstate, Li2WO4, which is known to have good ion conducting and electrically insulating properties relative to traditional IC layer materials. As discussed above, precisely how this phenomenon occurs is not yet known. There are chemical reactions that must take place during the multistep thermochemical conditioning to form the ion conducting electrically insulating region 408 between the EC and CE layers, but also it is thought that an initial flux of lithium traveling through the stack, for example provided by the excess lithium added to the CE layer as described above, plays a part in formation of IC layer 408. The thickness of the ion conducting electronically insulating region may vary depending on the materials employed and process conditions for forming the layer. In some embodiments, interfacial region 408 is about 10 nm to about 150 nm thick, in another embodiment about 20 nm to about 100 nm thick, and in other embodiments between about 30 nm to about 50 nm thick.
As mentioned above, there are a number of suitable materials for making the EC layer. As such, using, for example lithium or other suitable ions, in the methods described above one can make other interfacial regions that function as IC layers starting from oxygen rich EC materials. Suitable EC materials for this purpose include, but are not limited to SiO2, Nb2O5, Ta2O5, TiO2, ZrO2 and CeO2. In particular embodiments where lithium ions are used, ion conducting materials such as but not limited to, lithium silicate, lithium aluminum silicate, lithium aluminum borate, lithium aluminum fluoride, lithium borate, lithium nitride, lithium zirconium silicate, lithium niobate, lithium borosilicate, lithium phosphosilicate, and other such lithium-based ceramic materials, silicas, or silicon oxides, including lithium silicon-oxide can be made as interfacial regions that function as IC layers.
As mentioned, in one embodiment, the precursor of the ion conducting region is an oxygen-rich (super-stoichiometric) layer that is transformed into ion-conducting/electron-insulating region via lithiation and MTCC as described herein. While not wishing to be bound to theory, it is believed that upon lithiation, the excess oxygen forms lithium oxide, which further forms lithium salts, that is, lithium electrolytes, such as lithium tungstate (Li2WO4), lithium molybdate (Li2MoO4), lithium niobate (LiNbO3), lithium tantalate (LiTaO3), lithium titanate (Li2TiO3), lithium zirconate (Li2ZrO3) and the like. In one embodiment, the interfacial region comprises at least one of tungsten oxide (WO3+x, 0≤x≤1.5), molybdenum oxide (MoO3+x, 0≤x≤1.5), niobium oxide (Nb2O5+x, 0≤x≤2), titanium oxide (TiO2+x, 0≤x≤1.5), tantalum oxide (Ta2O5+x, 0≤x≤2), zirconium oxide (ZrO2+x, 0≤x≤1.5) and cerium oxide (CeO2+x, 0≤x≤1.5).
Any material, however, may be used for the ion conducting interfacial region provided it can be fabricated with low defectivity and it allows for the passage of ions between the counter electrode layer 410 to the electrochromic layer 406 while substantially preventing the passage of electrons. The material may be characterized as being substantially conductive to ions and substantially resistive to electrons. In one embodiment, the ion conductor material has an ionic conductivity of between about 10−10 Siemens/cm (or ohm−1 cm−1) and about 10−3 Siemens/cm and an electronic resistivity of greater than 105 ohms-cm. In another embodiment, the ion conductor material has an ionic conductivity of between about 10−8 Siemens/cm and about 10−3 Siemens/cm and an electronic resistivity of greater than 1010 ohms-cm. While ion conducting layers should generally resist leakage current (for example, providing a leakage current of not more than about 15 μA/cm2, it has been found that some devices fabricated as described herein have surprising high leakage currents, for example, between about 40 μA/cm and about 150 μA/cm, yet provide good color change across the device and operate efficiently.
As mentioned above, there are at least two other ways of creating an ion conducting electrically insulating region between the EC and CE layers, after formation of the stack. These additional embodiments are described below with reference to a particular example where tungsten oxide is used for the EC layer. Also, as mentioned above, the interfacial region with IC properties may form in situ during fabrication of the stack when, for example, lithium diffusion or heat converts some of the EC and/or CE layer to the interfacial region.
In general, there are certain benefits to creating the ion conducting region later in the process. First, the ion conducting material may be protected from some of the harsh processing that occurs during deposition and lithiation of the EC and CE layers. For example, the deposition of these layers by a plasma process is often accompanied by a large voltage drop proximate the stack, frequently in the neighborhood of 15-20 volts. Such large voltages can damage or cause break down of the sensitive ion conducting material. By shifting the IC material formation to later in the process, the material is not exposed to potentially damaging voltage extremes. Second, by forming the IC material later in the process, one may have better control over some process conditions that are not possible prior to completion of both the EC and CE layers. These conditions include lithium diffusion and current flow between electrodes. Controlling these and other conditions late in the process provides additional flexibility to tailor the physical and chemical properties of the IC material to particular applications. Thus, not all of the benefits of the invention are due to the unique interfacial region acting as an IC layer, that is, there are manufacturing and other benefits as well.
It has been observed that ion conducting materials formed in accordance with some of the embodiments described herein have superior performance when compared to devices fabricated using conventional techniques for forming an IC layer (for example, PVD from an IC material target). The device switching speed, for example, has been found to be very fast, for example less than 10 minutes, in one example about eight minutes, to achieve about 80% of end state compared to 20-25 minutes or more for traditional devices. In some instances, devices described herein have switching speeds orders of magnitude better than conventional devices. This is possibly attributable to the greater amounts of readily transferable lithium disposed in the interfacial region and/or the graded interfaces, for example between the EC and interfacial region and/or between the CE and the interfacial region. Such lithium may be in the EC and/or CE phases intermixed with the IC phase present in the interfacial region. It is also due possibly to the relatively thin layer or network of IC material present in the interfacial region. In support of this view, it has been observed that some devices fabricated in accordance with the teachings herein have high leakage currents, yet surprisingly exhibit good color change and good efficiency. In some cases, the leakage current density of solidly performing devices has been found to be at least about 100 μA/cm.
Referring now to
Referring again to
Referring now to
In one embodiment, EC layer 406a is a graded composition WO3 layer, between about 500 nm and about 600 nm thick, that is sputtered using a tungsten target and a sputter gas, wherein the sputter gas includes between about 40% and about 80% O2 and between about 20% Ar and about 60% Ar at the start of sputtering the electrochromic layer, and the sputter gas includes between about 70% and 100% O2 and between 0% Ar and about 30% Ar at the end of sputtering the electrochromic layer, and wherein heat is applied, for example to substrate 402, at least intermittently, to between about 150° C. and about 450° C. at the beginning of formation of EC layer 406a but not, or substantially not, applied during deposition of at least a final portion of EC layer 406a. In a more specific embodiment, the graded composition WO3 layer is about 550 nm thick; the sputter gas includes between about 50% and about 60% O2 and between about 40% and about 50% Ar at the start of sputtering the electrochromic layer, and the sputter gas is substantially pure O2 at the end of sputtering the electrochromic layer; and wherein heat is applied, for example to substrate 402, at least intermittently, to between about 200° C. and about 350° C. at the beginning of formation of the electrochromic layer but not, or substantially not, applied during deposition of at least a final portion of the electrochromic layer. In one embodiment heat is applied at the described temperature ranges at the onset of deposition and gradually decreased to no applied heat at a point where about half of the EC layer is deposited, while the sputter gas composition is adjusted from between about 50% and about 60% O2 and between about 40% and about 50% Ar to substantially pure O2 along a substantially linear rate during deposition of the EC layer.
More generally, the interfacial region typically, though not necessarily, has a heterogeneous structure that includes at least two discrete components represented by different phases and/or compositions. Further, the interfacial region may include a gradient in these two or more discrete components such as an ion conducting material and an electrochromic material (for example, a mixture of lithium tungstate and tungsten oxide). The gradient may provide, for example, a variable composition, microstructure, resistivity, dopant concentration (for example, oxygen concentration), stoichiometry, density, and/or grain size regime. The gradient may have many different forms of transition including a linear transition, a sigmoidal transition, a Gaussian transition, etc. In one example, an electrochromic layer includes a tungsten oxide region that transitions into a superstoichiometric tungsten oxide region. Part or all of the superstoichiometric oxide region is converted to the interfacial region. In the final structure, the tungsten oxide region is substantially polycrystalline and the microstructure transitions to substantially amorphous at the interfacial region. In another example, an electrochromic layer includes a tungsten oxide region that transitions into a niobium (superstoichiometric) oxide region. Part or all of the niobium oxide region is converted to the interfacial region. In the final structure, the tungsten oxide region is substantially polycrystalline and the microstructure transitions to substantially amorphous at the interfacial region.
Referring again to
In various embodiments described herein, the electrochromic stack is described as not, or substantially not, being heated during certain processing phases. In one embodiment, the stack is cooled, actively or passively (for example using a heat sink), after a heating step. Apparatus of the invention include active and passive cooling components, for example, active cooling can include platens that are cooled via fluid circulation, cooling via exposure to cooled (e.g. via expansion) gases, refrigeration units and the like. Passive cooling components can include heat sinks, such as blocks of metal and the like, or simply removing the substrate from exposure to heat.
Another aspect of the invention is a method of fabricating an electrochromic device, the method including: (a) forming either an electrochromic layer including an electrochromic material or a counter electrode layer including a counter electrode material; (b) forming an intermediate layer over the electrochromic layer or the counter electrode layer, where the intermediate layer includes an oxygen rich form of at least one of the electrochromic material, the counter electrode material and an additional material, where the additional material includes distinct electrochromic or counter electrode material, where the intermediate layer is not substantially electronically insulating; (c) forming the other of the electrochromic layer and the counter electrode layer; and (d) allowing at least a portion of the intermediate layer to become substantially electronically insulating. In one embodiment, the electrochromic material is WO3. In another embodiment, (a) includes sputtering WO3 using a tungsten target and a first sputter gas including between about 40% and about 80% O2 and between about 20% Ar and about 60% Ar, to reach of thickness of between about 350 nm and about 450 nm, and heating, at least intermittently, to between about 150° C. and about 450° C. during formation of the electrochromic layer. In another embodiment, (b) includes sputtering WO3 using a tungsten target and a second sputter gas including between about 70% and 100% O2 and between 0% Ar and about 30% Ar, to reach a thickness of between about 100 nm and about 200 nm, without heating. In yet another embodiment, the method further includes sputtering lithium onto the intermediate layer until the blind charge is approximately or substantially satisfied. In one embodiment, the counter electrode layer includes NiWO, between about 150 nm and about 300 nm thick. In another embodiment, lithium is sputtered onto counter electrode layer until the counter electrode layer is bleached. In another embodiment, an additional amount of lithium, between about 5% and about 15% excess based on the quantity required to bleach the counter electrode layer, is sputtered onto the counter electrode layer. In another embodiment, a transparent conducting oxide layer is deposited on top of the counter electrode layer. In one embodiment the transparent conducting oxide includes indium tin oxide, in another embodiment, the transparent conducting oxide is indium tin oxide. In another embodiment, the stack formed from the above embodiments is heated at between about 150° C. and about 450° C., for between about 10 minutes and about 30 minutes under Ar, and then for between about 1 minutes and about 15 minutes under 02, and then heated in air at between about 250° C. and about 350° C., for between about 20 minutes and about 40 minutes.
