Electrode assembly for mass spectrometer

Information

  • Patent Grant
  • 11848185
  • Patent Number
    11,848,185
  • Date Filed
    Wednesday, January 29, 2020
    4 years ago
  • Date Issued
    Tuesday, December 19, 2023
    5 months ago
Abstract
An electrode assembly, such as for an ion mirror, comprising: a first layer having a plurality of electrodes that are separated by one or more gaps; a second layer arranged to cover said one or more gaps and prevent electric fields passing through said one or more gaps, said second layer having electrically conductive material located to be coincident with said one or more gaps in the first layer.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a U.S. national phase filing claiming the benefit of and priority to International Patent Application No. PCT/GB2020/050209, filed Jan. 29, 2020, which claims priority from and the benefit of United Kingdom patent application No. 1901411.7 filed on Feb. 1, 2019. The entire contents of these applications are incorporated herein by reference.


FIELD OF THE INVENTION

The present invention relates generally to an electrode assembly for generating electrical fields to manipulate charged particles, such as ions, and to corresponding methods of using such an electrode assembly to manipulate charged particles. Embodiments of the present disclosure include mass or mobility spectrometers comprising the electrode assembly, and corresponding methods of mass or mobility spectrometry.


BACKGROUND

In order to provide miniaturized and/or accurate instruments, it is necessary to provide ion optical devices having relatively small and/or precise electrode structures. Technologies such as Micro-Electro-Mechanical Systems (MEMS) and printed circuit boards have been used to achieve this.


Printed circuit boards (PCBs) having an electrically insulating substrate and electrodes deposited thereon have previously been used to form electrode structures in mass spectrometry, e.g. see U.S. Pat. No. 6,607,414. However, charged particles such as ions impact on the insulating substrate in the areas between the electrodes, causing those areas to become electrically charged and hence affecting the electrical potential profile in the vicinity of those areas. In order to avoid this problem, it is known to cut out the insulating substrate in the areas between the electrodes so as to form gaps, so that electrical charge cannot build up in these areas. However, external electrical fields are then able to penetrate through such gaps and into the ion optical device, which is generally undesirable. In order to mitigate this, the width of the gap can be made relatively small, as compared to the depth of the gap in the direction through the substrate. It is desirable to make the width of the gap 2.5 to 3 times smaller than the depth of the gap. However, the depth of the gap is set by the thickness of the insulating substrate and is relatively small. It is not always possible to make the width of the gap 2.5 to 3 times smaller than this, for example, as the potential difference between electrodes on the PCB either side of the gap can be high and doing so may lead to electrical breakdown and arcing between the electrodes.


Another known approach is to provide grooves in the substrate surface such that the charged particles enter into the groves, rather than charge building up on the outer surface, such as in U.S. Pat. No. 9,653,273. As the groove does not extend entirely through the substrate this technique prevents external electric fields penetrating into the ion-optical device. However, in order to function well, the depth of the groove is required to be relatively large as compared to its width. For example, it is desirable for the depth of the groove to exceed its width by factor of three or more. However, as the depth of the groove is limited by the thickness of the substrate, the width of the groove and hence the spacing between electrodes on the PCB is also limited to being relatively small. This again places limitations on the voltages that can be applied to the electrodes either side of the groove.


Another known approach is to coat the spaces between the electrodes with a resistive layer that transfers charge to the electrodes, as described in Austin et al JASMS 19, 1435-1441, 2008. However, it is difficult to support the desired electric field accuracy when using such resistive coatings. Also, only moderate electric fields are able to be used with such techniques so as to avoid surface discharges.


SUMMARY

The present invention provides an electrode assembly comprising:

    • a first layer having a plurality of electrodes that are separated by one or more gaps;
    • at least one second layer arranged to cover said one or more gaps and prevent electric fields passing through said one or more gaps, said at least one second layer having electrically conductive material located to be coincident with said one or more gaps in the first layer.


As gaps are provided between the electrodes of the first layer, any charged particles, such as ions, that are directed towards the first layer either impact on the electrodes or pass through the gaps between the electrodes. As such, unwanted electrical charge is unable to build up on the inner surface of the first layer and does not affect the electric field generated by the electrodes of the first layer. The second layer prevents electric fields passing through the gaps, in either direction, which may be undesirable. The conductive material of the second layer may also prevent unwanted electrical charge from building up and affecting the electric field generated by the electrodes of the first layer.


The conductive material of the second layer may overlay the one or more gaps in the first layer.


Optionally, no solid material is provided in the gaps in the first layer.


The plurality of electrodes may be elongated electrodes and the gaps may be elongated slots.


The first layer may comprise only electrode material, such as spaced apart electrodes.


Alternatively, the first layer may comprise a printed circuit board (PCB) having an electrically insulating substrate, wherein said plurality of electrodes are deposited on, etched on, printed on, laminated to, or otherwise formed on said substrate; and wherein the substrate may have one or more apertures therethrough that are respectively coincident with said one or more gaps.


Relative to machined electrodes, PCBs allow the production of finer, more accurate features. For example, in the context of the electrode assembly being used in an ion mirror, the electrode assembly is able to produce relatively high ion focusing at the edge of the mirror.


The PCB substrate may be made of a vacuum-compatible material such as ceramic.


As the substrate includes one or more apertures coincident with said one or more gaps, charged particles that enter the gaps are able to pass through the substrate and away from the first layer.


The electrodes of the first layer may extend so as to cover side edges of the apertures in the substrate.


A single said second layer may cover multiple gaps, or all gaps, in the first layer.


A separate one of said second layers may cover each gap in the first layer.


The at least one second layer may comprise a printed circuit board (PCB) having an electrically insulating substrate, wherein said electrically conductive material is deposited on, etched on, printed on, laminated to, or otherwise formed on said substrate.


The use of PCBs for the first and second layers (and any intermediate layers), allows manufacturing ease, low cost, and allows electrode layers to be accurately aligned easily.


The first layer may be a plurality of spaced apart sheet metal or plate metal electrodes; and/or said second layer may be at least one sheet metal or plate metal electrode.


The electrically conductive material may be at least on the side of the second layer facing towards the first layer.


This may be used to prevent charge building up on the second layer that may otherwise affect the electric fields from the plurality of electrodes on the first layer.


Alternatively, the electrically conductive material may be on the side of the second layer facing away from the first layer, which may be arranged to prevent electric fields passing through the gap. It is also contemplated that the entirety of the second layer may be conductive.


The conductive material may be electrically grounded or connected to a voltage source so as to be maintained at an electrical potential, in use.


The first layer may comprise first and second electrodes on opposite sides of each gap in the first layer and that are connected to voltage sources so as to be maintained at different electrical potentials in use, and the conductive material in the second layer at a location coinciding with that gap may be connected to a voltage source so as to be maintained at an electrical potential between said different electrical potentials, in use.


The conductive material may be connected to a voltage source so as to be maintained at an electrical potential substantially midway between said different electrical potentials, in use.


The electrode assembly may comprise at least one intermediate layer arranged between the first and second layers for spacing the first layer away from the at least one second layer; optionally wherein the at least one intermediate layer is a PCB.


The first, second and intermediate layers may be substantially parallel and may each be substantially planar.


The at least one intermediate layer may be at least one electrically insulating layer.


If the at least one intermediate layer is a PCB layer, it may comprise conductive material on one or more of its surfaces or may only be the PCB substrate material.


