This application is a U.S. national phase filing claiming the benefit of and priority to International Patent Application No. PCT/GB2020/050209, filed Jan. 29, 2020, which claims priority from and the benefit of United Kingdom patent application No. 1901411.7 filed on Feb. 1, 2019. The entire contents of these applications are incorporated herein by reference.
The present invention relates generally to an electrode assembly for generating electrical fields to manipulate charged particles, such as ions, and to corresponding methods of using such an electrode assembly to manipulate charged particles. Embodiments of the present disclosure include mass or mobility spectrometers comprising the electrode assembly, and corresponding methods of mass or mobility spectrometry.
In order to provide miniaturized and/or accurate instruments, it is necessary to provide ion optical devices having relatively small and/or precise electrode structures. Technologies such as Micro-Electro-Mechanical Systems (MEMS) and printed circuit boards have been used to achieve this.
Printed circuit boards (PCBs) having an electrically insulating substrate and electrodes deposited thereon have previously been used to form electrode structures in mass spectrometry, e.g. see U.S. Pat. No. 6,607,414. However, charged particles such as ions impact on the insulating substrate in the areas between the electrodes, causing those areas to become electrically charged and hence affecting the electrical potential profile in the vicinity of those areas. In order to avoid this problem, it is known to cut out the insulating substrate in the areas between the electrodes so as to form gaps, so that electrical charge cannot build up in these areas. However, external electrical fields are then able to penetrate through such gaps and into the ion optical device, which is generally undesirable. In order to mitigate this, the width of the gap can be made relatively small, as compared to the depth of the gap in the direction through the substrate. It is desirable to make the width of the gap 2.5 to 3 times smaller than the depth of the gap. However, the depth of the gap is set by the thickness of the insulating substrate and is relatively small. It is not always possible to make the width of the gap 2.5 to 3 times smaller than this, for example, as the potential difference between electrodes on the PCB either side of the gap can be high and doing so may lead to electrical breakdown and arcing between the electrodes.
Another known approach is to provide grooves in the substrate surface such that the charged particles enter into the groves, rather than charge building up on the outer surface, such as in U.S. Pat. No. 9,653,273. As the groove does not extend entirely through the substrate this technique prevents external electric fields penetrating into the ion-optical device. However, in order to function well, the depth of the groove is required to be relatively large as compared to its width. For example, it is desirable for the depth of the groove to exceed its width by factor of three or more. However, as the depth of the groove is limited by the thickness of the substrate, the width of the groove and hence the spacing between electrodes on the PCB is also limited to being relatively small. This again places limitations on the voltages that can be applied to the electrodes either side of the groove.
Another known approach is to coat the spaces between the electrodes with a resistive layer that transfers charge to the electrodes, as described in Austin et al JASMS 19, 1435-1441, 2008. However, it is difficult to support the desired electric field accuracy when using such resistive coatings. Also, only moderate electric fields are able to be used with such techniques so as to avoid surface discharges.
The present invention provides an electrode assembly comprising:
As gaps are provided between the electrodes of the first layer, any charged particles, such as ions, that are directed towards the first layer either impact on the electrodes or pass through the gaps between the electrodes. As such, unwanted electrical charge is unable to build up on the inner surface of the first layer and does not affect the electric field generated by the electrodes of the first layer. The second layer prevents electric fields passing through the gaps, in either direction, which may be undesirable. The conductive material of the second layer may also prevent unwanted electrical charge from building up and affecting the electric field generated by the electrodes of the first layer.
The conductive material of the second layer may overlay the one or more gaps in the first layer.
Optionally, no solid material is provided in the gaps in the first layer.
The plurality of electrodes may be elongated electrodes and the gaps may be elongated slots.
The first layer may comprise only electrode material, such as spaced apart electrodes.
Alternatively, the first layer may comprise a printed circuit board (PCB) having an electrically insulating substrate, wherein said plurality of electrodes are deposited on, etched on, printed on, laminated to, or otherwise formed on said substrate; and wherein the substrate may have one or more apertures therethrough that are respectively coincident with said one or more gaps.
Relative to machined electrodes, PCBs allow the production of finer, more accurate features. For example, in the context of the electrode assembly being used in an ion mirror, the electrode assembly is able to produce relatively high ion focusing at the edge of the mirror.
The PCB substrate may be made of a vacuum-compatible material such as ceramic.
As the substrate includes one or more apertures coincident with said one or more gaps, charged particles that enter the gaps are able to pass through the substrate and away from the first layer.
The electrodes of the first layer may extend so as to cover side edges of the apertures in the substrate.
A single said second layer may cover multiple gaps, or all gaps, in the first layer.
A separate one of said second layers may cover each gap in the first layer.
The at least one second layer may comprise a printed circuit board (PCB) having an electrically insulating substrate, wherein said electrically conductive material is deposited on, etched on, printed on, laminated to, or otherwise formed on said substrate.
The use of PCBs for the first and second layers (and any intermediate layers), allows manufacturing ease, low cost, and allows electrode layers to be accurately aligned easily.
The first layer may be a plurality of spaced apart sheet metal or plate metal electrodes; and/or said second layer may be at least one sheet metal or plate metal electrode.
The electrically conductive material may be at least on the side of the second layer facing towards the first layer.
This may be used to prevent charge building up on the second layer that may otherwise affect the electric fields from the plurality of electrodes on the first layer.
Alternatively, the electrically conductive material may be on the side of the second layer facing away from the first layer, which may be arranged to prevent electric fields passing through the gap. It is also contemplated that the entirety of the second layer may be conductive.
The conductive material may be electrically grounded or connected to a voltage source so as to be maintained at an electrical potential, in use.
The first layer may comprise first and second electrodes on opposite sides of each gap in the first layer and that are connected to voltage sources so as to be maintained at different electrical potentials in use, and the conductive material in the second layer at a location coinciding with that gap may be connected to a voltage source so as to be maintained at an electrical potential between said different electrical potentials, in use.
The conductive material may be connected to a voltage source so as to be maintained at an electrical potential substantially midway between said different electrical potentials, in use.
The electrode assembly may comprise at least one intermediate layer arranged between the first and second layers for spacing the first layer away from the at least one second layer; optionally wherein the at least one intermediate layer is a PCB.
The first, second and intermediate layers may be substantially parallel and may each be substantially planar.
The at least one intermediate layer may be at least one electrically insulating layer.
If the at least one intermediate layer is a PCB layer, it may comprise conductive material on one or more of its surfaces or may only be the PCB substrate material.
Each of the at least one intermediate layers may comprise a plurality of apertures therein, wherein each aperture is located to be coincident with both one of the gaps in the first layer and the conductive material on the second layer.
The apertures may be slotted apertures.
Each of the at least one intermediate layer may comprise a plurality of ribs between the apertures. The ribs may be located to be coincident with the electrodes in the first layer, and optionally between the spaced apart conductive material on the second layer.
The first layer, second layer, and any intermediate layer(s) present may be adhered or otherwise joined together to provide a composite layered structure. This composite layered structure may be adhered or otherwise joined to a rigid support, for example, to provide the composite layered structure an accurate shape and/or flatness.
The first layer and/or second layer (and/or any intermediate layers present) may be formed by 3D printing.