In another embodiment, (a) includes sputtering a first electrochromic material of formula MOx, wherein M is a metal or metalloid element and x indicates stoichiometric oxygen to M ratio, and (b) includes sputtering a second electrochromic material of formula NOy as the intermediate layer, where N is the same or a different metal or metalloid element and y indicates a superstoichiometric amount of oxygen to N ratio. In one embodiment, M is tungsten and N is tungsten. In another embodiment, M is tungsten and N is selected from the group consisting of niobium, silicon, tantalum, titanium, zirconium and cerium.
Another embodiment of the invention is an electrochromic device including: (a) an electrochromic layer including an electrochromic material; (b) a counter electrode layer including a counter electrode material; and (c) an interfacial region between the electrochromic layer and the counter electrode layer, wherein the interfacial region includes an electronically insulating ion conducting material and at least one of the electrochromic material, the counter electrode material and an additional material, where the additional material includes distinct electrochromic or counter electrode material.
In one embodiment, the electronically insulating ion conducting material and at least one of the electrochromic material, the counter electrode material and the additional material are substantially evenly distributed within the interfacial region. In another embodiment, the electronically insulating ion conducting material and at least one of the electrochromic material, the counter electrode material and the additional material include a composition gradient in a direction perpendicular to the layers. In another embodiment, consistent with either of the two aforementioned embodiments, the electronically insulating ion conducting material includes lithium tungstate, the electrochromic material includes a tungsten oxide and the counter electrode material includes nickel tungsten oxide. In a specific implementation of the aforementioned embodiment, there is no additional material. In one embodiment, the electrochromic layer is between about 300 nm and about 500 nm thick, the interfacial region is between about 10 nm and about 150 nm thick, and the counter electrode layer is between about 150 nm and about 300 nm thick. In another embodiment, the electrochromic layer is between about 400 nm and about 500 nm thick; the interfacial region is between about 20 nm and about 100 nm thick, and the counter electrode layer is between about 150 and about 250 nm thick. In yet another embodiment, the electrochromic layer is between about 400 nm and about 450 nm thick; the interfacial region is between about 30 nm and about 50 nm thick, and the counter electrode layer is about 200 nm and about 250 nm thick.
Another embodiment is a method of fabricating an electrochromic device, the method including:
forming an interfacial region between the electrochromic layer and the counter electrode layer, wherein said interfacial region is substantially ion conducting and substantially electronically insulating. In one embodiment, forming the interfacial region includes MTCC of the stack, alone or along with substrate, conductive and/or encapsulation layers.
The electrochromic devices of the invention can include one or more additional layers (not shown) such as one or more passive layers, for example to improve certain optical properties, providing moisture or scratch resistance, to hermetically seal the electrochromic device and the like. Typically, but not necessarily, a capping layer is deposited on the electrochromic stack. In some embodiments, the capping layer is SiAlO. In some embodiments, the capping layer is deposited by sputtering. In one embodiment, the thickness of a capping layer is between about 30 nm and about 100 nm.
From the discussion above, it should be appreciated that electrochromic devices of the invention can be made in a single chamber apparatus, for example a sputter tool, that has, for example, a tungsten target, a nickel target and a lithium target along with oxygen and argon sputter gases. As mentioned, due to the nature of the interfacial regions formed to serve the purpose of a conventional distinct IC layer, a separate target for sputtering an IC layer is not necessary. Of particular interest to the inventors is fabricating electrochromic devices of the invention, for example, in a high throughput fashion, therefore it is desirable to have apparatus that can fabricate electrochromic devices of the invention sequentially as substrates pass through an integrated deposition system. For example, the inventors are particularly interested in fabricating electrochromic devices on windows, particularly architectural glass scale windows (supra).
Thus, another aspect of the invention is an apparatus for fabricating an electrochromic device, including: an integrated deposition system including: (i) a first deposition station containing a material source configured to deposit an electrochromic layer including an electrochromic material; and (ii) a second deposition station configured to deposit a counter electrode layer including a counter electrode material; and a controller containing program instructions for passing the substrate through the first and second deposition stations in a manner that sequentially deposits a stack on the substrate, the stack having an intermediate layer sandwiched in between the electrochromic layer and the counter electrode layer; wherein either or both of the first deposition station and the second deposition station are also configured to deposit the intermediate layer over the electrochromic layer or the counter electrode layer, and where the intermediate layer includes an oxygen rich form of the electrochromic material or the counter electrode material and where the first and second deposition stations are interconnected in series and operable to pass a substrate from one station to the next without exposing the substrate to an external environment. In one embodiment, apparatus of the invention are operable to pass the substrate from one station to the next without breaking vacuum and may include one or more lithiation stations operable to deposit lithium from a lithium-containing material source on one or more layers of the electrochromic device. In one embodiment, apparatus of the invention are operable to deposit the electrochromic stack on an architectural glass substrate.
In one embodiment, the apparatus is operable to pass the substrate from one station to the next without breaking vacuum. In another embodiment, the integrated deposition system further includes one or more lithiation stations operable to deposit lithium from a lithium-containing material source on at least one of the electrochromic layer, the intermediate layer and the counter electrode layer. In yet another embodiment, the integrated deposition system is operable to deposit the stack on an architectural glass substrate. In another embodiment, the integrated deposition system further includes a substrate holder and transport mechanism operable to hold the architectural glass substrate in a vertical orientation while passing through the integrated deposition system. In another embodiment, the apparatus further includes one or more load locks for passing the substrate between an external environment and the integrated deposition system. In another embodiment, the apparatus further includes at least one slit valve operable to permit isolation of said one or more lithium deposition stations from at least one of the first deposition station and the second deposition station. In one embodiment, the integrated deposition system includes one or more heaters configured to heat the substrate.
Target 530, in this case a cylindrical target, is oriented substantially parallel to and in front of the substrate surface where deposition is to take place (for convenience, other sputter means are not depicted here). Substrate 525 can translate past target 530 during deposition and/or target 530 can move in front of substrate 525. The movement path of target 530 is not limited to translation along the path of substrate 525. Target 530 may rotate along an axis through its length, translate along the path of the substrate (forward and/or backward), translate along a path perpendicular to the path of the substrate, move in a circular path in a plane parallel to substrate 525, etc. Target 530 need not be cylindrical, it can be planar or any shape necessary for deposition of the desired layer with the desired properties. Also, there may be more than one target in each deposition station and/or targets may move from station to station depending on the desired process. The various stations of an integrated deposition system of the invention may be modular, but once connected, form a continuous system where a controlled ambient environment is established and maintained in order to process substrates at the various stations within the system.
More detailed aspects of how electrochromic materials are deposited using integrated deposition system 500 are described in US Non-Provisional patent applications, Ser. Nos. 12/645,111 and 12/645,159, supra.
Integrated deposition system 500 also has various vacuum pumps, gas inlets, pressure sensors and the like that establish and maintain a controlled ambient environment within the system. These components are not shown, but rather would be appreciated by one of ordinary skill in the art. System 500 is controlled, for example, via a computer system or other controller, represented in
From the description above, particularly of
Like the electrochromic devices of the invention described above, electrochromic device precursors can also include one or more additional layers (not shown) such as one or more passive layers, for example to improve certain optical properties, providing moisture or scratch resistance, to hermetically seal the device precursor and the like. In one embodiment, a capping layer is deposited on the TCO layer of the precursor stack. In some embodiments, the capping layer is SiAlO. In some embodiments, the capping layer is deposited by sputtering. In one embodiment, the thickness of a capping layer is between about 30 nm and about 100 nm. Subsequent processing with the cap layer in place forms the IC layer without contamination from the environment, that is, with the additional protection of the capping layer.
Conversion to the functional electrochromic device can occur outside the integrated system if desired, since the internal stack structure is protected from the outside environment and somewhat less stringent purity conditions are necessary for the last conditioning steps to convert the precursor stack to the functional device. Such stacked electrochromic device precursors can have advantages, for example, longer lifespan due to conversion to the electrochromic device only when needed, flexibility by having, for example, a single precursor stack that can be stored and used when conversion parameters are improved or fed to different conversion chambers and/or customer sites for conversion depending on the needs of the final product and quality standards that must be met. Also such precursor stacks are useful for testing purposes, for example, quality control or research efforts.
Accordingly, one embodiment of the invention is an electrochromic device precursor including: (a) a substrate; (b) a first transparent conducting oxide layer on the substrate; (c) a stack on the first transparent conducting oxide layer, the stack including: (i) an electrochromic layer including an electrochromic material, and (ii) a counter electrode layer including a counter electrode material; where the stack does not include an ion conducting and electrically insulating region between the electrochromic layer and the counter electrode layer; and (d) a second transparent conducting oxide layer on top of the stack. In one embodiment, the electrochromic layer includes tungsten oxide and the counter electrode layer comprises nickel tungsten oxide. In one embodiment, at least one of the stack and the electrochromic layer contain lithium. In another embodiment, the electrochromic layer is tungsten oxide with a superstoichiometric oxygen content at least at the interface with the counter electrode layer. In another embodiment, the stack includes an IC precursor layer between the counter electrode layer and the electrochromic layer, the IC precursor layer including tungsten oxide with a higher oxygen content than that of the electrochromic layer. In one embodiment, where there is no IC precursor layer between the EC and CE layers, the electrochromic layer is between about 500 nm and about 600 nm thick and the counter electrode layer is between about 150 nm and about 300 nm thick. In another embodiment, where there is an IC precursor layer between the EC and CE layers, the electrochromic layer is between about 350 nm and about 400 nm thick, the IC precursor layer is between about 20 nm and about 100 nm thick, and the counter electrode layer is between about 150 nm and about 300 nm thick. In one embodiment, precursor devices described herein are exposed to heating to convert them to functional electrochromic devices. In one embodiment, the heating is part of an MTCC.