Each of the at least one intermediate layers may comprise a plurality of apertures therein, wherein each aperture is located to be coincident with both one of the gaps in the first layer and the conductive material on the second layer.


The apertures may be slotted apertures.


Each of the at least one intermediate layer may comprise a plurality of ribs between the apertures. The ribs may be located to be coincident with the electrodes in the first layer, and optionally between the spaced apart conductive material on the second layer.


The first layer, second layer, and any intermediate layer(s) present may be adhered or otherwise joined together to provide a composite layered structure. This composite layered structure may be adhered or otherwise joined to a rigid support, for example, to provide the composite layered structure an accurate shape and/or flatness.


The first layer and/or second layer (and/or any intermediate layers present) may be formed by 3D printing.


One or more electrical components, such as resistors or capacitors etc., may connect the electrodes in the first layer or the electrodes in the second layer (or any electrodes in any intermediate layers present). For example, one or more electrical components, such as resistors may connect the electrodes on either side of each gap in the first layer. The electrodes in the first layer may be connected to each other by such electrical components such that, when connected to a voltage supply, these electrodes generate the desired electrical field (e.g. an ion reflecting field when the electrode assembly is used in an ion mirror). Additionally, or alternatively, the electrodes in the second layer may be connected to each other by resistors.


The electrode assembly may comprise a gas conduit from the outside of the second layer to the one or more gaps in the first layer, for pumping gas from the gaps to the outside of the second layer. Embodiments may therefore include a gas pump arranged to perform such gas pumping. This, for example, enables the electrode assembly to be used in an ion-optical device that is required to be evacuated.


The second layer (and any intermediate layers that may be present) may comprise apertures in fluid communication with the gaps in the first layer, so that gas can be pumped through the apertures and out to the outside of the second layer.


The present invention also provides an ion-optical element comprising:

    • a first electrode assembly of the form described hereinabove; and
    • a second electrode assembly of the form described hereinabove;
    • wherein the first and second electrode assemblies are spaced apart so as to define an ion receiving region therebetween.


The first and second electrode assemblies may be planar and/or parallel to each other.


The first layer of the first electrode assembly may face the first layer of the second electrode assembly.


The ion-optical element may be an ion mirror comprising voltage supplies connected to the plurality of electrodes in each of the first and second electrode assemblies for applying different voltages to these electrode for reflecting ions within the ion mirror. Alternatively, the ion-optical element may be an ion lens, ion deflector, ion reflector, ion accelerator, orthogonal ion accelerator or ion detector.


The first and second electrode assemblies may be connected to each other by one or more additional electrode or insulator layer. All of the layers in such an assembly may be PCB layer, for example, so as to for a hollow multilayer PCB device. For example, the ion optical device may be an ion mass or mobility analyzer and the whole analyzer (optionally except for any ion detector present) may be formed from a multilayer PCB structure.


The ion-optical element may comprise one or more metal electrode extending between and/or joined to the first and second electrode assemblies.


The one or more metal electrode may be a sheet metal or plate metal electrode.


The present invention also provides a Time of Flight (TOF) mass analyzer, multi-reflecting TOF mass analyzer, electrostatic trap, mass spectrometer or mobility spectrometer comprising an electrode assembly or ion-optical element as described hereinabove.


In less preferred embodiments it is contemplated that the at least one second layer does not have electrically conductive material located to be coincident with said one or more gaps in the first layer.


Accordingly, from a second aspect the present invention provides an electrode assembly comprising:


a first layer having a plurality of electrodes that are separated by one or more gaps; and at least one second layer arranged and configured to cover said one or more gaps and prevent electric fields passing through said one or more gaps.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments will now be described, by way of example only, and with reference to the accompanying drawings in which:



FIGS. 1A and 1B show schematics of MRTOF mass analyzers according to embodiments of the present invention;



FIG. 2 shows a perspective view of a portion of an MRTOF mass analyzer according to an embodiment of the present invention;



FIG. 3A shows a section through an embodiment of an MRTOF mass analyzer, illustrating the structure of the ion mirrors and orthogonal accelerator, FIG. 3B shows four different types of layer for forming each ion mirror, and FIG. 3C shows a portion of the ion mirror structure;



FIG. 4 shows a Simion® plot of an embodiment of the orthogonal accelerator and deflector shown in FIG. 2;



FIG. 5 shows a Simion® plot of the ion deflector 12 in the cross-sectional view illustrated as view B in FIG. 2; and



FIG. 6 shows another embodiment of an ion mirror.





DETAILED DESCRIPTION

Although the present invention may be used to form electrode structures in any ion-optical device, such as for or in a mass spectrometer or ion mobility spectrometer, embodiments will now be described in which the electrode structures form part of a Time of Flight (TOF) mass analyzer. In particular, embodiments will now be described in which the electrode structures form part of a Multi-Reflecting Time of Flight (MRTOF) mass analyzer.



FIG. 1A shows a schematic of an MRTOF mass analyzer according to an embodiment of the present invention. The instrument comprises two gridless ion mirrors 2 that are separated in the X-dimension by a field-free region 3. Each ion mirror 2 comprises multiple electrodes arranged so that different voltages may be applied to the different electrodes to cause the ions to be reflected in the X-dimension. The electrodes are elongated in the Z-dimension, which allows the ions to be reflected multiple times by each mirror 2 as they pass through the device, as will be described in more detail below. Each ion mirror 2 may form a two-dimensional electrostatic field in the X-Y plane. The drift space 3 arranged between the ion mirrors 2 may be substantially electric field-free such that when the ions are reflected and travel in the space between the ion mirrors 2 they travel through a substantially field-free region 3. An ion accelerator 6, such as an orthogonal accelerator for example, may be arranged at one end of the mass analyzer (in the Z-dimension) and an ion detector 8 may be arranged at the other end of the analyzer.


In embodiments, an ion source delivers ions 9 along the Z-dimension to the orthogonal ion accelerator 6, which pulses packets of ions 10 towards a first of the ion mirrors. The ions therefore have a velocity in the X-dimension and also a drift velocity in the Z-dimension. The ions enter into the first ion mirror and are reflected back towards the second of the ion mirrors. The ions pass through the field-free region 3 between the mirrors 2 as they travel towards the second ion mirror and they separate according to their mass to charge ratios in the known manner that occurs in field-free regions. The ions then enter the second mirror and are reflected back to the first ion mirror, again passing through the field-free region 3 between the mirrors as they travel towards the first ion mirror. The first ion mirror then reflects the ions back to the second ion mirror. This continues and the ions are continually reflected between the two ion mirrors 2 as they drift along the device in the Z-dimension until the ions impact upon ion detector 8. The ions therefore follow a substantially sinusoidal mean trajectory within the X-Z plane between the orthogonal accelerator and the ion detector 8.


The MRTOF mass analyzer may use the duration of time that has elapsed between a given ion being pulsed from the orthogonal accelerator 6 to the time at which that ion is detected, along with the knowledge of its flight path length, to calculate the mass to charge ratio of that ion.



FIG. 1B shows a schematic of an MRTOF mass analyzer according to another embodiment of the present invention. This embodiment is the same as that shown in FIG. 1A, except that the ion receiving axis of the orthogonal accelerator 6 is tilted with respect to the Z-dimension. Additionally, or alternatively, an ion deflector 12 is provided for deflecting the ions that have been pulsed by the orthogonal accelerator 6 in the Z-dimension. This deflector 12 reduces the velocity of the ions in the Z-dimension and hence increases the number of ion mirror reflections before the ions impact on the detector 8. The deflector 12 may be arranged so as to deflect ions at the exit of the orthogonal accelerator 6, before the ions have passed into any ion mirrors 2.