One or more electrical components, such as resistors or capacitors etc., may connect the electrodes in the first layer or the electrodes in the second layer (or any electrodes in any intermediate layers present). For example, one or more electrical components, such as resistors may connect the electrodes on either side of each gap in the first layer. The electrodes in the first layer may be connected to each other by such electrical components such that, when connected to a voltage supply, these electrodes generate the desired electrical field (e.g. an ion reflecting field when the electrode assembly is used in an ion mirror). Additionally, or alternatively, the electrodes in the second layer may be connected to each other by resistors.
The electrode assembly may comprise a gas conduit from the outside of the second layer to the one or more gaps in the first layer, for pumping gas from the gaps to the outside of the second layer. Embodiments may therefore include a gas pump arranged to perform such gas pumping. This, for example, enables the electrode assembly to be used in an ion-optical device that is required to be evacuated.
The second layer (and any intermediate layers that may be present) may comprise apertures in fluid communication with the gaps in the first layer, so that gas can be pumped through the apertures and out to the outside of the second layer.
The present invention also provides an ion-optical element comprising:
The first and second electrode assemblies may be planar and/or parallel to each other.
The first layer of the first electrode assembly may face the first layer of the second electrode assembly.
The ion-optical element may be an ion mirror comprising voltage supplies connected to the plurality of electrodes in each of the first and second electrode assemblies for applying different voltages to these electrode for reflecting ions within the ion mirror. Alternatively, the ion-optical element may be an ion lens, ion deflector, ion reflector, ion accelerator, orthogonal ion accelerator or ion detector.
The first and second electrode assemblies may be connected to each other by one or more additional electrode or insulator layer. All of the layers in such an assembly may be PCB layer, for example, so as to for a hollow multilayer PCB device. For example, the ion optical device may be an ion mass or mobility analyzer and the whole analyzer (optionally except for any ion detector present) may be formed from a multilayer PCB structure.
The ion-optical element may comprise one or more metal electrode extending between and/or joined to the first and second electrode assemblies.
The one or more metal electrode may be a sheet metal or plate metal electrode.
The present invention also provides a Time of Flight (TOF) mass analyzer, multi-reflecting TOF mass analyzer, electrostatic trap, mass spectrometer or mobility spectrometer comprising an electrode assembly or ion-optical element as described hereinabove.
In less preferred embodiments it is contemplated that the at least one second layer does not have electrically conductive material located to be coincident with said one or more gaps in the first layer.
Accordingly, from a second aspect the present invention provides an electrode assembly comprising:
a first layer having a plurality of electrodes that are separated by one or more gaps; and at least one second layer arranged and configured to cover said one or more gaps and prevent electric fields passing through said one or more gaps.
Various embodiments will now be described, by way of example only, and with reference to the accompanying drawings in which:
Although the present invention may be used to form electrode structures in any ion-optical device, such as for or in a mass spectrometer or ion mobility spectrometer, embodiments will now be described in which the electrode structures form part of a Time of Flight (TOF) mass analyzer. In particular, embodiments will now be described in which the electrode structures form part of a Multi-Reflecting Time of Flight (MRTOF) mass analyzer.
In embodiments, an ion source delivers ions 9 along the Z-dimension to the orthogonal ion accelerator 6, which pulses packets of ions 10 towards a first of the ion mirrors. The ions therefore have a velocity in the X-dimension and also a drift velocity in the Z-dimension. The ions enter into the first ion mirror and are reflected back towards the second of the ion mirrors. The ions pass through the field-free region 3 between the mirrors 2 as they travel towards the second ion mirror and they separate according to their mass to charge ratios in the known manner that occurs in field-free regions. The ions then enter the second mirror and are reflected back to the first ion mirror, again passing through the field-free region 3 between the mirrors as they travel towards the first ion mirror. The first ion mirror then reflects the ions back to the second ion mirror. This continues and the ions are continually reflected between the two ion mirrors 2 as they drift along the device in the Z-dimension until the ions impact upon ion detector 8. The ions therefore follow a substantially sinusoidal mean trajectory within the X-Z plane between the orthogonal accelerator and the ion detector 8.
The MRTOF mass analyzer may use the duration of time that has elapsed between a given ion being pulsed from the orthogonal accelerator 6 to the time at which that ion is detected, along with the knowledge of its flight path length, to calculate the mass to charge ratio of that ion.
In order for such MRTOF instruments to attain high mass resolution and mass accuracy it is important that the electrodes of the ion mirrors 2 are formed and aligned to a relatively high precision. Conventionally, ion mirrors in TOF mass analyzers are assembled using bulk metal plate electrodes. For relatively high quality MRTOF ion mirrors that can focus ions having a relatively wide spread of kinetic energies, it is advantageous to provide precisely positioned and relatively narrow electrodes in the vicinity of ion reflection area. For example, some electrodes may be required to be only as wide as 2-3 mm in the X-dimension. The electrodes may be elongated in the drift (Z-) dimension and may need to have high parallelism in the drift (Z-) dimension, such as to a higher accuracy than 50 microns. Such electrode structures are difficult to provide using conventional mechanical treatments of bulk metal or using sheet metals. For example, conventional ion mirror electrodes are made of stacked parallel plate electrodes, each of which has a large aperture therein to form the ion reflecting path through it. The stacked plates are separated by spacers formed from electrically insulating material. However, it is difficult to make the electrodes precisely flat unless they are relatively thick. Also, the insulators between the plates need to be relatively far from the ion inlet to the mirror interior so as to prevent electric fields penetrating through the regions between the plates, and also to minimize spurious electric fields that would otherwise be caused by ions impacting on and electrically charging the insulating spacers. This renders the ion mirror assembly relatively large and heavy.
Embodiments of the present invention may use a printed circuit board (PCB) to provide multiple electrodes of an ion-optical device. The PCB may be slotted or otherwise apertured the entire way therethrough so as to provide a gap between different electrodes. A layer may be provided behind that gap in the PCB so as to prevent electric fields passing through the gap. The layer is desirably spaced apart from the apertured PCB, although it is contemplated that it may be directly adjacent to it. The layer may be a conductive sheet, Alternatively the layer may be a conductive material coated on the surface of a substrate that faces the electrodes of the PCB, the coating being at least in the regions coinciding with the gaps in the apertured PCB. The conductive sheet or material coinciding with any given gap may be grounded or another electrical potential applied thereto, such as a potential intermediate the potentials of the electrodes on either side of the gap. This prevents charge building up on the layer and affecting the electric field inside the ion-optical device.
In order to reflect the ions in the X-dimension, each ion mirror 2 comprises a plurality of electrodes 14 that are spaced apart in the X-dimension and which are elongated in the Z-dimension. Different voltages are applied to the different electrodes so as to generate an electric field within the ion mirror for reflecting the ions. As can be seen from
The electrodes 14 may be formed by sheet metal electrodes, plate metal electrodes or PCBs. Additionally, or alternatively, the layer(s) 18 may be may be formed by sheet metal electrodes, plate metal electrodes or PCBs. In embodiments where the layer(s) 18 are in direct contact with the electrodes 14 that form the inner surface of the ion mirror 2, and in which the layer(s) are electrically conductive on the inner surface, the layer(s) 18 are electrically insulated from the electrodes 14 that form the inner surface.