Another embodiment is an electrochromic device including: (a) an electrochromic layer including an electrochromic material, and (b) a counter electrode layer including a counter electrode material, wherein the device does not contain a compositionally homogeneous layer of electrically insulating, ion conducting material between the electrochromic layer and the counter electrode layer. In one embodiment, the electrochromic material is tungsten oxide, the counter electrode material is nickel tungsten oxide, and between the electrochromic layer and the counter electrode layer is an interfacial region including a mixture of lithium tungstate and at least one of tungsten oxide and nickel tungsten oxide. In another embodiment, the electrochromic layer is between about 300 nm and about 500 nm thick; the interfacial region is between about 10 nm and about 150 nm thick, and the counter electrode layer is between about 150 nm and about 300 nm thick.
Optical density is used to determine endpoints during fabrication of the electrochromic device. Starting at the origin of the graph, optical density is measured as the EC layer, WO3, is deposited on the substrate (glass+TCO). The optical density of the glass substrate has a baseline value optical density of about 0.07 (absorbance units). The optical density increases from that point as the EC layer builds, because tungsten oxide, although substantially transparent, absorbs some visible light. For a desired thickness of the tungsten oxide layer about 550 nm thick, as described above, the optical density rises to about 0.2. After deposition of the tungsten oxide EC layer, lithium is sputtered on the EC layer as indicated by the first time period denoted “Li.” During this period, the optical density increases along a curve further to about 0.4, indicating that the blind charge of the tungsten oxide has been satisfied, as tungsten oxide colors as lithium is added. The time period denoted “NiWO” indicates deposition of the NiWO layer, during which the optical density increases because NiWO is colored. The optical density increases further during NiWO deposition from about 0.4 to about 0.9 for the addition of a NiWO layer about 230 nm thick. Note that some lithium may diffuse from the EC layer to the CE layer as the NiWO is deposited. This serves to maintain the optical density at a relatively lower value during the NiWO deposition, or at least during the initial phase of the deposition.
The second time period denoted “Li” indicates addition of lithium to the NiWO EC layer. The optical density decreases from about 0.9 to about 0.4 during this phase because lithiation of the NiWO bleaches the NiWO. Lithiation is carried out until the NiWO is bleached, including a local minima at about 0.4 optical density. The optical density bottoms out at about 0.4 because the WO3 layer is still lithiated and accounts for the optical density. Next, as indicated by time period “extra Li” additional lithium is sputtered onto the NiWO layer, in this example about 10% additional lithium as compared to that added to the NiWO to bleach it. During this phase the optical density increases slightly. Next the indium tin oxide TCO is added, as indicated by “ITO” in the graph. Again, the optical density continues to rise slightly during formation of the indium tin oxide layer, to about 0.6. Next, as indicated by time period denoted “MSTCC” the device is heated to about 250° C., for about 15 minutes under Ar, and then about 5 minutes under 02. Then the device is annealed in air at about 300° C. for about 30 minutes. During this time, the optical density decreases to about 0.4. Thus optical density is a useful tool for fabricating devices of the invention, for example for determining layer thickness based on material deposited and morphology, and especially for titrating lithium onto the various layers for satisfying blind charge and/or reaching a bleached state.
Although the foregoing invention has been described in some detail to facilitate understanding, the described embodiments are to be considered illustrative and not limiting. It will be apparent to one of ordinary skill in the art that certain changes and modifications can be practiced within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3840286 | Kiss | Oct 1974 | A |
3971624 | Bruesch et al. | Jul 1976 | A |
4009935 | Faughnan et al. | Mar 1977 | A |
4193670 | Giglia et al. | Mar 1980 | A |
4264150 | Yano et al. | Apr 1981 | A |
4293194 | Takahashi | Oct 1981 | A |
4297006 | Bissar | Oct 1981 | A |
4365870 | Morita et al. | Dec 1982 | A |
4396253 | Kuwagaki et al. | Aug 1983 | A |
4482216 | Hashimoto | Nov 1984 | A |
4523811 | Ota | Jun 1985 | A |
4561729 | Heinz et al. | Dec 1985 | A |
4832463 | Goldner et al. | May 1989 | A |
4851095 | Scobey et al. | Jul 1989 | A |
4923289 | Demiryont | May 1990 | A |
4938571 | Cogan et al. | Jul 1990 | A |
5019420 | Rauh | May 1991 | A |
5124832 | Greenberg et al. | Jun 1992 | A |
5130841 | Demiryont | Jul 1992 | A |
5138481 | Demiryont | Aug 1992 | A |
5142406 | Lampert et al. | Aug 1992 | A |
5168003 | Proscia | Dec 1992 | A |
5209980 | Spindler | May 1993 | A |
5216536 | Agrawal et al. | Jun 1993 | A |
5657150 | Kallman et al. | Aug 1997 | A |
5659417 | Van Dine et al. | Aug 1997 | A |
5666771 | Macquart et al. | Sep 1997 | A |
5668663 | Varaprasad et al. | Sep 1997 | A |
5699192 | Van Dine et al. | Dec 1997 | A |
5724175 | Hichwa et al. | Mar 1998 | A |
5724177 | Ellis, Jr. et al. | Mar 1998 | A |
5754329 | Coleman | May 1998 | A |
5757537 | Ellis, Jr. et al. | May 1998 | A |
5814195 | Lehan et al. | Sep 1998 | A |
5831760 | Hashimoto et al. | Nov 1998 | A |
5847858 | Krings et al. | Dec 1998 | A |
5859723 | Jodicke et al. | Jan 1999 | A |
5910854 | Varaprasad | Jun 1999 | A |
6020987 | Baumann et al. | Feb 2000 | A |
6178034 | Allemand | Jan 2001 | B1 |
6185034 | Nakamura et al. | Feb 2001 | B1 |
6211995 | Azens et al. | Apr 2001 | B1 |
6266177 | Allemand et al. | Jul 2001 | B1 |
6277523 | Giron | Aug 2001 | B1 |
6337758 | Beteille et al. | Jan 2002 | B1 |
6515787 | Westfall et al. | Feb 2003 | B1 |
6529308 | Beteille et al. | Mar 2003 | B2 |
6559411 | Borgeson et al. | May 2003 | B2 |
6791737 | Giron | Sep 2004 | B2 |
6791738 | Reynolds et al. | Sep 2004 | B2 |
6822778 | Westfall et al. | Nov 2004 | B2 |
6856444 | Ingalls et al. | Feb 2005 | B2 |
6859297 | Lee et al. | Feb 2005 | B2 |
6919530 | Borgeson et al. | Jul 2005 | B2 |
6940628 | Giron | Sep 2005 | B2 |
7099062 | Azens et al. | Aug 2006 | B2 |
7193763 | Beteille et al. | Mar 2007 | B2 |
7230748 | Giron et al. | Jun 2007 | B2 |
7265891 | Demiryont | Sep 2007 | B1 |
7277215 | Greer | Oct 2007 | B2 |
7372610 | Burdis et al. | May 2008 | B2 |
7531101 | Beteille | May 2009 | B2 |
7564611 | Jang et al. | Jul 2009 | B2 |
7593154 | Burdis et al. | Sep 2009 | B2 |
7604717 | Beteille et al. | Oct 2009 | B2 |
7646526 | Wang et al. | Jan 2010 | B1 |
7679810 | Fuss et al. | Mar 2010 | B2 |
7704555 | Demiryont | Apr 2010 | B2 |
7830585 | Widjaja et al. | Nov 2010 | B2 |
7869114 | Valentin et al. | Jan 2011 | B2 |
7894120 | Valentin et al. | Feb 2011 | B2 |
8004744 | Burdis et al. | Aug 2011 | B2 |
8031389 | Wang et al. | Oct 2011 | B2 |
8168265 | Kwak et al. | May 2012 | B2 |
8228592 | Wang et al. | Jul 2012 | B2 |
8300298 | Wang et al. | Oct 2012 | B2 |
8432603 | Wang et al. | Apr 2013 | B2 |
8582193 | Wang et al. | Nov 2013 | B2 |
8638487 | Veerasamy | Jan 2014 | B2 |
8687261 | Gillaspie et al. | Apr 2014 | B2 |
8749868 | Wang et al. | Jun 2014 | B2 |
8758575 | Wang et al. | Jun 2014 | B2 |
8764950 | Wang et al. | Jul 2014 | B2 |
8764951 | Wang et al. | Jul 2014 | B2 |
8773747 | Ferreira et al. | Jul 2014 | B2 |
8995041 | Weir et al. | Mar 2015 | B2 |
9007674 | Kailasam et al. | Apr 2015 | B2 |
9116409 | Sun et al. | Aug 2015 | B1 |
9140951 | Wang et al. | Sep 2015 | B2 |
9164346 | Wang et al. | Oct 2015 | B2 |
9261751 | Pradhan et al. | Feb 2016 | B2 |
9334557 | Neudecker et al. | May 2016 | B2 |
9429809 | Kailasam et al. | Aug 2016 | B2 |
9454053 | Strong et al. | Sep 2016 | B2 |
9477129 | Kozlowski et al. | Oct 2016 | B2 |
9581875 | Burdis | Feb 2017 | B2 |
9664974 | Kozlowski et al. | May 2017 | B2 |
9671664 | Pradhan et al. | Jun 2017 | B2 |
9720298 | Wang et al. | Aug 2017 | B2 |
9759975 | Wang et al. | Sep 2017 | B2 |
9904138 | Kailasam et al. | Feb 2018 | B2 |