In order for such MRTOF instruments to attain high mass resolution and mass accuracy it is important that the electrodes of the ion mirrors 2 are formed and aligned to a relatively high precision. Conventionally, ion mirrors in TOF mass analyzers are assembled using bulk metal plate electrodes. For relatively high quality MRTOF ion mirrors that can focus ions having a relatively wide spread of kinetic energies, it is advantageous to provide precisely positioned and relatively narrow electrodes in the vicinity of ion reflection area. For example, some electrodes may be required to be only as wide as 2-3 mm in the X-dimension. The electrodes may be elongated in the drift (Z-) dimension and may need to have high parallelism in the drift (Z-) dimension, such as to a higher accuracy than 50 microns. Such electrode structures are difficult to provide using conventional mechanical treatments of bulk metal or using sheet metals. For example, conventional ion mirror electrodes are made of stacked parallel plate electrodes, each of which has a large aperture therein to form the ion reflecting path through it. The stacked plates are separated by spacers formed from electrically insulating material. However, it is difficult to make the electrodes precisely flat unless they are relatively thick. Also, the insulators between the plates need to be relatively far from the ion inlet to the mirror interior so as to prevent electric fields penetrating through the regions between the plates, and also to minimize spurious electric fields that would otherwise be caused by ions impacting on and electrically charging the insulating spacers. This renders the ion mirror assembly relatively large and heavy.


Embodiments of the present invention may use a printed circuit board (PCB) to provide multiple electrodes of an ion-optical device. The PCB may be slotted or otherwise apertured the entire way therethrough so as to provide a gap between different electrodes. A layer may be provided behind that gap in the PCB so as to prevent electric fields passing through the gap. The layer is desirably spaced apart from the apertured PCB, although it is contemplated that it may be directly adjacent to it. The layer may be a conductive sheet, Alternatively the layer may be a conductive material coated on the surface of a substrate that faces the electrodes of the PCB, the coating being at least in the regions coinciding with the gaps in the apertured PCB. The conductive sheet or material coinciding with any given gap may be grounded or another electrical potential applied thereto, such as a potential intermediate the potentials of the electrodes on either side of the gap. This prevents charge building up on the layer and affecting the electric field inside the ion-optical device.



FIG. 2 shows a schematic illustration of part of an MRTOF mass analyzer of the type shown in FIGS. 1A-1B and according to an embodiment of the present invention. Portions of the ion mirrors 2 are shown with the orthogonal accelerator 6 and deflector 12 arranged therebetween. As shown by the arrows, in use, ions are delivered to the orthogonal ion accelerator 6 and are orthogonally ejected therefrom into one of the ion mirrors 2. The ions are then reflected between the ion mirrors multiple times, as described above in relation to FIGS. 1A-1B.


In order to reflect the ions in the X-dimension, each ion mirror 2 comprises a plurality of electrodes 14 that are spaced apart in the X-dimension and which are elongated in the Z-dimension. Different voltages are applied to the different electrodes so as to generate an electric field within the ion mirror for reflecting the ions. As can be seen from FIG. 2, slotted gaps 16 are provided between adjacent electrodes 14 of the ion mirror 2. These slotted gaps 16 are open and are not filled with any solid material. For example, an electrically insulating material is not present in these gaps 16. An electrically conductive layer 18 is arranged on the outer side of the ion mirror 2 at a location coinciding with (and overlaying) each gap 16 so as to cover the gap 16. A separate layer may be provided for each gap 16, as shown, or a single layer may be provided to cover multiple gaps or all gaps. Each layer 18 may prevent or inhibit electric fields passing through the gap(s) 16 that it covers so as to prevent or inhibit such fields entering the ion mirror 2. The layer 18 may be spaced apart in the Y-dimension from the electrodes 14 or may be directly adjacent to it. Additionally, or alternatively, the layer 18 may be a coating of conductive material on the surface of a substrate that faces the electrodes 14, the coating being at least in the regions coinciding with the gaps 16. For example, the layer 18 may be a conductive pattern formed on an electrically insulating substrate (in other words, formed by a PCB). The conductive layer coinciding with any given gap may be grounded or another electrical potential applied thereto, such as a potential intermediate the potentials of the electrodes on either side of the gap. This prevents charge building up on the layer and affecting the electric field inside the ion mirror.


The electrodes 14 may be formed by sheet metal electrodes, plate metal electrodes or PCBs. Additionally, or alternatively, the layer(s) 18 may be may be formed by sheet metal electrodes, plate metal electrodes or PCBs. In embodiments where the layer(s) 18 are in direct contact with the electrodes 14 that form the inner surface of the ion mirror 2, and in which the layer(s) are electrically conductive on the inner surface, the layer(s) 18 are electrically insulated from the electrodes 14 that form the inner surface.


Embodiments are contemplated wherein both the electrodes that form the inner surface of the ion mirror and the layer(s) covering the gaps are formed from a composite layered PCB structure.



FIG. 3A shows a section through an embodiment of an MRTOF mass analyzer, which illustrates part of the structure of the ion mirrors 2 and the orthogonal accelerator 6. Each ion mirror 2 comprises two multi-layered PCB assemblies 20 that are each arranged in the X-Z plane and that are spaced apart in the Y-dimension so as to define an ion receiving region therebetween for reflecting ions. Each assembly 20 comprises a plurality of electrodes 14 that are each elongated in the Z-direction and that are spaced apart in the X-direction by gaps 16 between the electrodes. Voltages are applied to these electrodes for reflecting ions in the ion mirror. The structure of each assembly will be described in more detail below in relation to FIGS. 3B-3C. Each ion mirror 2 may also comprise an end cap 22 at the X-dimensional end of the ion mirror at which the ions are turned around, and may comprise side walls at the Z-dimensional ends of the ion mirror (not shown). These structures may be formed by a stack of PCBs, sheet metal electrodes or plate metal electrodes, as will be described below.



FIG. 3B shows four different types of PCB sheets for forming the ion mirror shown on the right side (in the X-dimension) of FIG. 3A. As described above, each of the ion mirrors comprises two PCB assemblies 20 that are each arranged in the X-Z plane. Each PCB assembly comprises a first PCB sheet 24 at the inner surface of the ion mirror 2. This first PCB sheet 24 comprises the above-described plurality of different electrodes 14. The portions of the insulating substrate of the first PCB sheet 24 between the electrodes have been removed so as to form slotted gaps 16 between the electrodes 14 that extend through the first PCB sheet 24. A second PCB sheet 26 is arranged against the outer surface of the first PCB sheet 24. The second PCB sheet 26 has a plurality of slotted gaps 28 arranged therein that are spaced apart in the X-dimension and separated by ribs 30 of the PCB, such as ribs of the insulating substrate. The majority (or all) of the second PCB sheet 26, or at least the ribs 30 thereof, may not be coated with electrically conductive material. The second PCB sheet 26 acts as a spacer layer and is arranged against the outer side of the first PCB sheet 24 such that the slotted gaps 28 of the second PCB sheet 26 are coincident with the slotted gaps 16 in the first PCB sheet 24, and the ribs 30 of the second PCB sheet 26 are against the portions of the first PCB sheet 24 on which the electrodes 14 are located. A third PCB sheet 32 is arranged against the outer surface of the second PCB sheet 26. The third PCB sheet 32 has a plurality of different electrodes 34 arranged thereon (which may correspond to layer 18 in previous embodiments) that are spaced apart in the X-dimension and separated by insulating substrate 36 between the electrodes 34. The third PCB sheet 32 is arranged against the second PCB sheet 26 such that the slotted gaps 28 of the second PCB sheet are coincident with the electrodes 34 of the third PCB sheet 32, and the ribs 30 of the second PCB sheet 26 may be against insulating substrate portions 36 of the third PCB sheet 32. In other words, in the X-Z plane, the electrodes 34 of the third PCB sheet 32 are arranged within the gaps 16 in the first PCB sheet 24. A portion of the PCB assembly 20 is shown in FIG. 3C.