Embodiments are contemplated wherein both the electrodes that form the inner surface of the ion mirror and the layer(s) covering the gaps are formed from a composite layered PCB structure.
It is also contemplated that additional PCB sheets could be provided between the first and third PCB sheets 24,32 so as to increase the spacing between the electrodes 14 and electrodes 34. Alternatively, it is contemplated that the second PCB sheet 26 may be omitted, although it must still be ensured that the electrodes 14 on the first PCB sheet 24 are arranged so as to be electrically isolated from any electrodes 34 on the third PCB sheet 32.
It will be appreciated that mirror images of the PCB layers shown in
In use, various different voltages are applied to the electrodes of the first PCB 24 and fourth PCB 40 of the ion mirror to generate an electric field for reflecting ions in the ion mirror. As gaps 16 are provided between the electrodes 14 on the first PCB, any ions (or other charged particles) that are scattered towards the first PCB either impact on the electrodes 14 or pass through the gaps 16 between the electrodes. As such, unwanted electrical charge is unable to build up on the inner surface of the first PCB 24. The third PCB 32, that is located outwardly of the first PCB 24, overlays and covers the gaps 16 in the first PCB. This third PCB 32 may be configured to prevent electric fields from passing from the outside of the ion mirror 2 to the inside of the ion mirror, through the gaps 16 in the first PCB 24. For example, the third PCB 32 may have electrical conductors/electrodes 34 arranged at locations that coincide (in the X-Z plane) with the gaps 16 in the first PCB 24. Electric potentials may be applied to these electrodes 34 on the third PCB 32. For example, the potential applied to any given electrode 34 on the third PCB 32 may be between the two potentials applied to the two respective electrodes 34 on opposite sides of the gap 16 with which that electrode on the third PCB is coincident. For example, the potential applied to any given electrode on the third PCB may be substantially midway between the two potentials applied to the two electrodes on opposite sides of the gap with which that electrode on the third PCB is coincident. This may reduce the impact on the electric fields within the ion mirror that are generated by the electrodes on the first PCB layer.
It is advantageous to minimize the exposure of the PCB insulating substrate to scattered ions. For this purpose, the electrodes 14 of the first PCB 24 may extend down the edge walls 50 of the gaps 16 in the first PCB 24 (as shown in
The second PCB 26 enables the third PCB 32 to be spaced apart from the first PCB 24. As electrodes 14 of the first PCB 24 may extend down the edge walls 50 of the gaps 16 in the first PCB 24 (as shown in
In alternative embodiments to those described above, rather than providing a second PCB sheet 26, a sheet other than a PCB may be used or individual spacer members may be used to space the first and third PCBs 24 and 32) apart.
In use, various different voltages are applied to the electrodes at the inner surfaces of the orthogonal accelerator to generate an electric field that orthogonally accelerates ions entering the orthogonal accelerator.
As shown in
As described above, it is contemplated that conventional electrodes may be used in combination with the PCB electrode assemblies, particularly for example where good flatness of surfaces is needed in a direction orthogonal or inclined to the PCB layered surfaces. For example, a conventional metal sheet or metal plate electrode may be used for the ion mirror end cap, each ion mirror side wall, the orthogonal accelerator pushing electrode wall, or for other electrodes of the orthogonal accelerator. These electrodes may be soldered or otherwise secured between the opposing PCB assemblies, optionally being jigged before being secured in place. These conventional electrodes may serve as spacers between the PCB electrode assemblies.
It is contemplated that at least the deflector electrodes 64 that are spaced in the Z-dimension may comprise opposing PCB assemblies with the layers of thin electrodes of the type described above in relation to the ion mirrors.
Although the present invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the scope of the invention as set forth in the accompanying claims.
For example, although embodiments of an MRTOF mass analyzer have been described in which the ions drift along a linear Z-axis whilst they are reflected between the ion mirrors, it is alternatively contemplated that each ion mirrors may define a cylindrical ion receiving region such that the ions drift in a circumferential direction around the cylindrical mirrors. Such embodiments do not require the Z-dimensional end walls described above.
Although embodiments of ion mirrors, gridless orthogonal accelerators and ion deflectors have been described in relation to ion-optical components for MRTOF mass analyzers, the ion-optical components may be for single reflection TOF mass analyzers. Moreover, the layered structures described herein may be used for electrode structures in other types of ion-optical components to those described herein, such as ion lenses, or for ion-optical components other than those in mass or mobility spectrometers. The layered structures described herein may be used, for example, in any device where a fine/precise electrode structure or electric field is required.
A PCB as used herein may refer to a component comprising electrodes (such as conductive tracks, pads and other features) etched from, printed on, deposited on, or laminated to a non-conductive substrate.
The electrically non-conductive substrates described herein may be sheet or bulk material, or may be 3D-printed or deposited on another substrate by any other method.