10054833 | Kailasam et al. | Aug 2018 | B2 |
10088729 | Wang et al. | Oct 2018 | B2 |
10152762 | Wu et al. | Dec 2018 | B2 |
10156762 | Gillaspie et al. | Dec 2018 | B2 |
10162240 | Rozbicki | Dec 2018 | B2 |
10185197 | Pradhan et al. | Jan 2019 | B2 |
10228601 | Gillaspie et al. | Mar 2019 | B2 |
10254615 | Kailasam et al. | Apr 2019 | B2 |
10261381 | Pradhan et al. | Apr 2019 | B2 |
10288969 | Kailasam et al. | May 2019 | B2 |
10345671 | Gillaspie et al. | Jul 2019 | B2 |
10585321 | Gillaspie et al. | Mar 2020 | B2 |
10591765 | Nakano et al. | Mar 2020 | B2 |
10591795 | Gillaspie et al. | Mar 2020 | B2 |
10591797 | Wang et al. | Mar 2020 | B2 |
10599001 | Wang et al. | Mar 2020 | B2 |
10663830 | Pradhan et al. | May 2020 | B2 |
10684523 | Gillaspie et al. | Jun 2020 | B2 |
10690987 | Gillaspie et al. | Jun 2020 | B2 |
10852613 | Pradhan et al. | Dec 2020 | B2 |
10877348 | Kang et al. | Dec 2020 | B2 |
10996533 | Pradhan et al. | May 2021 | B2 |
11187954 | Rozbicki et al. | Nov 2021 | B2 |
11189954 | Kwon et al. | Nov 2021 | B2 |
11327382 | Gillaspie et al. | May 2022 | B2 |
11370699 | Gillaspie et al. | Jun 2022 | B2 |
11409177 | Gillaspie et al. | Aug 2022 | B2 |
11422426 | Gillaspie et al. | Aug 2022 | B2 |
11440838 | Pradhan et al. | Sep 2022 | B2 |
11525181 | Wang et al. | Dec 2022 | B2 |
11592722 | Wang et al. | Feb 2023 | B2 |
11635665 | Pradhan et al. | Apr 2023 | B2 |
20020041443 | Varaprasad et al. | Apr 2002 | A1 |
20030010957 | Haering et al. | Jan 2003 | A1 |
20030031928 | Beteille et al. | Feb 2003 | A1 |
20030156313 | Serra et al. | Aug 2003 | A1 |
20040150867 | Lee et al. | Aug 2004 | A1 |
20050002081 | Beteille et al. | Jan 2005 | A1 |
20050147825 | Arnaud et al. | Jul 2005 | A1 |
20050259310 | Giri et al. | Nov 2005 | A1 |
20060105103 | Hartig | May 2006 | A1 |
20060209383 | Burdis et al. | Sep 2006 | A1 |
20070008603 | Sotzing et al. | Jan 2007 | A1 |
20070008605 | Garg et al. | Jan 2007 | A1 |
20070097481 | Burdis et al. | May 2007 | A1 |
20070292606 | Demiryont | Dec 2007 | A1 |
20080213477 | Zindel et al. | Sep 2008 | A1 |
20080304130 | Nguyen | Dec 2008 | A1 |
20080304131 | Nguyen | Dec 2008 | A1 |
20090057137 | Pitts et al. | Mar 2009 | A1 |
20090285978 | Burdis et al. | Nov 2009 | A1 |
20090304912 | Kwak et al. | Dec 2009 | A1 |
20090323156 | Shin et al. | Dec 2009 | A1 |
20090323158 | Wang et al. | Dec 2009 | A1 |
20100007937 | Widjaja et al. | Jan 2010 | A1 |
20100079844 | Kurman et al. | Apr 2010 | A1 |
20100103496 | Schwendeman et al. | Apr 2010 | A1 |
20100165440 | Nguyen et al. | Jul 2010 | A1 |
20100243427 | Kozlowski et al. | Sep 2010 | A1 |
20100245973 | Wang et al. | Sep 2010 | A1 |
20110013254 | Widjaja et al. | Jan 2011 | A1 |
20110043885 | Lamine et al. | Feb 2011 | A1 |
20110043886 | Jeon et al. | Feb 2011 | A1 |
20110051220 | Lee | Mar 2011 | A1 |
20110051221 | Veerasamy | Mar 2011 | A1 |
20110151283 | Gillaspie et al. | Jun 2011 | A1 |
20110211247 | Kozlowski et al. | Sep 2011 | A1 |
20110249314 | Wang et al. | Oct 2011 | A1 |
20110266137 | Wang et al. | Nov 2011 | A1 |
20110266138 | Wang et al. | Nov 2011 | A1 |
20110267674 | Wang et al. | Nov 2011 | A1 |
20110267675 | Wang et al. | Nov 2011 | A1 |
20110297535 | Higdon et al. | Dec 2011 | A1 |
20110299149 | Park et al. | Dec 2011 | A1 |
20120181167 | Jiang et al. | Jul 2012 | A1 |
20120200908 | Bergh et al. | Aug 2012 | A1 |
20120218621 | Kwak et al. | Aug 2012 | A1 |
20120275008 | Pradhan et al. | Nov 2012 | A1 |
20120276734 | van Mol et al. | Nov 2012 | A1 |
20130003157 | Wang et al. | Jan 2013 | A1 |
20130016417 | Veerasamy | Jan 2013 | A1 |
20130101751 | Berland et al. | Apr 2013 | A1 |
20130182307 | Gillaspie et al. | Jul 2013 | A1 |
20130201545 | Frey et al. | Aug 2013 | A1 |
20130270105 | Wang et al. | Oct 2013 | A1 |
20130286459 | Burdis et al. | Oct 2013 | A1 |
20140022621 | Kailasam et al. | Jan 2014 | A1 |
20140177027 | Wang et al. | Jun 2014 | A1 |
20140204444 | Choi et al. | Jul 2014 | A1 |
20140204445 | Choi et al. | Jul 2014 | A1 |
20140204446 | Choi et al. | Jul 2014 | A1 |
20140204447 | Choi et al. | Jul 2014 | A1 |
20140204448 | Bergh et al. | Jul 2014 | A1 |
20140205746 | Choi et al. | Jul 2014 | A1 |
20140205748 | Choi et al. | Jul 2014 | A1 |
20140313561 | Wang et al. | Oct 2014 | A1 |
20140329006 | Bhatnagar et al. | Nov 2014 | A1 |
20150131140 | Kailasam et al. | May 2015 | A1 |
20150362763 | Wheeler et al. | Dec 2015 | A1 |
20150370139 | Wang et al. | Dec 2015 | A1 |
20160011480 | Pradhan et al. | Jan 2016 | A1 |
20160026055 | Choi et al. | Jan 2016 | A1 |
20160209722 | Wang et al. | Jul 2016 | A1 |
20170003564 | Gillaspie et al. | Jan 2017 | A1 |
20170097552 | Pradhan et al. | Apr 2017 | A1 |
20170176832 | Pradhan et al. | Jun 2017 | A1 |
20170184937 | Wang et al. | Jun 2017 | A1 |
20170255076 | Gillaspie et al. | Sep 2017 | A1 |
20170299933 | Kailasam et al. | Oct 2017 | A1 |
20170329200 | Wang et al. | Nov 2017 | A1 |
20170357135 | Gillaspie et al. | Dec 2017 | A1 |
20170371221 | Gillaspie et al. | Dec 2017 | A1 |
20180052374 | Wang et al. | Feb 2018 | A1 |
20180173071 | Mathew et al. | Jun 2018 | A1 |
20180203320 | Kailasam et al. | Jul 2018 | A1 |
20180231858 | Kailasam et al. | Aug 2018 | A1 |
20190064623 | Gillaspie et al. | Feb 2019 | A1 |
20190107763 | Gillaspie et al. | Apr 2019 | A1 |
20190113819 | Pradhan et al. | Apr 2019 | A1 |
20190171078 | Pradhan et al. | Jun 2019 | A1 |
20190171079 | Gillaspie et al. | Jun 2019 | A1 |
20190187531 | Pradhan et al. | Jun 2019 | A1 |
20190302561 | Rozbicki et al. | Oct 2019 | A1 |
20200050072 | Kozlowski et al. | Feb 2020 | A1 |
20200096830 | Sarrach et al. | Mar 2020 | A1 |
20200124933 | Kozlowski et al. | Apr 2020 | A1 |
20200133088 | Gillaspie et al. | Apr 2020 | A1 |
20200166817 | Wang et al. | May 2020 | A1 |
20200174332 | Gillaspie et al. | Jun 2020 | A1 |
20200174335 | Wang et al. | Jun 2020 | A1 |
20200257178 | Pradhan et al. | Aug 2020 | A1 |
20200272014 | Gillaspie et al. | Aug 2020 | A1 |
20200278588 | Pradhan et al. | Sep 2020 | A1 |
20210055618 | Pradhan et al. | Feb 2021 | A1 |
20210191215 | Pradhan et al. | Jun 2021 | A1 |
20210269706 | Meshcheryakov et al. | Sep 2021 | A1 |
20220055943 | Kozlowski et al. | Feb 2022 | A1 |
20220066274 | Rozbicki | Mar 2022 | A1 |
20220204398 | Gillaspie et al. | Jun 2022 | A1 |
20220260885 | Gillaspie et al. | Aug 2022 | A1 |
20220308416 | Rozbicki et al. | Sep 2022 | A1 |
20220334442 | Gillaspie et al. | Oct 2022 | A1 |
20220350217 | Gillaspie et al. | Nov 2022 | A1 |
20220388900 | Pradhan et al. | Dec 2022 | A1 |
20230008603 | Gillaspie et al. | Jan 2023 | A1 |
20230074776 | Wang et al. | Mar 2023 | A1 |
20230099188 | Kozlowski et al. | Mar 2023 | A1 |
20230144179 | Wang et al. | May 2023 | A1 |
20230205032 | Pradhan et al. | Jun 2023 | A1 |
20230296953 | Rozbicki et al. | Sep 2023 | A1 |
Number | Date | Country |
---|---|---|
2014210572 | Jan 2017 | AU |
2019229399 | Dec 2020 | AU |
2015353823 | Feb 2021 | AU |
1207182 | Feb 1999 | CN |
1245540 | Feb 2000 | CN |
1350048 | May 2002 | CN |
1476548 | Feb 2004 | CN |
1492274 | Apr 2004 | CN |
1541420 | Oct 2004 | CN |
101188886 | May 2005 | CN |
1688923 | Oct 2005 | CN |
1710481 | Dec 2005 | CN |
1738885 | Feb 2006 | CN |
1739057 | Feb 2006 | CN |
101310217 | Nov 2008 | CN |
101322069 | Dec 2008 | CN |
100462830 | Feb 2009 | CN |
101377599 | Mar 2009 | CN |
101419374 | Apr 2009 | CN |
101634790 | Jan 2010 | CN |
101833932 | Sep 2010 | CN |
101930142 | Dec 2010 | CN |
102099736 | Jun 2011 | CN |
102230172 | Nov 2011 | CN |
102376379 | Mar 2012 | CN |
102388340 | Mar 2012 | CN |
102388341 | Mar 2012 | CN |
102414610 | Apr 2012 | CN |
102455560 | May 2012 | CN |
102478739 | May 2012 | CN |
102540612 | Jul 2012 | CN |
102576818 | Jul 2012 | CN |
102666778 | Sep 2012 | CN |
102934009 | Feb 2013 | CN |
102998870 | Mar 2013 | CN |
103080825 | May 2013 | CN |
103135306 | Jun 2013 | CN |
103168269 | Jun 2013 | CN |
103838050 | Jun 2014 | CN |
104040417 | Sep 2014 | CN |
104321497 | Jan 2015 | CN |
104364707 | Feb 2015 | CN |
104730796 | Jun 2015 | CN |
1928685 | Mar 2017 | CN |
106773436 | May 2017 | CN |
107111197 | Aug 2017 | CN |
0497616 | May 1992 | EP |
0497616 | Jul 1999 | EP |
1918412 | May 2008 | EP |
S4834547 | May 1973 | JP |
S50-50892 | May 1975 | JP |
S55-124440 | Sep 1980 | JP |
S57-81242 | May 1982 | JP |
S58-33223 | Feb 1983 | JP |
S58-139128 | Aug 1983 | JP |