It is also contemplated that additional PCB sheets could be provided between the first and third PCB sheets 24,32 so as to increase the spacing between the electrodes 14 and electrodes 34. Alternatively, it is contemplated that the second PCB sheet 26 may be omitted, although it must still be ensured that the electrodes 14 on the first PCB sheet 24 are arranged so as to be electrically isolated from any electrodes 34 on the third PCB sheet 32.



FIG. 3B also illustrates a fourth type of PCB 40, a plurality of which may be stacked together and arranged between opposing PCB assemblies 20 in each ion mirror 2, thereby forming the end cap 22 and Z-dimension side walls of the ion mirror 2. This is shown in FIG. 3A, except that this sectional view does not show the Z-dimensional side walls of the ion mirror. This fourth PCB type 40 corresponds to the first PCB type 24, except that its central portion and one of the X-dimensional side walls are not present. The fourth PCB type 40 consists of a first elongated strip portion 42 for forming the end cap wall 22 of the ion mirror and an orthogonally arranged elongated strip portion 44 at either longitudinal end of the first elongated strip portion 42, for forming the Z-dimensional side walls of the ion mirror. In other words, the fourth PCB 40 is substantially C-shaped. The first elongated strip portion 42 comprises an electrode 46 arranged on the insulating substrate, to which the end cap voltage may be applied. Each of the orthogonally arranged elongated strip portions 44 has a plurality of electrodes 48 arranged thereon that are spaced apart in the X-dimension and separated by insulating substrate between the electrodes. These electrodes 48 may be arranged such that when the fourth PCBs 40 are located in the ion mirror, these electrodes are at the same locations (in the X-dimension) as the electrodes 14 on the first PCB 24. The voltage applied to any given one of the electrodes 48 on the fourth PCB40 may be the same as the voltage applied to the electrode 14 on the first PCB 24 at the same location in the X-dimension.


It will be appreciated that mirror images of the PCB layers shown in FIG. 3B are used to form the ion mirror shown on the left side (in the X-dimension) of FIG. 3A.


In use, various different voltages are applied to the electrodes of the first PCB 24 and fourth PCB 40 of the ion mirror to generate an electric field for reflecting ions in the ion mirror. As gaps 16 are provided between the electrodes 14 on the first PCB, any ions (or other charged particles) that are scattered towards the first PCB either impact on the electrodes 14 or pass through the gaps 16 between the electrodes. As such, unwanted electrical charge is unable to build up on the inner surface of the first PCB 24. The third PCB 32, that is located outwardly of the first PCB 24, overlays and covers the gaps 16 in the first PCB. This third PCB 32 may be configured to prevent electric fields from passing from the outside of the ion mirror 2 to the inside of the ion mirror, through the gaps 16 in the first PCB 24. For example, the third PCB 32 may have electrical conductors/electrodes 34 arranged at locations that coincide (in the X-Z plane) with the gaps 16 in the first PCB 24. Electric potentials may be applied to these electrodes 34 on the third PCB 32. For example, the potential applied to any given electrode 34 on the third PCB 32 may be between the two potentials applied to the two respective electrodes 34 on opposite sides of the gap 16 with which that electrode on the third PCB is coincident. For example, the potential applied to any given electrode on the third PCB may be substantially midway between the two potentials applied to the two electrodes on opposite sides of the gap with which that electrode on the third PCB is coincident. This may reduce the impact on the electric fields within the ion mirror that are generated by the electrodes on the first PCB layer.


It is advantageous to minimize the exposure of the PCB insulating substrate to scattered ions. For this purpose, the electrodes 14 of the first PCB 24 may extend down the edge walls 50 of the gaps 16 in the first PCB 24 (as shown in FIG. 3C). Alternatively, the edges may be cut such that the walls 50 of the gaps are not orthogonal to the inner surface of the first layer, but are instead angled such that the edge walls 50 are hidden below the first layer.


The second PCB 26 enables the third PCB 32 to be spaced apart from the first PCB 24. As electrodes 14 of the first PCB 24 may extend down the edge walls 50 of the gaps 16 in the first PCB 24 (as shown in FIG. 3C), the use of the second PCB 26 enables the electrodes 34 on the third PCB 32 to be spaced apart and therefore electrically isolated from the first electrodes 14 (particularly at the edges 50 of the gaps 16). The second PCB 26 may have substantially no conductive material thereon and may be substantially only an insulating substrate sheet.


In alternative embodiments to those described above, rather than providing a second PCB sheet 26, a sheet other than a PCB may be used or individual spacer members may be used to space the first and third PCBs 24 and 32) apart.



FIG. 3A also shows an embodiment of the structure of the gridless orthogonal accelerator 6. The orthogonal accelerator comprises two PCB assemblies 20′ that are each arranged in the X-Z plane and that are spaced apart in the Y-dimension so as to define an ion receiving region therebetween. Each assembly 20′ comprises a plurality of electrodes that are each elongated in the Z-direction and that are spaced apart in the X-direction by gaps between the electrodes. Voltages are applied to these electrodes for accelerating ions into one of the ion mirrors. The structure of each PCB assembly may be formed in the same manner as the PCB assemblies in the ion mirror. An additional PCB layer 52 may be provided on part of the inner surface of each first PCB sheet so as to provide a restricted aperture in the Y-Z plane through which the ions are pulsed. The orthogonal accelerator 6 also comprises a pushing electrode wall 54 at the X-dimensional end from which the ions are pulsed, and may also comprises Z-dimensional side walls (not shown). These may be formed using the fourth type of PCB 40 shown in FIG. 3B, in the same way that the end cap 22 and side walls of the ion mirror 2 are formed. Alternatively, these may be formed by sheet metal electrodes or plate metal electrodes.


In use, various different voltages are applied to the electrodes at the inner surfaces of the orthogonal accelerator to generate an electric field that orthogonally accelerates ions entering the orthogonal accelerator.


As shown in FIG. 3A, it is contemplated that rigid walls 56 of the housing of the mass analyzer may be used to provide flatness and precise positioning of the PCB electrodes. The ion mirror PCB assemblies 20 and orthogonal accelerator 6 may therefore be fully formed by PCB assemblies that are sandwiched between the rigid walls 56. Optionally, the ion mirror PCB assemblies 20 and orthogonal accelerator 6 may be sandwiched between further PCB sheets (not shown), which themselves are sandwiched between the rigid walls 56.


As described above, it is contemplated that conventional electrodes may be used in combination with the PCB electrode assemblies, particularly for example where good flatness of surfaces is needed in a direction orthogonal or inclined to the PCB layered surfaces. For example, a conventional metal sheet or metal plate electrode may be used for the ion mirror end cap, each ion mirror side wall, the orthogonal accelerator pushing electrode wall, or for other electrodes of the orthogonal accelerator. These electrodes may be soldered or otherwise secured between the opposing PCB assemblies, optionally being jigged before being secured in place. These conventional electrodes may serve as spacers between the PCB electrode assemblies.