Number | Date | Country | Kind |
---|---|---|---|
1901411 | Feb 2019 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2020/050209 | 1/29/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/157499 | 8/6/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3898452 | Hertel | Aug 1975 | A |
4390784 | Browning et al. | Jun 1983 | A |
4691160 | Ino | Sep 1987 | A |
4731532 | Frey et al. | Mar 1988 | A |
4855595 | Blanchard | Aug 1989 | A |
5017780 | Kutscher et al. | May 1991 | A |
5107109 | Stafford, Jr. et al. | Apr 1992 | A |
5128543 | Reed et al. | Jul 1992 | A |
5202563 | Cotter et al. | Apr 1993 | A |
5331158 | Dowell | Jul 1994 | A |
5367162 | Holland et al. | Nov 1994 | A |
5396065 | Myerholtz et al. | Mar 1995 | A |
5435309 | Thomas et al. | Jul 1995 | A |
5464985 | Cornish et al. | Nov 1995 | A |
5619034 | Reed et al. | Apr 1997 | A |
5654544 | Dresch | Aug 1997 | A |
5689111 | Dresch et al. | Nov 1997 | A |
5696375 | Park et al. | Dec 1997 | A |
5719392 | Franzen | Feb 1998 | A |
5763878 | Franzen | Jun 1998 | A |
5777326 | Rockwood et al. | Jul 1998 | A |
5834771 | Yoon et al. | Nov 1998 | A |
5955730 | Kerley et al. | Sep 1999 | A |
5994695 | Young | Nov 1999 | A |
6002122 | Wolf | Dec 1999 | A |
6013913 | Hanson | Jan 2000 | A |
6020586 | Dresch et al. | Feb 2000 | A |
6080985 | Welkie et al. | Jun 2000 | A |
6107625 | Park | Aug 2000 | A |
6160256 | Ishihara | Dec 2000 | A |
6198096 | Le Cocq | Mar 2001 | B1 |
6229142 | Bateman et al. | May 2001 | B1 |
6271917 | Hagler | Aug 2001 | B1 |
6300626 | Brock et al. | Oct 2001 | B1 |
6316768 | Rockwood et al. | Nov 2001 | B1 |
6337482 | Francke | Jan 2002 | B1 |
6384410 | Kawato | May 2002 | B1 |
6393367 | Tang et al. | May 2002 | B1 |
6437325 | Reilly et al. | Aug 2002 | B1 |
6455845 | Li et al. | Sep 2002 | B1 |
6469295 | Park | Oct 2002 | B1 |
6489610 | Barofsky et al. | Dec 2002 | B1 |
6504148 | Hager | Jan 2003 | B1 |
6504150 | Verentchikov et al. | Jan 2003 | B1 |
6534764 | Verentchikov et al. | Mar 2003 | B1 |
6545268 | Verentchikov et al. | Apr 2003 | B1 |
6570152 | Hoyes | May 2003 | B1 |
6576895 | Park | Jun 2003 | B1 |
6580070 | Cornish et al. | Jun 2003 | B2 |
6591121 | Madarasz et al. | Jul 2003 | B1 |
6607414 | Charles et al. | Aug 2003 | B2 |
6614020 | Cornish | Sep 2003 | B2 |
6627877 | Davis et al. | Sep 2003 | B1 |
6646252 | Gonin | Nov 2003 | B1 |
6647347 | Roushall et al. | Nov 2003 | B1 |
6664545 | Kimmel et al. | Dec 2003 | B2 |
6683299 | Fuhrer et al. | Jan 2004 | B2 |
6694284 | Nikoonahad et al. | Feb 2004 | B1 |
6717132 | Franzen | Apr 2004 | B2 |
6734968 | Wang et al. | May 2004 | B1 |
6737642 | Syage et al. | May 2004 | B2 |
6744040 | Park | Jun 2004 | B2 |
6744042 | Zajfman et al. | Jun 2004 | B2 |
6747271 | Gonin et al. | Jun 2004 | B2 |
6770870 | Vestal | Aug 2004 | B2 |
6782342 | LeGore et al. | Aug 2004 | B2 |
6787760 | Belov et al. | Sep 2004 | B2 |
6794643 | Russ, IV et al. | Sep 2004 | B2 |
6804003 | Wang et al. | Oct 2004 | B1 |
6815673 | Plomley et al. | Nov 2004 | B2 |
6833544 | Campbell et al. | Dec 2004 | B1 |
6836742 | Brekenfeld | Dec 2004 | B2 |
6841936 | Keller et al. | Jan 2005 | B2 |
6861645 | Franzen | Mar 2005 | B2 |
6864479 | Davis et al. | Mar 2005 | B1 |
6870156 | Rather | Mar 2005 | B2 |
6870157 | Zare | Mar 2005 | B1 |
6872938 | Makarov et al. | Mar 2005 | B2 |
6888130 | Gonin | May 2005 | B1 |
6900431 | Belov et al. | May 2005 | B2 |
6906320 | Sachs et al. | Jun 2005 | B2 |
6940066 | Makarov et al. | Sep 2005 | B2 |
6949736 | Ishihara | Sep 2005 | B2 |
7034292 | Whitehouse et al. | Apr 2006 | B1 |
7071464 | Reinhold | Jul 2006 | B2 |
7084393 | Fuhrer et al. | Aug 2006 | B2 |
7091479 | Hayek | Aug 2006 | B2 |
7126114 | Chernushevich | Oct 2006 | B2 |
7196324 | Verentchikov | Mar 2007 | B2 |
7217919 | Boyle et al. | May 2007 | B2 |
7221251 | Menegoli et al. | May 2007 | B2 |
7326925 | Verentchikov et al. | Feb 2008 | B2 |
7351958 | Vestal | Apr 2008 | B2 |
7365313 | Fuhrer et al. | Apr 2008 | B2 |
7385187 | Verentchikov et al. | Jun 2008 | B2 |
7388197 | McLean et al. | Jun 2008 | B2 |
7399957 | Parker et al. | Jul 2008 | B2 |
7423259 | Hidalgo et al. | Sep 2008 | B2 |
7498569 | Ding | Mar 2009 | B2 |
7501621 | Willis et al. | Mar 2009 | B2 |
7504620 | Sato et al. | Mar 2009 | B2 |
7521671 | Kirihara et al. | Apr 2009 | B2 |
7541576 | Belov et al. | Jun 2009 | B2 |
7582864 | Verentchikov | Sep 2009 | B2 |
7608817 | Flory | Oct 2009 | B2 |
7663100 | Vestal | Feb 2010 | B2 |
7675031 | Konicek et al. | Mar 2010 | B2 |
7709789 | Vestal et al. | May 2010 | B2 |
7728289 | Naya et al. | Jun 2010 | B2 |
7745780 | McLean et al. | Jun 2010 | B2 |
7755036 | Satoh | Jul 2010 | B2 |
7772547 | Verentchikov | Aug 2010 | B2 |
7800054 | Fuhrer et al. | Sep 2010 | B2 |
7825373 | Willis et al. | Nov 2010 | B2 |
7863557 | Brown | Jan 2011 | B2 |
7884319 | Willis et al. | Feb 2011 | B2 |
7932491 | Vestal | Apr 2011 | B2 |
7982184 | Sudakov | Jul 2011 | B2 |
7985950 | Makarov et al. | Jul 2011 | B2 |
7989759 | Holle | Aug 2011 | B2 |
7999223 | Makarov et al. | Aug 2011 | B2 |
8017907 | Willis et al. | Sep 2011 | B2 |
8017909 | Makarov et al. | Sep 2011 | B2 |
8063360 | Willis et al. | Nov 2011 | B2 |
8080782 | Hidalgo et al. | Dec 2011 | B2 |
8093554 | Makarov | Jan 2012 | B2 |
8237111 | Golikov et al. | Aug 2012 | B2 |
8354634 | Green et al. | Jan 2013 | B2 |
8373120 | Verentchikov | Feb 2013 | B2 |
8395115 | Makarov et al. | Mar 2013 | B2 |
8492710 | Fuhrer et al. | Jul 2013 | B2 |
8513594 | Makarov | Aug 2013 | B2 |
8633436 | Ugarov | Jan 2014 | B2 |
8637815 | Makarov et al. | Jan 2014 | B2 |
8642948 | Makarov et al. | Feb 2014 | B2 |
8642951 | Li | Feb 2014 | B2 |
8648294 | Prather et al. | Feb 2014 | B2 |
8653446 | Mordehai et al. | Feb 2014 | B1 |