S58-163921 | Sep 1983 | JP |
S59-040625 | Mar 1984 | JP |
S60-066238 | Apr 1985 | JP |
S60-078423 | May 1985 | JP |
S60-078424 | May 1985 | JP |
S60-202429 | Oct 1985 | JP |
H03-500096 | Jan 1991 | JP |
H04-211227 | Aug 1992 | JP |
H05-182512 | Jul 1993 | JP |
H09-152634 | Jun 1997 | JP |
H10-501847 | Feb 1998 | JP |
H11-93827 | Apr 1999 | JP |
2004205628 | Jul 2004 | JP |
2004-309926 | Nov 2004 | JP |
2005-091788 | Apr 2005 | JP |
2006-235632 | Sep 2006 | JP |
2007-108750 | Apr 2007 | JP |
2008-026605 | Feb 2008 | JP |
2008-197679 | Aug 2008 | JP |
2008-216744 | Sep 2008 | JP |
2009-009145 | Jan 2009 | JP |
2010-509720 | Mar 2010 | JP |
2012078774 | Apr 2012 | JP |
2012-523018 | Sep 2012 | JP |
2012523019 | Sep 2012 | JP |
2013-525860 | Jun 2013 | JP |
2014052510 | Mar 2014 | JP |
2015128055 | Jul 2015 | JP |
5868726 | Feb 2016 | JP |
2016062696 | Apr 2016 | JP |
5955414 | Jul 2016 | JP |
2017538965 | Dec 2017 | JP |
10-2006-0092362 | Aug 2006 | KR |
10-2008-0051280 | Jun 2008 | KR |
20110100457 | Sep 2011 | KR |
20130112693 | Oct 2013 | KR |
10-2014-0068026 | Jun 2014 | KR |
101535100 | Jul 2015 | KR |
20170112183 | Oct 2017 | KR |
10-2010733 | Aug 2019 | KR |
102010755 | Aug 2019 | KR |
2117972 | Aug 1998 | RU |
490391 | Jun 2002 | TW |
200417280 | Sep 2004 | TW |
M338359 | Aug 2008 | TW |
200839402 | Oct 2008 | TW |
201003270 | Jan 2010 | TW |
201211664 | Mar 2012 | TW |
201222119 | Jun 2012 | TW |
201435464 | Sep 2014 | TW |
201439371 | Oct 2014 | TW |
WO-9519588 | Jul 1995 | WO |
WO9847613 | Oct 1998 | WO |
WO-03017387 | Feb 2003 | WO |
WO2004087985 | Oct 2004 | WO |
WO2008055824 | May 2008 | WO |
WO2008154517 | Dec 2008 | WO |
WO2009000547 | Dec 2008 | WO |
WO2009029111 | Mar 2009 | WO |
WO2009115424 | Sep 2009 | WO |
WO-2009108184 | Sep 2009 | WO |
WO2009148861 | Dec 2009 | WO |
WO2010120537 | Oct 2010 | WO |
WO2010147494 | Dec 2010 | WO |
WO-2011137080 | Nov 2011 | WO |
WO2012138281 | Oct 2012 | WO |
WO2013054367 | Apr 2013 | WO |
WO2014025876 | Feb 2014 | WO |
WO2014025900 | Feb 2014 | WO |
WO2014113795 | Jul 2014 | WO |
WO2014113796 | Jul 2014 | WO |
WO2014113801 | Jul 2014 | WO |
WO-2014201287 | Dec 2014 | WO |
WO2015168166 | Nov 2015 | WO |
WO-2016039157 | Mar 2016 | WO |
WO2017011272 | Jan 2017 | WO |
WO2020247831 | Dec 2020 | WO |
Entry |
---|
Preliminary Amendment filed Aug. 3, 2018 in U.S. Appl. No. 15/916,142. |
Preliminary Amendment filed Jul. 6, 2020 for U.S. Appl. No. 16/859,856. |
Preliminary Amendment filed Jul. 29, 2020 for U.S. Appl. No. 16/879,255. |
U.S. Notice of Allowance dated Dec. 4, 2017 for U.S. Appl. No. 15/587,114. |
U.S. Notice of Allowance dated Mar. 26, 2018 for U.S. Appl. No. 15/587,114. |
U.S. Office Action dated Sep. 11, 2017 for U.S. Appl. No. 15/587,114. |
U.S. Office Action dated Aug. 12, 2019 in U.S. Appl. No. 15/916,142. |
U.S. Final Office Action dated Jan. 31, 2020 in U.S. Appl. No. 15/916,142. |
U.S. Office Action dated Jun. 16, 2020 in U.S. Appl. No. 15/916,142. |
U.S. Final Office Action dated Dec. 14, 2020 in U.S. Appl. No. 15/916,142. |
U.S. Notice of Allowance dated Nov. 28, 2018 for U.S. Appl. No. 15/953,327. |
U.S. Office Action dated Jul. 10, 2018 for U.S. Appl. No. 15/953,327. |
U.S. Office Action dated Dec. 31, 2018 in U.S. Appl. No. 15/795,843. |
U.S. Notice of Allowance dated Jul. 17, 2019 in U.S. Appl. No. 15/795,843. |
U.S. Notice of Allowance dated Dec. 3, 2019 in U.S. Appl. No. 15/795,843. |
U.S. Notice of Allowance dated Oct. 31, 2018 in U.S. Appl. No. 15/441,130. |
U.S. Office Action dated Apr. 5, 2018 in U.S. Appl. No. 15/441,130. |
U.S. Notice of Allowance dated Dec. 10, 2020 in U.S. Appl. No. 16/205,084. |
U.S. Notice of Allowance dated Apr. 12, 2017 in U.S. Appl. No. 15/004,794. |
U.S. Notice of Allowance dated Aug. 9, 2017 in U.S. Appl. No. 15/004,794. |
U.S. Office Action dated Dec. 30, 2016 in U.S. Appl. No. 15/004,794. |
U.S. Office Action dated Jun. 27, 2018 in U.S. Appl. No. 15/612,928. |
U.S. Office Action dated Jan. 23, 2019 in U.S. Appl. No. 15/612,928. |
U.S. Notice of Allowance dated Jul. 26, 2019 in U.S. Appl. No. 15/612,928. |
U.S. Notice of Allowance dated Dec. 19, 2019 in U.S. Appl. No. 15/612,928. |
U.S. Notice of Allowance dated Jan. 3, 2019 for U.S. Appl. No. 15/340,853. |
U.S. Office Action dated Sep. 20, 2018 for U.S. Appl. No. 15/340,853. |
U.S. Notice of Allowance dated Sep. 25, 2018 for U.S. Appl. No. 15/507,734. |
U.S. Office Action dated May 15, 2018 for U.S. Appl. No. 15/507,734. |
U.S. Notice of Allowance dated Mar. 11, 2019 for U.S. Appl. No. 15/507,734. |
U.S. Notice of Allowance dated Sep. 24, 2018 for U.S. Appl. No. 15/527,194. |
U.S. Office Action dated May 15, 2018 for U.S. Appl. No. 15/527,194. |
U.S. Office Action dated Jul. 25, 2019 for U.S. Appl. No. 16/168,587. |
U.S. Notice of Allowance dated Oct. 18, 2018 for U.S. Appl. No. 15/526,969. |
U.S. Notice of Allowance (Corrected) dated Nov. 28, 2018 for U.S. Appl. No. 15/526,969. |
U.S. Office Action dated May 25, 2018 for U.S. Appl. No. 15/526,969. |
U.S. Office Action dated Feb. 25, 2019 for U.S. Appl. No. 15/204,868. |
U.S. Notice of Allowance dated Nov. 21, 2019 for U.S. Appl. No. 15/204,868. |
U.S. Office Action dated Jul. 25, 2019 in U.S. Appl. No. 16/284,876. |
U.S. Notice of Allowance dated Jan. 23, 2020 for U.S. Appl. No. 16/284,876. |
U.S. Office Action dated Jul. 25, 2019 in U.S. Appl. No. 16/088,024. |
U.S. Final Office Action dated Jan. 6, 2020 in U.S. Appl. No. 16/088,024. |
U.S. Notice of Allowance dated Aug. 19, 2020 U.S. Appl. No. 16/088,024. |
U.S. Office Action dated Jul. 25, 2019 in U.S. Appl. No. 16/204,540. |
U.S. Office Action dated Jul. 10, 2019 in U.S. Appl. No. 16/250,738. |
U.S. Notice of Allowance dated Nov. 6, 2019 in U.S. Appl. No. 16/250,738. |
U.S. Notice of Allowability (corrected) dated Jan. 8, 2020 in U.S. Appl. No. 16/250,738. |
U.S. Notice of Allowance dated Feb. 5, 2020 in U.S. Appl. No. 16/204,540. |
U.S. Notice of Allowance dated Feb. 12, 2020 in U.S. Appl. No. 16/168,587. |
International Search Report and Written Opinion dated Jul. 16, 2015 in PCT/US15/028899. |
International Preliminary Report on Patentability dated Nov. 17, 2016 in PCT/US15/028899. |
International Search Report and Written Opinion dated Aug. 26, 2015 in PCT/US15/28067. |
International Preliminary Report on Patentability dated Nov. 17, 2016 in PCT/US15/28067. |
International Search Report and Written Opinion (ISA/KR) dated Jul. 7, 2017 in PCT/US17/24120. |
International Preliminary Report on Patentability dated Oct. 4, 2018 in PCT/US17/24120. |
European Search Report (Extended) dated Jan. 29, 2018 in EP Application No. 15837472.8. |
European Search Report (Extended) dated May 26, 2020 in EP Application No. 19206961.5. |
International Search Report and Written Opinion dated Mar. 18, 2016 in PCT/US15/47891. |
International Preliminary Report on Patentability dated Mar. 16, 2017 in PCT/US15/47891. |
Chinese Office Action dated Jan. 22, 2020 in CN Application No. 201580053092.2. |
International Search Report and Written Opinion dated Mar. 7, 2016 in PCT/US15/61995. |
International Preliminary Report on Patentability dated Jun. 8, 2017 in PCT/US15/61995. |
Australian Office Action dated Oct. 28, 2020 in AU Application No. 2015353823. |
Chinese Office Action dated Jan. 2, 2020 in CN Application No. 201580072326.8. |
Chinese Office Action dated Sep. 27, 2020 in CN Application No. 201580072326.8. |
Chinese Office Action dated Feb. 10, 2021 in CN Application No. 201580072326.8. |
European Office Action dated Mar. 13, 2020 in EP Application No. 15863517.7. |
International Search Report and Written Opinion dated Feb. 29, 2016 in PCT/US15/61668. |
International Preliminary Report on Patentability dated Jun. 8, 2017 in PCT/US15/61668. |
International Search Report and Written Opinion dated Oct. 18, 2016 in PCT/US16/41375. |
International Preliminary Report on Patentability dated Jan. 25, 2018 in PCT/US16/41375. |
European Search Report (Extended) dated Nov. 28, 2017 in EP Application No. 15785437.3. |
European Office Action dated Oct. 23, 2018 in EP Application No. 15785437.3. |
European Search Report (Extended) dated Mar. 30, 2020 in EP Application No. 20153706.5. |
European Office Action dated May 11, 2021 in EP Application No. 20153706.5. |
European Search Report (Extended) dated Dec. 1, 2017 in EP Application No. 15785891.1. |
Preliminary Amendment filed Jul. 13, 2020 for U.S. Appl. No. 15/931,359. |