FIG. 2 shows an example of an orthogonal accelerator 6 having a combination of conventional metal sheet or metal plate electrodes for orthogonally accelerating the ions, and PCB electrodes for deflecting the ions in the Z-dimension. The conventional electrodes may be soldered or otherwise secured between the PCB layers.



FIG. 4 shows a Simion® plot of an embodiment of the orthogonal accelerator 6 and deflector 12 shown in FIG. 2, illustrating the electric potentials and ion trajectories of the ions. FIG. 4 corresponds to the cross-sectional view illustrated as view A in FIG. 2. The orthogonal accelerator 6 may comprise opposing PCB sheets 60 that are spaced apart in the Y-dimension and a plurality of electrodes 62 that extend in the Y-Z plane arranged therebetween. Some or all of the electrodes 62 arranged in the Y-Z plane may be sheet metal or plate metal electrodes that are secured to the PCB sheets 60, for example by soldering. Voltages may be applied to these electrodes 62 so as to control the motion of the ions in the X-dimension. As described in relation to FIG. 1B, an ion deflector 12 may also be provided for deflecting ions in the Z-dimension. This deflector 12 may comprise electrodes 64 of the PCB sheets 60, i.e. electrodes deposited on the PCB substrate.



FIG. 5 shows a Simion® plot of the ion deflector 12 in the cross-sectional view illustrated as view B in FIG. 2. The electric potentials within the ion deflector are illustrated. As can be seen from this view, the deflector 12 may comprise a plurality of electrodes 64 spaced apart in the Z-dimension along each PCB sheet 60. Different voltages may be applied to different electrodes 64 as a function of their location in the Z-dimension so as to generate a nearly homogeneous electric field that substantially evenly deflects ions in the Z-dimension. The deflector 12 may comprise opposing side wall electrodes 66 arranged in the X-Y plane. These electrodes 66 may be plate metal or sheet metal electrodes and may be secured to and between the PCB sheets 60, for example, by soldering.


It is contemplated that at least the deflector electrodes 64 that are spaced in the Z-dimension may comprise opposing PCB assemblies with the layers of thin electrodes of the type described above in relation to the ion mirrors.



FIG. 6 shows another embodiment of an ion mirror 2, with a fine electrode structure in the region where ions are turned around, without the Z-dimensional side walls being illustrated. As in some of the previously described embodiments, the ion mirror may comprise two PCB assemblies that are each arranged in the X-Z plane and that are spaced apart in the Y-dimension so as to define an ion receiving region therebetween. The end cap electrode 22 may be formed by sheet metal, plate metal, or orthogonally mounted metal-plated board (such as a PCB). The end cap electrode 22 may be soldered between or to the ends of the PCB assemblies. The external surfaces of the PCB assemblies may be electrically grounded for their safe mounting between the rigid support walls 56 (shown in FIG. 3A). The slots may be made through the external layers to enable gas to be pumped through the electrode assemblies so as to evacuate the interior of the mass analyzer.


Although the present invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the scope of the invention as set forth in the accompanying claims.


For example, although embodiments of an MRTOF mass analyzer have been described in which the ions drift along a linear Z-axis whilst they are reflected between the ion mirrors, it is alternatively contemplated that each ion mirrors may define a cylindrical ion receiving region such that the ions drift in a circumferential direction around the cylindrical mirrors. Such embodiments do not require the Z-dimensional end walls described above.


Although embodiments of ion mirrors, gridless orthogonal accelerators and ion deflectors have been described in relation to ion-optical components for MRTOF mass analyzers, the ion-optical components may be for single reflection TOF mass analyzers. Moreover, the layered structures described herein may be used for electrode structures in other types of ion-optical components to those described herein, such as ion lenses, or for ion-optical components other than those in mass or mobility spectrometers. The layered structures described herein may be used, for example, in any device where a fine/precise electrode structure or electric field is required.


A PCB as used herein may refer to a component comprising electrodes (such as conductive tracks, pads and other features) etched from, printed on, deposited on, or laminated to a non-conductive substrate.


The electrically non-conductive substrates described herein may be sheet or bulk material, or may be 3D-printed or deposited on another substrate by any other method.