8658984 | Makarov et al. | Feb 2014 | B2 |
8680481 | Giannakopulos et al. | Mar 2014 | B2 |
8723108 | Ugarov | May 2014 | B1 |
8735818 | Kovtoun et al. | May 2014 | B2 |
8772708 | Kinugawa et al. | Jul 2014 | B2 |
8785845 | Loboda | Jul 2014 | B2 |
8847155 | Vestal | Sep 2014 | B2 |
8853623 | Verenchikov | Oct 2014 | B2 |
8884220 | Hoyes et al. | Nov 2014 | B2 |
8921772 | Verenchikov | Dec 2014 | B2 |
8952325 | Giles et al. | Feb 2015 | B2 |
8957369 | Makarov | Feb 2015 | B2 |
8975592 | Kobayashi et al. | Mar 2015 | B2 |
9048080 | Verenchikov et al. | Jun 2015 | B2 |
9082597 | Willis et al. | Jul 2015 | B2 |
9082604 | Verenchikov | Jul 2015 | B2 |
9099287 | Giannakopulos | Aug 2015 | B2 |
9136101 | Grinfeld et al. | Sep 2015 | B2 |
9147563 | Makarov | Sep 2015 | B2 |
9196469 | Makarov | Nov 2015 | B2 |
9207206 | Makarov | Dec 2015 | B2 |
9214322 | Kholomeev et al. | Dec 2015 | B2 |
9214328 | Hoyes et al. | Dec 2015 | B2 |
9281175 | Haufler et al. | Mar 2016 | B2 |
9312119 | Verenchikov | Apr 2016 | B2 |
9324544 | Rather | Apr 2016 | B2 |
9373490 | Nishiguchi et al. | Jun 2016 | B1 |
9396922 | Verenchikov et al. | Jul 2016 | B2 |
9417211 | Verenchikov | Aug 2016 | B2 |
9425034 | Verentchikov et al. | Aug 2016 | B2 |
9472390 | Verenchikov et al. | Oct 2016 | B2 |
9514922 | Watanabe et al. | Dec 2016 | B2 |
9576778 | Wang | Feb 2017 | B2 |
9595431 | Verenchikov | Mar 2017 | B2 |
9653273 | Loboda et al. | May 2017 | B2 |
9673033 | Grinfeld et al. | Jun 2017 | B2 |
9679758 | Grinfeld et al. | Jun 2017 | B2 |
9683963 | Verenchikov | Jun 2017 | B2 |
9728384 | Verenchikov | Aug 2017 | B2 |
9779923 | Verenchikov | Oct 2017 | B2 |
9786484 | Willis et al. | Oct 2017 | B2 |
9786485 | Ding et al. | Oct 2017 | B2 |
9865441 | Damoc et al. | Jan 2018 | B2 |
9865445 | Verenchikov et al. | Jan 2018 | B2 |
9870903 | Richardson et al. | Jan 2018 | B2 |
9870906 | Quarmby et al. | Jan 2018 | B1 |
9881780 | Verenchikov et al. | Jan 2018 | B2 |
9899201 | Park | Feb 2018 | B1 |
9922812 | Makarov | Mar 2018 | B2 |
9941107 | Verenchikov | Apr 2018 | B2 |
9972483 | Makarov | May 2018 | B2 |
10006892 | Verenchikov | Jun 2018 | B2 |
10037873 | Wang et al. | Jul 2018 | B2 |
10141175 | Verentchikov et al. | Nov 2018 | B2 |
10141176 | Stewart et al. | Nov 2018 | B2 |
10163616 | Verenchikov et al. | Dec 2018 | B2 |
10186411 | Makarov | Jan 2019 | B2 |
10192723 | Verenchikov et al. | Jan 2019 | B2 |
10290480 | Crowell et al. | May 2019 | B2 |
10373815 | Crowell et al. | Aug 2019 | B2 |
10388503 | Brown et al. | Aug 2019 | B2 |
10593525 | Hock et al. | Mar 2020 | B2 |
10593533 | Hoyes et al. | Mar 2020 | B2 |
10622203 | Veryovkin et al. | Apr 2020 | B2 |
10629425 | Hoyes et al. | Apr 2020 | B2 |
10636646 | Hoyes et al. | Apr 2020 | B2 |
20010011703 | Franzen | Aug 2001 | A1 |
20010030284 | Dresch et al. | Oct 2001 | A1 |
20020030159 | Chernushevich et al. | Mar 2002 | A1 |
20020107660 | Nikoonahad et al. | Aug 2002 | A1 |
20020190199 | Li | Dec 2002 | A1 |
20030010907 | Hayek et al. | Jan 2003 | A1 |
20030111597 | Gonin et al. | Jun 2003 | A1 |
20030232445 | Fulghum | Dec 2003 | A1 |
20040084613 | Bateman et al. | May 2004 | A1 |
20040108453 | Kobayashi et al. | Jun 2004 | A1 |
20040119012 | Vestal | Jun 2004 | A1 |
20040144918 | Zare et al. | Jul 2004 | A1 |
20040155187 | Axelsson | Aug 2004 | A1 |
20040159782 | Park | Aug 2004 | A1 |
20040183007 | Belov et al. | Sep 2004 | A1 |
20050006577 | Fuhrer et al. | Jan 2005 | A1 |
20050040326 | Enke | Feb 2005 | A1 |
20050103992 | Yamaguchi et al. | May 2005 | A1 |
20050133712 | Belov et al. | Jun 2005 | A1 |
20050151075 | Brown et al. | Jul 2005 | A1 |
20050194528 | Yamaguchi et al. | Sep 2005 | A1 |
20050242279 | Verentchikov | Nov 2005 | A1 |
20050258364 | Whitehouse et al. | Nov 2005 | A1 |
20060169882 | Pau et al. | Aug 2006 | A1 |
20060214100 | Verentchikov et al. | Sep 2006 | A1 |
20060289746 | Raznikov et al. | Dec 2006 | A1 |
20070023645 | Chernushevich | Feb 2007 | A1 |
20070029473 | Verentchikov | Feb 2007 | A1 |
20070176090 | Verentchikov | Aug 2007 | A1 |
20070187614 | Schneider et al. | Aug 2007 | A1 |
20070194223 | Sato et al. | Aug 2007 | A1 |
20080049402 | Han et al. | Feb 2008 | A1 |
20080197276 | Nishiguchi et al. | Aug 2008 | A1 |
20080203288 | Makarov et al. | Aug 2008 | A1 |
20080290269 | Saito et al. | Nov 2008 | A1 |
20090090861 | Willis et al. | Apr 2009 | A1 |
20090114808 | Bateman et al. | May 2009 | A1 |
20090121130 | Satoh | May 2009 | A1 |
20090206250 | Wollnik | Aug 2009 | A1 |
20090250607 | Staats et al. | Oct 2009 | A1 |
20090272890 | Ogawa et al. | Nov 2009 | A1 |
20100001180 | Bateman et al. | Jan 2010 | A1 |
20100044558 | Sudakov | Feb 2010 | A1 |
20100072363 | Giles et al. | Mar 2010 | A1 |
20100078551 | Loboda | Apr 2010 | A1 |
20100140469 | Nishiguchi | Jun 2010 | A1 |
20100193682 | Golikov et al. | Aug 2010 | A1 |
20100207023 | Loboda | Aug 2010 | A1 |
20100301202 | Vestal | Dec 2010 | A1 |
20110133073 | Sato et al. | Jun 2011 | A1 |
20110168880 | Ristroph et al. | Jul 2011 | A1 |
20110180702 | Flory et al. | Jul 2011 | A1 |
20110180705 | Yamaguchi | Jul 2011 | A1 |
20110186729 | Verentchikov et al. | Aug 2011 | A1 |
20120168618 | Vestal | Jul 2012 | A1 |
20120261570 | Shvartsburg et al. | Oct 2012 | A1 |
20130048852 | Verenchikov | Feb 2013 | A1 |
20130056627 | Verenchikov | Mar 2013 | A1 |
20130068942 | Verenchikov | Mar 2013 | A1 |
20130187044 | Ding et al. | Jul 2013 | A1 |
20130240725 | Makarov | Sep 2013 | A1 |
20130248702 | Makarov | Sep 2013 | A1 |
20130256524 | Brown et al. | Oct 2013 | A1 |
20130313424 | Makarov et al. | Nov 2013 | A1 |
20130327935 | Wiedenbeck | Dec 2013 | A1 |
20140054456 | Kinugawa et al. | Feb 2014 | A1 |
20140084156 | Ristroph et al. | Mar 2014 | A1 |
20140117226 | Giannakopulos | May 2014 | A1 |
20140138538 | Hieftje et al. | May 2014 | A1 |