European Search Report (Extended) dated May 2, 2018 in EP Application No. 15862207.6. |
European Search Report (Extended) dated May 24, 2018 in EP Application No. 15863517.7. |
European Search Report (Extended) dated Dec. 14, 2018 in EP Application No. 16824923.3. |
European Office Action dated May 3, 2021 in EP Application No. 16824923.3. |
Japanese Office Action dated May 7, 2020 in JP Application No. 2017-564044. |
Chinese Office Action dated Jun. 2, 2020 in CN Application No. 201680047325.2. |
Chinese Office Action dated Dec. 21, 2020 in CN Application No. 201680047325.2. |
Chinese Office Action dated Mar. 17, 2021 in CN Application No. 201680047325.2. |
Chinese Office Action dated Dec. 27, 2018 in CN Application No. 201580029451.0. |
Chinese Office Action dated Dec. 26, 2018 in CN Application No. 201580032579.2. |
Chinese Office Action dated Jul. 2, 2019 in CN Application No. 201580032579.2. |
Chinese Office Action dated Mar. 5, 2020 in CN Application No. 201580032579.2. |
Chinese Office Action dated Jul. 17, 2019 in CN Application No. 201580029451.0. |
Chinese Office Action dated Mar. 5, 2020 in CN Application No. 201580029451.0. |
Chinese Office Action dated Nov. 4, 2020 in CN Application No. 201580029451.0. |
European Office Action dated Oct. 10, 2019 in EP Application No. 15785891.1. |
Japanese Office Action dated Sep. 24, 2019 in JP Application No. 2017-527761. |
Japanese Office Action dated Sep. 23, 2020 in JP Application No. 2017-527761. |
Japanese Office Action dated Apr. 21, 2021 in JP Application No. 2017-527761. |
Russian Office Action dated Apr. 11, 2019 in RU Application No. 2017120233. |
Avendano, E. et al., “Electrochromic Nickel-Oxide-Based Films with Minimized Bleached-State Absorptance,” I 203rd Meeting of the Electrochemical Society, Electrochemical Society Proceedings vol. 2003-17, 2003, pp. 80-90. |
Hutchins, M.G. et al, “The electrochromic behavior of tin-nickel oxide,” Solar Energy Materials and Solar Cells, vol. 54, 1998, pp. 75-84. |
Green, Sara, “Electrochromic nickel-tungsten oxides: optical, electrochemical and structural characterization of sputter-deposited thin films in the whole composition range,” Dissertation, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 963, Uppsala University, Sweden, 2012. |
Arvizu, M.A. et al., “Electrochromic W1—x—yTixMoyO3 thin films made by sputter deposition: Large optical modulation, good cycling durability, and approximate color neutrality,” Chemistry of Materials [online, just accepted manuscript], Feb. 23, 2017, [retrieved on Feb. 24, 2017]. Retrieved from the internet: <http://pubs.acs.org> <DOI: 10.1021/acs.chemmater.6b05198>. |
Kondrachova, L. et al., “Cathodic electrodeposition of mixed molybdenum tungsten oxides from peroxo-polymolybdotungstate solutions”, Langmuir 2006, vol. 22, No. 25, Aug. 31, 2006, pp. 10490-10498 [doi:10.1021/1a061299n]. |
Pennisi, A. et al., “Electrochromic properties of tungsten-molybdenum oxide electrodes”, Solar Energy Materials and Solar Cells, vol. 28, No. 3, Dec. 1, 1992, vol. 28, No. 3, pp. 233-247 [doi:10.1016/0927-0248(92)90032-k]. |
U.S. Office Action, dated Apr. 26, 2012, issued in U.S. Appl. No. 12/772,055. |
U.S. Notice of Allowance, dated Sep. 18, 2012, issued in U.S. Appl. No. 12/772,055. |
U.S. Office Action dated Jan. 20, 2012 issued in U.S. Appl. No. 12/772,075. |
U.S. Office Action dated Aug. 16, 2012 issued in U.S. Appl. No. 12/772,075. |
U.S. Office Action dated Dec. 26, 2012 in U.S. Appl. No. 12/772,075. |
U.S. Notice of Allowance dated Jul. 10, 2013 in U.S. Appl. No. 12/772,075. |
U.S. Office Action dated Jun. 25, 2013 in U.S. Appl. No. 13/610,684. |
U.S. Notice of Allowance dated Jan. 21, 2014 in U.S. Appl. No. 13/610,684. |
U.S. Office Action dated Aug. 6, 2014 in U.S. Appl. No. 14/052,455. |
U.S. Notice of Allowance dated Jan. 22, 2015 in U.S. Appl. No. 14/052,455. |
U.S. Notice of Allowance dated May 11, 2015 in U.S. Appl. No. 14/052,455. |
U.S. Notice of Allowance dated May 28, 2015 in U.S. Appl. No. 14/209,993. |
U.S. Notice of Allowance dated Aug. 4, 2015 in U.S. Appl. No. 14/209,993. |
U.S. Office Action dated Jul. 28, 2016 in U.S. Appl. No. 14/841,511. |
U.S. Notice of Allowance dated Jan. 11, 2017 in U.S. Appl. No. 14/841,511. |
U.S. Notice of Allowance dated May 22, 2018 in U.S. Appl. No. 15/457,609. |
U.S. Office Action dated Oct. 25, 2011 issued in U.S. Appl. No. 13/166,537. |
U.S. Office Action dated Feb. 16, 2012 issued in U.S. Appl. No. 13/166,537. |
U.S. Notice of Allowance dated May 31, 2012 issued in U.S. Appl. No. 13/166,537. |
U.S. Notice of Allowance dated Feb. 14, 2014 for U.S. Appl. No. 13/627,798. |
U.S. Office Action dated Nov. 20, 2012 in U.S. Appl. No. 12/814,277. |
U.S. Final Office Action dated Jun. 27, 2013 in U.S. Appl. No. 12/814,277. |
U.S. Notice of Allowance dated Mar. 12, 2014 in U.S. Appl. No. 12/814,277. |
U.S. Office Action dated Nov. 20, 2012 in U.S. Appl. No. 12/814,279. |
U.S. Final Office Action dated Jun. 27, 2013 in U.S. Appl. No. 12/814,279. |
U.S. Notice of Allowance dated Mar. 17, 2014 in U.S. Appl. No. 12/814,279. |
U.S. Office Action dated Jan. 14, 2015 in U.S. Appl. No. 13/462,725. |
U.S. Final Office Action dated Jul. 23, 2015 in U.S. Appl. No. 13/462,725. |
U.S. Notice of Allowance dated Nov. 25, 2015 in U.S. Appl. No. 13/462,725. |
U.S. Office Action dated Aug. 12, 2016 in U.S. Appl. No. 14/683,541. |
U.S. Notice of Allowance dated Jan. 27, 2017 in U.S. Appl. No. 14/683,541. |
U.S. Notice of Allowance (corrected) dated Feb. 27, 2017 in U.S. Appl. No. 14/683,541. |
Taiwanese Office Action dated May 26, 2016 in TW Application No. 100115201. |
Taiwanese Decision of Rejection dated Feb. 24, 2017 in TW Application No. 100115201. |
Taiwanese Office Action dated Dec. 7, 2018 in TW Application No. 106128807. |
Taiwanese Office Action dated Mar. 25, 2019 in TW Application No. 106128807. |
Taiwanese Office Action dated Mar. 12, 2021 in TW Application No. 108135570—needs translation of OA. |
Singapore Examination Report dated Nov. 5, 2013 in SG Application No. 201208018-0. |
Taiwanese Office Action dated Jul. 22, 2015 in TW Application No. 100115190. |
Taiwanese Office Action dated Jun. 1, 2016 in TW Application No. 104144317. |
Taiwanese Decision of Rejection dated Nov. 29, 2016 in TW Application No. 104144317. |
Taiwanese Office Action dated Oct. 12, 2018 in TW Application No. 104144317. |
Taiwanese Search Report dated Oct. 11, 2018 in TW Application No. 106118525. |
Taiwanese Allowance with Search Report dated Mar. 12, 2021 in TW Application No. 109123760—No Translation. |
Japanese Decision to Grant dated Mar. 16, 2021 in JP Application No. 2020-067107. |
International Preliminary Report on Patentability dated Nov. 15, 2012 in PCT/US2011/033906. |
International Search Report and Written Opinion, dated Sep. 14, 2011, issued in PCT/US2011/033906. |
Australian Examination Report dated Jan. 6, 2014 in AU Application No. 2011245431. |
Australian Examination Report dated Apr. 19, 2016 in AU Application No. 2014210572. |
Australian Examination Report dated Jun. 7, 2018 in AU Application No. 2017202249. |
Australian Examination Report dated Dec. 17, 2018 in AU Application No. 2017202249. |
Australian Examination Report dated Mar. 18, 2019 in AUu Application No. 2017202249. |
Australian Examination Report dated May 15, 2020 in AU Application No. 2019229399. |
Australian Examination Report dated Sep. 17, 2020 in AU Application No. 2019229399. |
Brazilian Office Action dated Sep. 24, 2019 in BR Application No. 1120120278916. |
Chinese Office Action dated Jan. 8, 2015 in CN Application No. CN201180027892.9. |
Chinese Office Action dated Aug. 31, 2015 in CN Application No. CN201180027892.9. |
Chinese Office Action dated Mar. 31, 2016 in CN Application No. CN201180027892.9. |
Chinese Office Action dated Aug. 28, 2018 in CN Application No. CN201610412630.9. |
Chinese Office Action dated Mar. 22, 2019 in CN Application No. CN201610412630.9. |
Chinese Office Action dated Apr. 1, 2020 in CN Application No. CN201610832436.6. |
Chinese Office Action dated Dec. 3, 2020 in CN Application No. CN201610832436.6. |
Chinese Allowance with Search Report dated May 8, 2021 in CN Application No. 201610832436.6—No Translation. |
European Search Report dated May 13, 2014 in EP Application No. 11775488.7. |
European Office Action dated Feb. 10, 2017 in EP Application No. 11775488.7. |