Claims
  • 1. An electrode assembly comprising: a first layer comprising a printed circuit board (PCB) having an electrically insulating substrate and a plurality of electrodes arranged on the substrate that are separated by one or more gaps, wherein the substrate has one or more apertures therethrough that are respectively coincident with said one or more gaps;at least one second layer arranged to cover said one or more gaps and prevent electric fields passing through said one or more gaps, said at least one second layer having electrically conductive material located to be coincident with said one or more gaps in the first layer; andat least one intermediate layer arranged between the first and second layers for spacing the first layer away from the at least one second layer.
  • 2. The electrode assembly of claim 1, wherein no solid material is provided in the gaps in the first layer.
  • 3. The electrode assembly of claim 1, wherein the plurality of electrodes are elongated electrodes and the gaps are elongated slots.
  • 4. The electrode assembly of claim 1, wherein the electrodes of the first layer extend so as to cover side edges of the apertures in the substrate.
  • 5. The electrode assembly of claim 1, wherein a single said second layer covers multiple gaps, or all gaps, in the first layer.
  • 6. The electrode assembly of claim 1, wherein a separate one of said second layers covers each gap in the first layer.
  • 7. The electrode assembly of claim 1, wherein the at least one second layer comprises a printed circuit board (PCB) having an electrically insulating substrate, wherein said electrically conductive material is deposited on, etched on, printed on, laminated to, or otherwise formed on said substrate.
  • 8. The electrode assembly of claim 1, wherein said second layer is at least one sheet metal or plate metal electrode.
  • 9. The electrode assembly of claim 1, wherein the electrically conductive material is at least on the side of the second layer facing towards the first layer.
  • 10. The electrode assembly of claim 1, wherein the conductive material is electrically grounded or connected to a voltage source so as to be maintained at an electrical potential, in use.
  • 11. The electrode assembly of claim 1, wherein the first layer comprises first and second electrodes on opposite sides of each gap in the first layer and that are connected to voltage sources so as to be maintained at different electrical potentials in use, and wherein the conductive material in the second layer at a location coinciding with that gap is connected to a voltage source so as to be maintained at an electrical potential between said different electrical potentials, in use.
  • 12. The electrode assembly of claim 1, wherein each of the at least one intermediate layers comprises a plurality of apertures therein, wherein each aperture is located to be coincident with both one of the gaps in the first layer and the conductive material on the second layer.
  • 13. An ion-optical element comprising: a first electrode assembly according to claim 1; anda second electrode assembly according to claim 1;wherein the first and second electrode assemblies are spaced apart so as to define an ion receiving region therebetween.
  • 14. The ion-optical element of claim 13, wherein the first layer of the first electrode assembly faces the first layer of the second electrode assembly.
  • 15. The ion-optical element of claim 13, wherein the ion-optical element is an ion mirror comprising voltage supplies connected to the plurality of electrodes in each of the first and second electrode assemblies for applying different voltages to these electrode for reflecting ions within the ion mirror; or wherein the ion-optical element is an ion lens, ion deflector, ion reflector, ion accelerator, orthogonal ion accelerator or ion detector.
  • 16. The ion-optical element of claim 13, comprising one or more metal electrode extending between and/or joined to the first and second electrode assemblies.
  • 17. A Time of Flight (TOF) mass analyser, multi-reflecting TOF mass analyser, electrostatic trap, mass spectrometer or mobility spectrometer comprising an electrode assembly as claimed in claim 1.
Priority Claims (1)
Number Date Country Kind
1901411 Feb 2019 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/GB2020/050209 1/29/2020 WO
Publishing Document Publishing Date Country Kind
WO2020/157499 8/6/2020 WO A
US Referenced Citations (318)
Number Name Date Kind
3898452 Hertel Aug 1975 A
4390784 Browning et al. Jun 1983 A
4691160 Ino Sep 1987 A
4731532 Frey et al. Mar 1988 A
4855595 Blanchard Aug 1989 A
5017780 Kutscher et al. May 1991 A
5107109 Stafford, Jr. et al. Apr 1992 A
5128543 Reed et al. Jul 1992 A
5202563 Cotter et al. Apr 1993 A
5331158 Dowell Jul 1994 A
5367162 Holland et al. Nov 1994 A
5396065 Myerholtz et al. Mar 1995 A
5435309 Thomas et al. Jul 1995 A
5464985 Cornish et al. Nov 1995 A
5619034 Reed et al. Apr 1997 A
5654544 Dresch Aug 1997 A
5689111 Dresch et al. Nov 1997 A
5696375 Park et al. Dec 1997 A
5719392 Franzen Feb 1998 A
5763878 Franzen Jun 1998 A
5777326 Rockwood et al. Jul 1998 A
5834771 Yoon et al. Nov 1998 A
5955730 Kerley et al. Sep 1999 A
5994695 Young Nov 1999 A
6002122 Wolf Dec 1999 A
6013913 Hanson Jan 2000 A
6020586 Dresch et al. Feb 2000 A
6080985 Welkie et al. Jun 2000 A
6107625 Park Aug 2000 A
6160256 Ishihara Dec 2000 A
6198096 Le Cocq Mar 2001 B1
6229142 Bateman et al. May 2001 B1
6271917 Hagler Aug 2001 B1
6300626 Brock et al. Oct 2001 B1
6316768 Rockwood et al. Nov 2001 B1
6337482 Francke Jan 2002 B1
6384410 Kawato May 2002 B1
6393367 Tang et al. May 2002 B1
6437325 Reilly et al. Aug 2002 B1
6455845 Li et al. Sep 2002 B1
6469295 Park Oct 2002 B1
6489610 Barofsky et al. Dec 2002 B1
6504148 Hager Jan 2003 B1
6504150 Verentchikov et al. Jan 2003 B1
6534764 Verentchikov et al. Mar 2003 B1
6545268 Verentchikov et al. Apr 2003 B1
6570152 Hoyes May 2003 B1
6576895 Park Jun 2003 B1
6580070 Cornish et al. Jun 2003 B2
6591121 Madarasz et al. Jul 2003 B1
6607414 Charles et al. Aug 2003 B2
6614020 Cornish Sep 2003 B2
6627877 Davis et al. Sep 2003 B1
6646252 Gonin Nov 2003 B1
6647347 Roushall et al. Nov 2003 B1
6664545 Kimmel et al. Dec 2003 B2
6683299 Fuhrer et al. Jan 2004 B2
6694284 Nikoonahad et al. Feb 2004 B1
6717132 Franzen Apr 2004 B2