20140183354 | Moon et al. | Jul 2014 | A1 |
20140191123 | Wildgoose et al. | Jul 2014 | A1 |
20140217275 | Ding | Aug 2014 | A1 |
20140239172 | Makarov | Aug 2014 | A1 |
20140291503 | Shchepunov et al. | Oct 2014 | A1 |
20140312221 | Verenchikov et al. | Oct 2014 | A1 |
20140361162 | Murray et al. | Dec 2014 | A1 |
20150028197 | Grinfeld et al. | Jan 2015 | A1 |
20150028198 | Grinfeld et al. | Jan 2015 | A1 |
20150034814 | Brown et al. | Feb 2015 | A1 |
20150048245 | Vestal et al. | Feb 2015 | A1 |
20150060656 | Ugarov | Mar 2015 | A1 |
20150122986 | Haase | May 2015 | A1 |
20150194296 | Verenchikov et al. | Jul 2015 | A1 |
20150228467 | Grinfeld et al. | Aug 2015 | A1 |
20150279650 | Verenchikov | Oct 2015 | A1 |
20152094849 | Grinfeld et al. | Oct 2015 | |
20150318156 | Loyd et al. | Nov 2015 | A1 |
20150364309 | Welkie | Dec 2015 | A1 |
20150380233 | Verenchikov | Dec 2015 | A1 |
20160005587 | Verenchikov | Jan 2016 | A1 |
20160035552 | Verenchikov | Feb 2016 | A1 |
20160035558 | Verenchikov et al. | Feb 2016 | A1 |
20160079052 | Makarov et al. | Mar 2016 | A1 |
20160225598 | Ristroph | Aug 2016 | A1 |
20160225602 | Ristroph et al. | Aug 2016 | A1 |
20160240363 | Verenchikov | Aug 2016 | A1 |
20170016863 | Verenchikov | Jan 2017 | A1 |
20170025265 | Verenchikov et al. | Jan 2017 | A1 |
20170032952 | Verenchikov | Feb 2017 | A1 |
20170098533 | Stewart et al. | Apr 2017 | A1 |
20170229297 | Green et al. | Aug 2017 | A1 |
20170338094 | Verenchikov et al. | Nov 2017 | A1 |
20180144921 | Hoyes et al. | May 2018 | A1 |
20180315589 | Oshiro | Nov 2018 | A1 |
20180366312 | Grinfeld et al. | Dec 2018 | A1 |
20190237318 | Brown | Aug 2019 | A1 |
20200083034 | Verenchikov et al. | Mar 2020 | A1 |
20200090919 | Artaev | Mar 2020 | A1 |
20200126781 | Kovtoun | Apr 2020 | A1 |
20200152440 | Hoyes et al. | May 2020 | A1 |
20200168447 | Verenchikov | May 2020 | A1 |
20200168448 | Verenchikov | May 2020 | A1 |
20210242007 | Verenchikov | Aug 2021 | A1 |
20210249243 | Maher | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
2412657 | May 2003 | CA |
101369510 | Feb 2009 | CN |
102131563 | Jul 2011 | CN |
201946564 | Aug 2011 | CN |
4310106 | Oct 1994 | DE |
10116536 | Oct 2002 | DE |
102015121830 | Jun 2017 | DE |
102019129108 | Jun 2020 | DE |
112015001542 | Jul 2020 | DE |
0237259 | Sep 1987 | EP |
1137044 | Sep 2001 | EP |
1566828 | Aug 2005 | EP |
1789987 | May 2007 | EP |
1901332 | Mar 2008 | EP |
2068346 | Jun 2009 | EP |
1665326 | Apr 2010 | EP |
1522087 | Mar 2011 | EP |
2599104 | Jun 2013 | EP |
1743354 | Aug 2019 | EP |
3662501 | Jun 2020 | EP |
3662502 | Jun 2020 | EP |
3662503 | Jun 2020 | EP |
2080021 | Jan 1982 | GB |
2217907 | Nov 1989 | GB |
2300296 | Oct 1996 | GB |
2390935 | Jan 2004 | GB |
2396742 | Jun 2004 | GB |
2403063 | Dec 2004 | GB |
2455977 | Jul 2009 | GB |
2476964 | Jul 2011 | GB |
2478300 | Sep 2011 | GB |
2484361 | Apr 2012 | GB |
2484429 | Apr 2012 | GB |
2485825 | May 2012 | GB |
2489094 | Sep 2012 | GB |
2490571 | Nov 2012 | GB |
2495127 | Apr 2013 | GB |
2495221 | Apr 2013 | GB |
2496991 | May 2013 | GB |
2496994 | May 2013 | GB |
2500743 | Oct 2013 | GB |
2501332 | Oct 2013 | GB |
2506362 | Apr 2014 | GB |
2528875 | Feb 2016 | GB |
2555609 | May 2018 | GB |
2556451 | May 2018 | GB |
2556830 | Jun 2018 | GB |
2562990 | Dec 2018 | GB |
2575157 | Jan 2020 | GB |
2575339 | Jan 2020 | GB |
S6229049 | Feb 1987 | JP |
2000036285 | Feb 2000 | JP |
2000048764 | Feb 2000 | JP |
2003031178 | Jan 2003 | JP |
3571546 | Sep 2004 | JP |
2005538346 | Dec 2005 | JP |
2006049273 | Feb 2006 | JP |
2007227042 | Sep 2007 | JP |
2010062152 | Mar 2010 | JP |
4649234 | Mar 2011 | JP |
2011119279 | Jun 2011 | JP |
4806214 | Nov 2011 | JP |
2013539590 | Oct 2013 | JP |
5555582 | Jul 2014 | JP |
2015506567 | Mar 2015 | JP |
2015185306 | Oct 2015 | JP |
2564443 | Oct 2015 | RU |
2015148627 | May 2017 | RU |
198034 | Jun 1967 | SU |
1681340 | Sep 1991 | SU |
1725289 | Apr 1992 | SU |
9103071 | Mar 1991 | WO |
1998001218 | Jan 1998 | WO |
1998008244 | Feb 1998 | WO |
200077823 | Dec 2000 | WO |
2005001878 | Jan 2005 | WO |
2006014984 | Feb 2006 | WO |
2006049623 | May 2006 | WO |
2006102430 | Sep 2006 | WO |
2006103448 | Oct 2006 | WO |
2007044696 | Apr 2007 | WO |
2007104992 | Sep 2007 | WO |
2007136373 | Nov 2007 | WO |
2008046594 | Apr 2008 | WO |
2008087389 | Jul 2008 | WO |
2010008386 | Jan 2010 | WO |
2010138781 | Dec 2010 | WO |
2011086430 | Jul 2011 | WO |
2011107836 | Sep 2011 | WO |
2011135477 | Nov 2011 | WO |
2012010894 | Jan 2012 | WO |
2012013354 | Feb 2012 | WO |
2012023031 | Feb 2012 | WO |
2012024468 | Feb 2012 | WO |
2012024570 | Feb 2012 | WO |
2012116765 | Sep 2012 | WO |
2013045428 | Apr 2013 | WO |
2013063587 | May 2013 | WO |
2013067366 | May 2013 | WO |
2013098612 | Jul 2013 | WO |
2013110587 | Aug 2013 | WO |
2013110588 | Aug 2013 | WO |
2013124207 | Aug 2013 | WO |
2014021960 | Feb 2014 | WO |
2014074822 | May 2014 | WO |
2014110697 | Jul 2014 | WO |
2014142897 | Sep 2014 | WO |
2014152902 | Sep 2014 | WO |
2015142897 | Sep 2015 | WO |
2015152968 | Oct 2015 | WO |
2015153622 | Oct 2015 | WO |
2015153630 | Oct 2015 | WO |
2015153644 | Oct 2015 | WO |
2015175988 | Nov 2015 | WO |
2016064398 | Apr 2016 | WO |
2016174462 | Nov 2016 | WO |
2017042665 | Mar 2017 | WO |
2018073589 | Apr 2018 | WO |
2018109920 | Jun 2018 | WO |
2018124861 | Jul 2018 | WO |
2018183201 | Oct 2018 | WO |
2019030472 | Feb 2019 | WO |
2019030474 | Feb 2019 | WO |
2019030475 | Feb 2019 | WO |
2019030476 | Feb 2019 | WO |
2019030477 | Feb 2019 | WO |
2019058226 | Mar 2019 | WO |
2019162687 | Aug 2019 | WO |
2019202338 | Oct 2019 | WO |
2019229599 | Dec 2019 | WO |
2020002940 | Jan 2020 | WO |
2020021255 | Jan 2020 | WO |
2020121167 | Jun 2020 | WO |