European Office Action dated Oct. 16, 2017 in EP Application No. 11775488.7. |
European Search Report (Extended) dated Apr. 17, 2020 in EP Application No. 20156430.9. |
Indian Office Action dated Jun. 19, 2018 in IN Application No. 3663/KOLNP/2012. |
Indian Hearing Notice dated Oct. 20, 2020 in in Application No. 3663/KOLNP/2012. |
Japanese Office Action dated Jan. 6, 2015 in JP Application No. JP2013-508130. |
Japanese Office Action dated Mar. 8, 2016 in JP Application No. JP2015-118553. |
Japanese Office Action dated Nov. 21, 2017 in JP Application No. JP2016-215029. |
Japanese Office Action dated Mar. 5, 2019 in JP Application No. JP2018-028971. |
Korean Office Action dated Feb. 28, 2017 in KR Application No. 10-20127031407. |
Korean Office Action dated Feb. 8, 2018 in KR Application No. 10-20187002491. |
Korean Office Action dated Oct. 30, 2018 in KR Application No. 10-20187030647. |
Korean Office Action dated Mar. 24, 2021 in KR Application No. 10-20217006423. |
Mexican Office Action dated Jun. 6, 2013 in MX Application No. MX/a/2012/012573. |
Russian Office Action dated Feb. 25, 2015 in RU Application No. 2012151304. |
Russian Office Action dated Mar. 12, 2019 in RU Application No. 2015148673. |
International Preliminary Report on Patentability, dated Nov. 15, 2012 in PCT/US2011/033822. |
International Search Report and Written Opinion, dated Jul. 7, 2011, issued in PCT/US2011/033822. |
Chinese Office Action dated Sep. 28, 2016 in CN Application No. 201380031908.2. |
Chinese Office Action dated Jun. 15, 2017 in CN Application No. 201380031908.2. |
Chinese Office Action dated Aug. 24, 2020 in CN Application No. 201810154035.9. |
Chinese Office Action dated Apr. 7, 2021 in CN Application No. 201810154035.9. |
European Search Report (Extended) dated Apr. 6, 2016 in EP Application No. 13785049.1. |
European Search Report (Partial Supplementary) dated Jan. 8, 2016 in EP Application No. 13785049.1. |
European Office Action dated May 7, 2019 in EP Application No. 13785049.1. |
EP Summons to Attend Oral Proceedings dated Apr. 28, 2020 in EP Application No. 13785049.1. |
International Preliminary Report on Patentability dated Nov. 13, 2014 in PCT/US2013/038481. |
International Search Report and Written Opinion, dated Aug. 14, 2013 in PCT/US2013/038481. |
International Search Report and Written Opinion dated Jul. 9, 2019 in PCT/US19/027931. |
International Preliminary Report on Patentability dated Nov. 5, 2020 in PCT/US19/027931. |
International Search Report and Written Opinion dated Sep. 21, 2020 in PCT/US2020/036440. |
Korean Office Action dated Sep. 28, 2020 in KR Application No. 10-20197024032. |
Taiwanese Office Action dated Aug. 26, 2019 in TW Application No. 108106923. |
Burdis, et al., “Technology Advancements to Lower Costs of Electrochromic Window Glazings”, SAGE Electronics, Inc., DE-PS26-06NT42764, Final Report, dated Apr. 2, 2010. |
Velux SageGlass Flyer, 2007, 4 pages. |
Hersh, H.N., “Mechanism of Electrochromism in WO3,” Applied Physics Letters, vol. 27, No. 12, Dec. 15, 1975, pp. 646-648. |
Yoshimura, et al., “Electrochromism in a Thin-Film Device Using Li2WO4 as an Li-Electrolyte”, Japanese Journal of Applied Physics, vol. 22, No. 1, Jan. 1983, pp. 152-156. |
Vink, et al., “Lithium Trapping at Excess Oxygen in Sputter-Deposited a-WO3 Films”, Japanese Journal of Applied Physics, vol. 8, No. 3, Feb. 1, 1999, pp. 1540-1544. |
AU Examination report dated Feb. 21, 2022, in Application No. AU2020294239. |
Australian Office Action dated Dec. 8, 2020 in AU Application No. 2016294343. |
Australian Office Action dated Feb. 19, 2021 in AU Application No. 2016294343. |
CA Office Action dated Nov. 10, 2021, in Application No. CA2968832. |
Chinese Decision of Rejection dated Jun. 2, 2021 in CN Application No. 201580072326.8. |
Chinese Notice of Allowance with Search Report dated Mar. 17, 2021 in CN Application No. 201680047325.2. |
Chinese Office Action dated Feb. 19, 2021 in CN Application No. 201580069923.5. |
Chinese Office Action dated Jan. 2, 2020 in CN Application No. 201580069923.5. |
Chinese Office Action dated Sep. 27, 2020 in CN Application No. 201580069923.5. |
Chinese Reexamination dated May 21, 2021 in CN Application No. 201580032579.2. |
CN Office Action dated Aug. 3, 2021, in CN Application No. 201810154035.9. |
CN Office Action dated Aug. 30, 2021, in CN Application No. 201580032579.2 with English translation. |
EP Office Action dated Feb. 11, 2022, in Application No. EP15863517.7. |
EP Summons to attend Oral Proceedings dated Oct. 18, 2021 in Application No. 15785891.1. |
European Extended Search Report dated Aug. 2, 2021 in EP Application No. 3872563. |
European Office Action dated Mar. 12, 2020 in EP Application No. 15862207.6. |
Extended European Search Report dated Aug. 2, 2021 for EP Application No. 21169812.1. |
IN Examination Report dated Oct. 12, 2021, in application No. IN201838043541. |
IN First Examination report dated on Aug. 26, 2021, in application No. IN201717044876. |
Indian Office Action dated Jun. 30, 2021 in IN Application No. 201737018863. |
International Preliminary Report on Patentability dated Dec. 16, 2021, in application No. PCT/US2020/036440. |
JP Office Action dated Aug. 3, 2021, in Application No. JP2017527761. |
JP Office Action dated Dec. 7, 2021, in Application No. JP20200207808. |
Korean Notice of Allowance & Search Reported dated May 26, 2021 in KR Application No. 10-2021-7006423. |
KR Office Action dated Jan. 14, 2022, in Application No. KR1020217042357 with English translation. |
KR Office Action dated Nov. 25, 2021, in Application No. KR1020177017239 with English translation. |
Preliminary Amendment filed Feb. 27, 2020 for U.S. Appl. No. 16/785,547. |
Russian Search Report dated Nov. 1, 2019 in RU Application No. 2018105193. |
Taiwanese Decision of Rejection dated Jul. 7, 2020 in TW Application No. 104139219. |
Taiwanese Office Action dated Feb. 18, 2020 in TW Application No. 105122100. |
Taiwanese Office Action dated Oct. 15, 2020 in TW Application No. 105122100. |
Taiwanese Office Action dated Sep. 20, 2019 in TW Application No. 104139219, with summary translation. |
TW Office Action dated Nov. 24, 2021, in Application No. TW105122100 with English translation. |
TW Office Action dated Nov. 24, 2021 in Application No. TW110121767 with English translation. |
U.S. Corrected Notice of Allowability dated Jan. 25, 2022, in U.S. Appl. No. 16/785,547. |
U.S. Final Office Action dated Mar. 7, 2022, in U.S. Appl. No. 15/916,142. |
U.S. Non Final Office Action dated Jan. 13, 2022 in U.S. Appl. No. 16/879,255. |
U.S. Non-Final Office action dated Oct. 4, 2021, in U.S. Appl. No. 16/721,655. |
U.S. Non-Final Office action dated Oct. 4, 2021, in U.S. Appl. No. 16/859,856. |
U.S. Non-Final Office Action dated Oct. 15, 2021 in U.S. Appl. No. 15/931,359. |
U.S. Notice of Allowance dated Dec. 24, 2021 in U.S. Appl. No. 16/785,547. |
U.S. Notice of Allowance dated Feb. 23, 2022, in U.S. Appl. No. 16/721,655. |
U.S. Notice of Allowance dated Jan. 26, 2022, in U.S. Appl. No. 16/859,856. |
U.S. Notice of Allowance dated Jul. 22, 2021 in U.S. Appl. No. 16/384,822. |
U.S. Office Action dated Aug. 2, 2021 in U.S. Appl. No. 16/785,547. |
U.S. Office Action dated Jul. 23, 2021 in U.S. Appl. No. 15/916,142. |
U.S. Restriction Requirement dated Feb. 17, 2022 in U.S. Appl. No. 16/774,621. |
AU Examination report dated Aug. 17, 2022, in Application No. AU2020294239. |
AU Examination report dated Jul. 5, 2022, in Application No. AU2020294239. |
AU Office Action dated Jun. 23, 2022 in Application No. AU20210202495. |
CA Office Action dated Jul. 14, 2023, in Application No. CA2968832. |
CA Office Action dated Jun. 9, 2022, in Application No. CA2992423. |
Chinese Allowance with Search Report dated May 8, 2021 in CN Application No. 201610832436.6 with English translation. |
Chinese Notice of Allowance with Search Report dated Jul. 15, 2021 in CN Application No. 201680047325.2 with English translation. |
CN Office Action dated Apr. 3, 2023, in application No. 20158069923.5 with English translation. |
CN Office Action dated Aug. 15, 2023, in Application No. CN202110747487.X with English translation. |
CN Office Action dated Jul. 31, 2023, in application No. CN202210140306.1 with English translation. |
CN Office Action dated Jun. 9, 2023, in CN Application No. 201810154035.9 with English Translation. |