6734968 Wang et al. May 2004 B1
6737642 Syage et al. May 2004 B2
6744040 Park Jun 2004 B2
6744042 Zajfman et al. Jun 2004 B2
6747271 Gonin et al. Jun 2004 B2
6770870 Vestal Aug 2004 B2
6782342 LeGore et al. Aug 2004 B2
6787760 Belov et al. Sep 2004 B2
6794643 Russ, IV et al. Sep 2004 B2
6804003 Wang et al. Oct 2004 B1
6815673 Plomley et al. Nov 2004 B2
6833544 Campbell et al. Dec 2004 B1
6836742 Brekenfeld Dec 2004 B2
6841936 Keller et al. Jan 2005 B2
6861645 Franzen Mar 2005 B2
6864479 Davis et al. Mar 2005 B1
6870156 Rather Mar 2005 B2
6870157 Zare Mar 2005 B1
6872938 Makarov et al. Mar 2005 B2
6888130 Gonin May 2005 B1
6900431 Belov et al. May 2005 B2
6906320 Sachs et al. Jun 2005 B2
6940066 Makarov et al. Sep 2005 B2
6949736 Ishihara Sep 2005 B2
7034292 Whitehouse et al. Apr 2006 B1
7071464 Reinhold Jul 2006 B2
7084393 Fuhrer et al. Aug 2006 B2
7091479 Hayek Aug 2006 B2
7126114 Chernushevich Oct 2006 B2
7196324 Verentchikov Mar 2007 B2
7217919 Boyle et al. May 2007 B2
7221251 Menegoli et al. May 2007 B2
7326925 Verentchikov et al. Feb 2008 B2
7351958 Vestal Apr 2008 B2
7365313 Fuhrer et al. Apr 2008 B2
7385187 Verentchikov et al. Jun 2008 B2
7388197 McLean et al. Jun 2008 B2
7399957 Parker et al. Jul 2008 B2
7423259 Hidalgo et al. Sep 2008 B2
7498569 Ding Mar 2009 B2
7501621 Willis et al. Mar 2009 B2
7504620 Sato et al. Mar 2009 B2
7521671 Kirihara et al. Apr 2009 B2
7541576 Belov et al. Jun 2009 B2
7582864 Verentchikov Sep 2009 B2
7608817 Flory Oct 2009 B2
7663100 Vestal Feb 2010 B2
7675031 Konicek et al. Mar 2010 B2
7709789 Vestal et al. May 2010 B2
7728289 Naya et al. Jun 2010 B2
7745780 McLean et al. Jun 2010 B2
7755036 Satoh Jul 2010 B2
7772547 Verentchikov Aug 2010 B2
7800054 Fuhrer et al. Sep 2010 B2
7825373 Willis et al. Nov 2010 B2
7863557 Brown Jan 2011 B2
7884319 Willis et al. Feb 2011 B2
7932491 Vestal Apr 2011 B2
7982184 Sudakov Jul 2011 B2
7985950 Makarov et al. Jul 2011 B2
7989759 Holle Aug 2011 B2
7999223 Makarov et al. Aug 2011 B2
8017907 Willis et al. Sep 2011 B2
8017909 Makarov et al. Sep 2011 B2
8063360 Willis et al. Nov 2011 B2
8080782 Hidalgo et al. Dec 2011 B2
8093554 Makarov Jan 2012 B2
8237111 Golikov et al. Aug 2012 B2
8354634 Green et al. Jan 2013 B2
8373120 Verentchikov Feb 2013 B2
8395115 Makarov et al. Mar 2013 B2
8492710 Fuhrer et al. Jul 2013 B2
8513594 Makarov Aug 2013 B2
8633436 Ugarov Jan 2014 B2
8637815 Makarov et al. Jan 2014 B2
8642948 Makarov et al. Feb 2014 B2
8642951 Li Feb 2014 B2
8648294 Prather et al. Feb 2014 B2
8653446 Mordehai et al. Feb 2014 B1
8658984 Makarov et al. Feb 2014 B2
8680481 Giannakopulos et al. Mar 2014 B2
8723108 Ugarov May 2014 B1
8735818 Kovtoun et al. May 2014 B2
8772708 Kinugawa et al. Jul 2014 B2
8785845 Loboda Jul 2014 B2
8847155 Vestal Sep 2014 B2
8853623 Verenchikov Oct 2014 B2
8884220 Hoyes et al. Nov 2014 B2
8921772 Verenchikov Dec 2014 B2
8952325 Giles et al. Feb 2015 B2
8957369 Makarov Feb 2015 B2
8975592 Kobayashi et al. Mar 2015 B2
9048080 Verenchikov et al. Jun 2015 B2
9082597 Willis et al. Jul 2015 B2
9082604 Verenchikov Jul 2015 B2
9099287 Giannakopulos Aug 2015 B2
9136101 Grinfeld et al. Sep 2015 B2
9147563 Makarov Sep 2015 B2
9196469 Makarov Nov 2015 B2
9207206 Makarov Dec 2015 B2
9214322 Kholomeev et al. Dec 2015 B2
9214328 Hoyes et al. Dec 2015 B2
9281175 Haufler et al. Mar 2016 B2
9312119 Verenchikov Apr 2016 B2
9324544 Rather Apr 2016 B2
9373490 Nishiguchi et al. Jun 2016 B1
9396922 Verenchikov et al. Jul 2016 B2
9417211 Verenchikov Aug 2016 B2
9425034 Verentchikov et al. Aug 2016 B2
9472390 Verenchikov et al. Oct 2016 B2
9514922 Watanabe et al. Dec 2016 B2
9576778 Wang Feb 2017 B2
9595431 Verenchikov Mar 2017 B2
9653273 Loboda et al. May 2017 B2
9673033 Grinfeld et al. Jun 2017 B2
9679758 Grinfeld et al. Jun 2017 B2
9683963 Verenchikov Jun 2017 B2
9728384 Verenchikov Aug 2017 B2
9779923 Verenchikov Oct 2017 B2
9786484 Willis et al. Oct 2017 B2
9786485 Ding et al. Oct 2017 B2
9865441 Damoc et al. Jan 2018 B2
9865445 Verenchikov et al. Jan 2018 B2
9870903 Richardson et al. Jan 2018 B2
9870906 Quarmby et al. Jan 2018 B1
9881780 Verenchikov et al. Jan 2018 B2
9899201 Park Feb 2018 B1
9922812 Makarov Mar 2018 B2
9941107 Verenchikov Apr 2018 B2
9972483 Makarov May 2018 B2
10006892 Verenchikov Jun 2018 B2
10037873 Wang et al. Jul 2018 B2
10141175 Verentchikov et al. Nov 2018 B2
10141176 Stewart et al. Nov 2018 B2
10163616 Verenchikov et al. Dec 2018 B2
10186411 Makarov Jan 2019 B2
10192723 Verenchikov et al. Jan 2019 B2
10290480 Crowell et al. May 2019 B2
10373815 Crowell et al. Aug 2019 B2
10388503 Brown et al. Aug 2019 B2
10593525 Hock et al. Mar 2020 B2
10593533 Hoyes et al. Mar 2020 B2
10622203 Veryovkin et al. Apr 2020 B2
10629425 Hoyes et al. Apr 2020 B2
10636646 Hoyes et al. Apr 2020 B2
20010011703 Franzen Aug 2001 A1
20010030284 Dresch et al. Oct 2001 A1
20020030159 Chernushevich et al. Mar 2002 A1
20020107660 Nikoonahad et al. Aug 2002 A1
20020190199 Li Dec 2002 A1
20030010907 Hayek et al. Jan 2003 A1
20030111597 Gonin et al. Jun 2003 A1
20030232445 Fulghum Dec 2003 A1
20040084613 Bateman et al. May 2004 A1
20040108453 Kobayashi et al. Jun 2004 A1
20040119012 Vestal Jun 2004 A1
20040144918 Zare et al. Jul 2004 A1
20040155187 Axelsson Aug 2004 A1
20040159782 Park Aug 2004 A1
20040183007 Belov et al. Sep 2004 A1
20050006577 Fuhrer et al. Jan 2005 A1
20050040326 Enke Feb 2005 A1
20050103992 Yamaguchi et al. May 2005 A1
20050133712 Belov et al. Jun 2005 A1
20050151075 Brown et al. Jul 2005 A1
20050194528 Yamaguchi et al. Sep 2005 A1
20050242279 Verentchikov Nov 2005 A1
20050258364 Whitehouse et al. Nov 2005 A1
20060169882 Pau et al. Aug 2006 A1
20060214100 Verentchikov et al. Sep 2006 A1
20060289746 Raznikov et al. Dec 2006 A1
20070023645 Chernushevich Feb 2007 A1
20070029473 Verentchikov Feb 2007 A1
20070176090 Verentchikov Aug 2007 A1
20070187614 Schneider et al. Aug 2007 A1
20070194223 Sato et al. Aug 2007 A1
20080049402 Han et al. Feb 2008 A1
20080197276 Nishiguchi et al. Aug 2008 A1
20080203288 Makarov et al. Aug 2008 A1
20080290269 Saito et al. Nov 2008 A1
20090090861 Willis et al. Apr 2009 A1
20090114808 Bateman et al. May 2009 A1
20090121130 Satoh May 2009 A1
20090206250 Wollnik Aug 2009 A1
20090250607 Staats et al. Oct 2009 A1
20090272890 Ogawa et al. Nov 2009 A1
20100001180 Bateman et al. Jan 2010 A1
20100044558 Sudakov Feb 2010 A1