2020121168 | Jun 2020 | WO |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2016/062174 dated Mar. 6, 2017, 8 pages. |
IPRP PCT/US2016/062174 dated May 22, 2018, 6 pages. |
Search Report for GB Application No. GB1520130.4 dated May 25, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2016/062203 dated Mar. 6, 2017, 8 pages. |
IPRP PCT/US2016/062203, dated May 22, 2018, 6 pages. |
Search Report for GB Application No. GB1520134.6 dated May 26, 2016. |
Search Report Under Section 17(5) for Application No. GB1507363.8 dated Nov. 9, 2015. |
International Search Report and Written Opinion of the International Search Authority for Application No. PCT/GB2016/051238 dated Jul. 12, 2016, 16 pages. |
IPRP for application PCT/GB2016/051238 dated Oct. 31, 2017, 13 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/063076 dated Mar. 30, 2017, 9 pages. |
IPRP for application PCT/US2016/063076, dated May 29, 2018, 7 pages. |
Search Report for GB Application No. 1520540.4 dated May 24, 2016. |
IPRP PCT/GB17/51981 dated Jan. 8, 2019, 7 pages. |
IPRP for International application No. PCT/GB2018/051206, dated Nov. 5, 2019, 7 pages. |
International Search Report and Written Opinion for International Application No. PCT/GB2018/051206, dated Jul. 12, 2018, 9 pages. |
Examination Report under Section 18(3) for Application No. GB1906258.7, dated May 5, 2021, 4 pages. |
Author unknown, “Electrostatic lens ,” Wikipedia, Mar. 31, 2017 (Mar. 31, 2017), XP055518392, Retrieved from the Internet:URL: https://en.wikipedia.org/w/index.php?title=Electrostatic_lens&oldid=773161674 [retrieved on Oct. 24, 2018]. |
Hussein, O.A. et al., “Study the most favorable shapes of electrostatic quadrupole doublet lenses” , AIP Conference Proceedings, vol. 1815, Feb. 17, 2017 (Feb. 17, 2017), p. 110003. |
Guan S., et al. “Stacked-ring electrostatic ion guide” Journal of the American Society for Mass Spectrometry, Elsevier Science Inc, 7(1):101-106 (1996). Abstract. |
International Search Report and Written Opinion for application No. PCT/GB2018/052104, dated Oct. 31, 2018, 14 pages. |
International Search Report and Written Opinion for application No. PCT/GB2018/052105, dated Oct. 15, 2018, 18 pages. |
International Search Report and Written Opinion for application PCT/GB2018/052100, dated Oct. 19, 2018, 19 pages. |
International Search Report and Written Opinion for application PCT/GB2018/052102, dated Oct. 25, 2018, 14 pages. |
International Search Report and Written Opinion for application No. PCT/GB2018/052099, dated Oct. 10, 2018, 16 pages. |
International Search Report and Written Opinion for application No. PCT/GB2018/052101, dated Oct. 19, 2018, 15 pages. |
Combined Search and Examination Report under Sections 17 and 18(3) for application GB1807605.9 dated Oct. 29, 2018, 5 pages. |
Combined Search and Examination Report under Sections 17 and 18(3) for application GB1807626.5, dated Oct. 29, 2018, 7 pages. |
Yavor, M.I., et al., “High performance gridless ion mirrors for multi-reflection time-of-flight and electrostatic trap mass analyzers”, International Journal of Mass Spectrometry, vol. 426, Mar. 2018, pp. 1-11. |
Search Report under Section 17(5) for application GB1707208.3, dated Oct. 12, 2017, 5 pages. |
Communication Relating to the Results of the Partial International Search for International Application No. PCT/GB2019/01118, dated Jul. 19, 2019, 25 pages. |
Doroshenko, V.M., and Cotter, R.J., “Ideal velocity focusing in a reflectron time-of-flight mass spectrometer”, American Society for Mass Spectrometry, 10(10):992-999 (1999). |
Kozlov, B. et al. “Enhanced Mass Accuracy in Multi-Reflecting TOF MS” www.waters.com/posters, ASMS Conference (2017). |
Kozlov, B. et al. “Multiplexed Operation of an Orthogonal Multi-Reflecting TOF Instrument to Increase Duty Cycle by Two Orders” ASMS Conference, San Diego, CA, Jun. 6, 2018. |
Kozlov, B. et al. “High accuracy self-calibration method for high resolution mass spectra” ASMS Conference Abstract, 2019. |
Kozlov, B. et al. “Fast Ion Mobility Spectrometry and High Resolution TOF MS” ASMS Conference Poster (2014). |
Verenchicov., A. N. “Parallel MS-MS Analysis in a Time-Flight Tandem. Problem Statement, Method, and Instrucmental Schemes” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004) Abstract. |
Yavor, M. I. “Planar Multireflection Time-of-Flight Mass Analyser with Unlimited Mass Range” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004) Abstract. |
Khasin, Y. I. et al. “Initial Experimenatl Studies of a Planar Multireflection Time-of-Flight Mass Spectrometer” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004) Abstract. |
Verenchicov., A. N. et al. “Stability of Ion Motion in Periodic Electrostatic Fields” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004) Abstract. |
Verenchicov., A. N. “The Concept of Multireflecting Mass Spectrometer for Continuous Ion Sources” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006) Abstract. |
Verenchicov., A. N., et al. “Accurate Mass Measurements for Inerpreting Spectra of atmospheric Pressure Ionization” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006) Abstract. |
Kozlov, B. N. et al., “Experimental Studies of Space Charge Effects in Multireflecting Time-of-Flight Mass Spectrometes” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006) Abstract. |
Kozlov, B. N. et al., “Multireflecting Time-of-Flight Mass Spectrometer With an Ion Trap Source” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006) Abstract. |
Hasin, Y. I., et al., “Planar Time-of-Flight Multireflecting Mass Spectrometer with an Orthogonal Ion Injection Out of Continuous Ion Sources” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006) Abstract. |
Lutvinsky Y. I. et al., “Estimation of Capacity of High Resolution Mass Spectra for Analysis of Complex Mixtures” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006) Abstract. |