EP Office Action dated Mar. 16, 2022, in Application No. EP15862207.6. |
Extended European search report dated Oct. 31, 2022, in Application No. EP22190639.9. |
IN Office Action dated Aug. 26, 2022, in Application No. IN202037048424. |
JP Office Action dated Apr. 4, 2023 in Application No. JP2021-013861 with English translation. |
JP Office Action dated Dec. 7, 2021, in Application No. JP20200207808 with English translation. |
JP Office Action dated Feb. 7, 2023 in Application No. JP2022-112947 with English translation. |
JP Office Action dated Jan. 4, 2023, in Application No. JP2020-559396 with English translation. |
JP Office Action dated Jun. 27, 2023, in Application No. JP2020-559396 with English translation. |
JP Office Action dated Mar. 1, 2022, in Application No. JP2021-013861 with English translation. |
JP Office Action dated Sep. 13, 2022, in Application No. JP2021-013861 with English translation. |
KR Office Action dated Dec. 15, 2022, in Application No. KR10-2018-7002665 with English translation. |
KR Office Action dated Jul. 31, 2023, in Application No. KR10-2018-7002665 with English translation. |
Lee, S. et al., Electrochromic coloration efficiency of a-WO3-y thin films as a function of oxygen deficiency, Applied Physics Letters, Sep. 13, 1999, vol. 75, No. 11, pp. 1541-1543. |
Lee, S. et al., “Electrochromic mechanism in a-WO3-y thin films”, Applied Physics Letters, Jan. 11, 1999, vol. 74, No. 2, pp. 242-244. |
Ozin, G.A et al., “Smart Zeolites: New Forms of Tungsten and Molybdenum Oxides” Accounts of Chemical Research, 1992, vol. 25, No. 12, pp. 553-560. |
TW Office Action dated Aug. 29, 2022, in Application No. TW110134875 with English translation. |
TW Office Action dated Aug. 2, 2023, in application No. TW20220119773 with English translation. |
TW Office Action dated Aug. 4, 2023, in application No. TW111125592 with English translation. |
TW Office Action dated Mar. 21, 2023, in Application No. TW108114133 with English translation. |
TW Office Action dated Mar. 29, 2022, in Application No. TW110125561 with English translation. |
TW Office Action dated Mar. 29, 2022, in Application No. TW110134875 with English translation. |
U.S. Corrected Notice of Allowance dated Jan. 5, 2023 in U.S. Appl. No. 16/782,543. |
U.S. Corrected Notice of Allowance dated Nov. 15, 2022 in U.S. Appl. No. 16/774,621. |
U.S. Corrected Notice of Allowance dated Sep. 21, 2022 in U.S. Appl. No. 16/774,621. |
U.S. Non-Final office Action dated Sep. 8, 2022 in U.S. Appl. No. 15/916,142. |
U.S. Notice of Allowance dated Jul. 11, 2022 in U.S. Appl. No. 16/774,621. |
U.S. Advisory Action dated Apr. 5, 2023 in U.S. Appl. No. 16/719,700. |
U.S. Advisory Action dated Mar. 3, 2023 in U.S. Appl. No. 16/660,660. |
U.S. Corrected Notice of Allowance dated Dec. 23, 2022 in U.S. Appl. No. 16/949,463. |
U.S. Corrected Notice of Allowance dated May 11, 2022 in U.S. Appl. No. 16/879,255. |
U.S. Final Office Action dated Dec. 23, 2022 in U.S. Appl. No. 16/660,660. |
U.S. Final Office Action dated Dec. 27, 2022 in U.S. Appl. No. 16/719,700. |
U.S. Final Office Action dated Jul. 17, 2023, in U.S. Appl. No. 16/660,660. |
U.S. Final Office Action dated Mar. 10, 2023 in U.S. Appl. No. 15/916,142. |
U.S. Non-Final office Action dated Jul. 22, 2022 in U.S. Appl. No. 16/782,543. |
U.S. Non-Final Office Action dated Apr. 4, 2023 in U.S. Appl. No. 16/660,660. |
U.S. Non-Final Office Action dated Jul. 25, 2023, in U.S. Appl. No. 17/656,367. |
U.S. Non-Final Office Action dated Jul. 25, 2023, in U.S. Appl. No. 17/812,734. |
U.S. Non-Final Office Action dated Jul. 28, 2022, in U.S. Appl. No. 16/949,463. |
U.S. Non-Final Office Action dated Jul. 31, 2023, in U.S. Appl. No. 17/810,656. |
U.S. Non-Final Office Action dated Jun. 10, 2022, in U.S. Appl. No. 16/660,660. |
U.S. Non-Final Office Action dated May 2, 2023, in U.S. Appl. No. 17/517,510. |
U.S. Non-Final Office Action dated May 19, 2023 in U.S. Appl. No. 16/719,700. |
U.S. Non-Final Office Action dated Oct. 20, 2022, in U.S. Appl. No. 17/452,387. |
U.S. Notice of Allowance dated Sep. 6, 2022 in U.S. Appl. No. 16/774,621. |
U.S. Notice of Allowance dated Apr. 11, 2022 in U.S. Appl. No. 16/785,547. |
U.S. Notice of Allowance dated Apr. 15, 2022 in U.S. Appl. No. 16/879,255. |
U.S. Notice of Allowance dated Apr. 5, 2022, in U.S. Appl. No. 15/931,359. |
U.S. Notice of Allowance dated Dec. 2, 2022 in U.S. Appl. No. 16/782,543. |
U.S. Notice of Allowance dated Dec. 5, 2022 in U.S. Appl. No. 16/949,463. |
U.S. Notice of Allowance dated Feb. 24, 2023 in U.S. Appl. No. 17/452,387. |
U.S. Notice of Allowance dated Jan. 30, 2023 in U.S. Appl. No. 16/782,543. |
U.S. Notice of Allowance dated Mar. 16, 2023 in U.S. Appl. No. 17/452,387. |
U.S. Notice of Allowance dated May 13, 2022 in U.S. Appl. No. 16/859,856. |
U.S. Office Action dated Mar. 16, 2022, in U.S. Appl. No. 16/719,700. |
U.S. Appl. No. 18/055,825, inventors Kozlowski et al., filed Nov. 15, 2022. |
U.S. Appl. No. 18/153,090, Wang et al., filed Jan. 11, 2023. |
U.S. Appl. No. 18/323,307, inventors Robert Tad Rozbicki et al., filed May 24, 2023. |
U.S. Restriction Requirement dated Apr. 27, 2022 in U.S. Appl. No. 16/782,543. |
U.S. Restriction Requirement dated Feb. 17, 2023 in U.S. Appl. No. 17/517,510. |
Wikipedia webpage “Doping (semiconductors)” (Year: 2008). |
Wikipedia webpage “Non-stoichiometric compound” (Year: 2008). |
CN Office Action dated Aug. 23, 2023, in application No. CN202080050069.9 with English translation. |
EP Extended European Search Report dated Aug. 31, 2023, in Application No. EP23158636.3. |
EP Extended European Search Report dated Dec. 19, 2022 in Application No. EP22187492.8. |
EP Extended European Search report dated Feb. 3, 2023 in Application No. EP22204822.5. |
EP Search report dated Mar. 15, 2022, in Application No. EP21206721.9. |
IN Office Action dated Aug. 4, 2022, in Application No. IN202238017115. |
JP Office Action dated Aug. 22, 2023, in Application No. JP2022-112947 with English translation. |
KR Office Action dated Nov. 14, 2022, in Application No. KR10-2022-7036165 with English Translation. |
TW Office Action dated Aug. 4, 2023, in application No. TW111145963 with English translation. |
TW Office Action dated Aug. 7, 2023 in Application No. TW108114133 with English translation. |
U.S. Corrected Notice of Allowance dated Sep. 7, 2023, in U.S. Appl. No. 15/916,142. |
U.S. Non-Final Office Action dated Sep. 6, 2023, in U.S. Appl. No. 17/249,641. |
U.S. Non-Final Office Action dated Sep. 19, 2023, in U.S. Appl. No. 17/452,387. |
U.S. Notice of Allowance dated Aug. 23, 2023 in U.S. Appl. No. 15/916,142. |
U.S. Notice of Allowance dated Sep. 20, 2023, in U.S. Appl. No. 17/816,364. |
CN Office Action dated Sep. 20, 2023, in Application No. CN202111168365.1 with English translation. |
CN Office Action dated Sep. 25, 2023, in Application No. CN202011285041.1 with English translation. |
CN Office Action dated Sep. 27, 2023, in application No. CN201980038535.9 with English translation. |
CN Office Action dated Sep. 27, 2023, in application No. CN202111411891.6 with English translation. |
U.S. Final Office Action dated Nov. 13, 2023 in U.S. Appl. No. 16/719,700. |
U.S. Final Office Action dated Oct. 2, 2023, in U.S. Appl. No. 17/517,510. |
U.S. Non-Final Office Action dated Dec. 1, 2023 in U.S. Appl. No. 16/660,660. |
U.S. Non-Final Office Action dated Sep. 26, 2023, in U.S. Appl. No. 17/804,515. |
U.S Restriction requirement dated Nov. 6, 2023 in U.S. Appl. No. 18/050,918. |
Number | Date | Country | |
---|---|---|---|
20210373401 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
61165484 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14209993 | Mar 2014 | US |
Child | 14841511 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16774621 | Jan 2020 | US |
Child | 17445245 | US | |
Parent | 15795843 | Oct 2017 | US |
Child | 16774621 | US | |
Parent | 15457609 | Mar 2017 | US |
Child | 15795843 | US | |
Parent | 14841511 | Aug 2015 | US |
Child | 15457609 | US | |
Parent | 13610684 | Sep 2012 | US |
Child | 14209993 | US | |
Parent | 13610716 | Sep 2012 | US |
Child | 15214340 | US | |
Parent | 12772075 | Apr 2010 | US |
Child | 13610684 | US | |
Parent | 12645111 | Dec 2009 | US |
Child | 13610716 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15214340 | Jul 2016 | US |
Child | 15457609 | US |