Verenchicov., A. N. et al. “Multiplexing in Multi-Reflecting TOF MS” Journal of Applied Solution Chemistry and Modeling, 6:1-22 (2017). |
Supplementary Partial EP Search Report for EP Application No. 16869126.9, dated Jun. 13, 2019. |
Supplementary Partial EP Search Report for EP Application No. 16866997.6, dated Jun. 7, 2019. |
“Reflectron—Wikipedia”, Oct. 9, 2015, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?title=Reflectron&oldid=684843442 [retrieved on May 29, 2019]. |
Scherer, S., et al., “A novel principle for an ion mirror design in time-of-flight mass spectrometry”, International Journal of Mass Spectrometry, Elsevier Science Publishers, Amsterdam, NL, vol. 251, No. 1, Mar. 15, 2006. |
Combined Search and Examination Report under Sections 17 and 18(3) for Application No. GB2001232.4, dated Jul. 1, 2020, 5 pages. |
Combined Search and Examination Report under Sections 17 and 18(3), for Application No. GB1901411.7, dated Jul. 31, 2019, 7 pages. |
Deng, L., et al., “Serpentine Ultralong Path with Extended Routing (SUPER) High Resolution Traveling Wave Ion Mobility-MS using Structures for Lossless Ion Manipulations”, Anal Chem 89(8): 4628-4634 (2017). |
Deng, L., et al., “Compression Ratio Ion Mobility Programming (CRIMP) Accumulation and Compression of Billions of Ions for Ion Mobility-Mass Spectrometry Using Traveling Waves in Structures for Lossless Ion Manipulations (SLIM)”, Anal Chem 89(12):6432-6439 (2017). |
International Search Report and Written Opinion for International Application No. PCT/EP2017/070508 dated Oct. 16, 2017, 17 pages. |
Search Report for United Kingdom Application No. GB1613988.3 dated Jan. 5, 2017, 4 pages. |
Sakurai et al., “A New Multi-Passage Time-of-Flight Mass Spectrometer at JAIST”, Nuclear Instruments & Methods in Physics Research, Section A, Elsevier, 427(1-2): 182-186, May 11, 1999. Abstract. |
Toyoda et al., “Multi-Turn-Time-of-Flight Mass Spectometers with Electrostatic Sectors”, Journal of Mass Spectrometry, 38: 1125-1142, Jan. 1, 2003. |
Wouters et al., “Optical Design of the TOFI (Time-of-Flight Isochronous) Spectrometer for Mass Measurements of Exotic Nuclei”, Nuclear Instruments and Methods in Physics Research, Section A, 240(1): 77-90, Oct. 1, 1985. |
Stresau, D., et al.: “Ion Counting Beyond 10ghz Using a New Detector and Conventional Electronics”, European Winter Conference on Plasma Spectrochemistry, Feb. 4-8, 2001, Lillehammer, Norway, Retrieved from the Internet:www.etp-ms.com/file-repository/21 [retrieved on Jul. 31, 2019]. |
Kaufmann, R., et. al., “Sequencing of peptides in a time-of-flight mass spectrometer:evaluation of postsource decay following matrix-assisted laser desorption ionisation (MALDI)”, International Journal of Mass Spectrometry and Ion Processes, Elsevier Scientific Publishing Co. Amsterdam, NL, 131:355-385, Feb. 24, 1994. |
Barry Shaulis et al: “Signal linearity of an extended range pulse counting detector: Applications to accurate and precise U-Pb dating of zircon by laser ablation quadrupole ICP-MS”, G3: Geochemistry, Geophysics, Geosystems, 11(11):1-12, Nov. 20, 2010. |
Search Report for United Kingdom Application No. GB1708430.2 dated Nov. 28, 2017. |
International Search Report and Written Opinion for International Application No. PCT/GB2018/051320 dated Aug. 1, 2018. |
International Search Report and Written Opinion for International Application No. PCT/GB2019/051839 dated Sep. 18, 2019. |
International Search Report and Written Opinion for International Application No. PCT/GB2019/051234 dated Jul. 29, 2019, 5 pages. |
Combined Search and Examination Report for United Kingdom Application No. GB1901411.7 dated Jul. 31, 2019. |
Extended European Search Report for EP Patent Application No. 16866997.6, dated Oct. 16, 2019. |
Combined Search and Examination Report for GB 1906258.7, dated Oct. 25, 2019. |
Combined Search and Examination Report for GB1906253.8, dated Oct. 30, 2019, 5 pages. |
Search Report under Section 17(5) for GB1916445.8, dated Jun. 15, 2020. |
International Search Report and Written Opinion for International application No. PCT/GB2020/050209, dated Apr. 28, 2020, 12 pages. |
Author unknown, “Einzel Lens”, Wikipedia [online] Nov. 2020 [retrieved on Nov. 3, 2020]. Retrieved from Internet URL: https://en.wikipedia.org/wiki/Einzel_lens, 2 pages. |
International Search Report and Written Opinion for International application No. PCT/GB2019/051235, dated Sep. 25, 2019, 22 pages. |
International Search Report and Written Opinion for International application No. PCT/GB2019/051416, dated Oct. 10, 2019, 22 pages. |
Search and Examination Report under Sections 17 and 18(3) for Application No. GB1906258.7, dated Dec. 11, 2020, 7 pages. |
Carey, D.C., “Why a second-order magnetic optical achromat works”, Nucl. Instrum. Meth., 189(203):365-367 (1981). |
Yavor, M., “Optics of Charged Particle Analyzers”, Advances in Imaging and Electron Physics Book Series, vol. 57 (2009) Abstract. |
Sakurai, T. et al., “Ion optics for time-of-flight mass spectrometers with multiple symmetry”, Int J Mass Spectrom Ion Proc 63(2-3):273-287 (1985). |
Wollnik, H., “Optics of Charged Particles”, Acad. Press, Orlando, FL (1987) Abstract. |
Wollnik, H., and Casares, A., “An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of two coaxial electrostatic mirrors”, Int J Mass Spectrom 227:217-222 (2003). |
O'Halloran, G.J., et al., “Determination of Chemical Species Prevalent in a Plasma Jet”, Bendix Corp Report ASD-TDR-62-644, U.S. Air Force (1964). Abstract. |
Examination Report for United Kingdom Application No. GB1618980.5 dated Jul. 25, 2019. |
Communication pursuant to Article 94(3) EPC for Application No. 16867005.7, dated Jul. 1, 2021, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20220115224 A1 | Apr 2022 | US |