20100072363 Giles et al. Mar 2010 A1
20100078551 Loboda Apr 2010 A1
20100140469 Nishiguchi Jun 2010 A1
20100193682 Golikov et al. Aug 2010 A1
20100207023 Loboda Aug 2010 A1
20100301202 Vestal Dec 2010 A1
20110133073 Sato et al. Jun 2011 A1
20110168880 Ristroph et al. Jul 2011 A1
20110180702 Flory et al. Jul 2011 A1
20110180705 Yamaguchi Jul 2011 A1
20110186729 Verentchikov et al. Aug 2011 A1
20120168618 Vestal Jul 2012 A1
20120261570 Shvartsburg et al. Oct 2012 A1
20130048852 Verenchikov Feb 2013 A1
20130056627 Verenchikov Mar 2013 A1
20130068942 Verenchikov Mar 2013 A1
20130187044 Ding et al. Jul 2013 A1
20130240725 Makarov Sep 2013 A1
20130248702 Makarov Sep 2013 A1
20130256524 Brown et al. Oct 2013 A1
20130313424 Makarov et al. Nov 2013 A1
20130327935 Wiedenbeck Dec 2013 A1
20140054456 Kinugawa et al. Feb 2014 A1
20140084156 Ristroph et al. Mar 2014 A1
20140117226 Giannakopulos May 2014 A1
20140138538 Hieftje et al. May 2014 A1
20140183354 Moon et al. Jul 2014 A1
20140191123 Wildgoose et al. Jul 2014 A1
20140217275 Ding Aug 2014 A1
20140239172 Makarov Aug 2014 A1
20140291503 Shchepunov et al. Oct 2014 A1
20140312221 Verenchikov et al. Oct 2014 A1
20140361162 Murray et al. Dec 2014 A1
20150028197 Grinfeld et al. Jan 2015 A1
20150028198 Grinfeld et al. Jan 2015 A1
20150034814 Brown et al. Feb 2015 A1
20150048245 Vestal et al. Feb 2015 A1
20150060656 Ugarov Mar 2015 A1
20150122986 Haase May 2015 A1
20150194296 Verenchikov et al. Jul 2015 A1
20150228467 Grinfeld et al. Aug 2015 A1
20150279650 Verenchikov Oct 2015 A1
20152094849 Grinfeld et al. Oct 2015
20150318156 Loyd et al. Nov 2015 A1
20150364309 Welkie Dec 2015 A1
20150380233 Verenchikov Dec 2015 A1
20160005587 Verenchikov Jan 2016 A1
20160035552 Verenchikov Feb 2016 A1
20160035558 Verenchikov et al. Feb 2016 A1
20160079052 Makarov et al. Mar 2016 A1
20160225598 Ristroph Aug 2016 A1
20160225602 Ristroph et al. Aug 2016 A1
20160240363 Verenchikov Aug 2016 A1
20170016863 Verenchikov Jan 2017 A1
20170025265 Verenchikov et al. Jan 2017 A1
20170032952 Verenchikov Feb 2017 A1
20170098533 Stewart et al. Apr 2017 A1
20170229297 Green et al. Aug 2017 A1
20170338094 Verenchikov et al. Nov 2017 A1
20180144921 Hoyes et al. May 2018 A1
20180315589 Oshiro Nov 2018 A1
20180366312 Grinfeld et al. Dec 2018 A1
20190237318 Brown Aug 2019 A1
20200083034 Verenchikov et al. Mar 2020 A1
20200090919 Artaev Mar 2020 A1
20200126781 Kovtoun Apr 2020 A1
20200152440 Hoyes et al. May 2020 A1
20200168447 Verenchikov May 2020 A1
20200168448 Verenchikov May 2020 A1
20210242007 Verenchikov Aug 2021 A1
20210249243 Maher Aug 2021 A1
Foreign Referenced Citations (134)
Number Date Country
2412657 May 2003 CA
101369510 Feb 2009 CN
102131563 Jul 2011 CN
201946564 Aug 2011 CN
4310106 Oct 1994 DE
10116536 Oct 2002 DE
102015121830 Jun 2017 DE
102019129108 Jun 2020 DE
112015001542 Jul 2020 DE
0237259 Sep 1987 EP
1137044 Sep 2001 EP
1566828 Aug 2005 EP
1789987 May 2007 EP
1901332 Mar 2008 EP
2068346 Jun 2009 EP
1665326 Apr 2010 EP
1522087 Mar 2011 EP
2599104 Jun 2013 EP
1743354 Aug 2019 EP
3662501 Jun 2020 EP
3662502 Jun 2020 EP
3662503 Jun 2020 EP
2080021 Jan 1982 GB
2217907 Nov 1989 GB
2300296 Oct 1996 GB
2390935 Jan 2004 GB
2396742 Jun 2004 GB
2403063 Dec 2004 GB
2455977 Jul 2009 GB
2476964 Jul 2011 GB
2478300 Sep 2011 GB
2484361 Apr 2012 GB
2484429 Apr 2012 GB
2485825 May 2012 GB
2489094 Sep 2012 GB
2490571 Nov 2012 GB
2495127 Apr 2013 GB
2495221 Apr 2013 GB
2496991 May 2013 GB
2496994 May 2013 GB
2500743 Oct 2013 GB
2501332 Oct 2013 GB
2506362 Apr 2014 GB
2528875 Feb 2016 GB
2555609 May 2018 GB
2556451 May 2018 GB
2556830 Jun 2018 GB
2562990 Dec 2018 GB
2575157 Jan 2020 GB
2575339 Jan 2020 GB
S6229049 Feb 1987 JP
2000036285 Feb 2000 JP
2000048764 Feb 2000 JP
2003031178 Jan 2003 JP
3571546 Sep 2004 JP
2005538346 Dec 2005 JP
2006049273 Feb 2006 JP
2007227042 Sep 2007 JP
2010062152 Mar 2010 JP
4649234 Mar 2011 JP
2011119279 Jun 2011 JP
4806214 Nov 2011 JP
2013539590 Oct 2013 JP
5555582 Jul 2014 JP
2015506567 Mar 2015 JP
2015185306 Oct 2015 JP
2564443 Oct 2015 RU
2015148627 May 2017 RU
198034 Jun 1967 SU
1681340 Sep 1991 SU
1725289 Apr 1992 SU
9103071 Mar 1991 WO
1998001218 Jan 1998 WO
1998008244 Feb 1998 WO
200077823 Dec 2000 WO
2005001878 Jan 2005 WO
2006014984 Feb 2006 WO
2006049623 May 2006 WO
2006102430 Sep 2006 WO
2006103448 Oct 2006 WO
2007044696 Apr 2007 WO
2007104992 Sep 2007 WO
2007136373 Nov 2007 WO
2008046594 Apr 2008 WO
2008087389 Jul 2008 WO
2010008386 Jan 2010 WO
2010138781 Dec 2010 WO
2011086430 Jul 2011 WO
2011107836 Sep 2011 WO
2011135477 Nov 2011 WO
2012010894 Jan 2012 WO
2012013354 Feb 2012 WO
2012023031 Feb 2012 WO
2012024468 Feb 2012 WO
2012024570 Feb 2012 WO
2012116765 Sep 2012 WO
2013045428 Apr 2013 WO
2013063587 May 2013 WO
2013067366 May 2013 WO
2013098612 Jul 2013 WO
2013110587 Aug 2013 WO
2013110588 Aug 2013 WO
2013124207 Aug 2013 WO
2014021960 Feb 2014 WO
2014074822 May 2014 WO
2014110697 Jul 2014 WO
2014142897 Sep 2014 WO
2014152902 Sep 2014 WO
2015142897 Sep 2015 WO
2015152968 Oct 2015 WO
2015153622 Oct 2015 WO
2015153630 Oct 2015 WO
2015153644 Oct 2015 WO
2015175988 Nov 2015 WO
2016064398 Apr 2016 WO
2016174462 Nov 2016 WO
2017042665 Mar 2017 WO
2018073589 Apr 2018 WO
2018109920 Jun 2018 WO
2018124861 Jul 2018 WO
2018183201 Oct 2018 WO
2019030472 Feb 2019 WO
2019030474 Feb 2019 WO
2019030475 Feb 2019 WO
2019030476 Feb 2019 WO
2019030477 Feb 2019 WO
2019058226 Mar 2019 WO
2019162687 Aug 2019 WO
2019202338 Oct 2019 WO
2019229599 Dec 2019 WO
2020002940 Jan 2020 WO
2020021255 Jan 2020 WO
2020121167 Jun 2020 WO
2020121168 Jun 2020 WO
Non-Patent Literature Citations (84)
Entry
International Search Report and Written Opinion for International Application No. PCT/US2016/062174 dated Mar. 6, 2017, 8 pages.
IPRP PCT/US2016/062174 dated May 22, 2018, 6 pages.
Search Report for GB Application No. GB1520130.4 dated May 25, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/062203 dated Mar. 6, 2017, 8 pages.
IPRP PCT/US2016/062203, dated May 22, 2018, 6 pages.
Search Report for GB Application No. GB1520134.6 dated May 26, 2016.
Search Report Under Section 17(5) for Application No. GB1507363.8 dated Nov. 9, 2015.
International Search Report and Written Opinion of the International Search Authority for Application No. PCT/GB2016/051238 dated Jul. 12, 2016, 16 pages.
IPRP for application PCT/GB2016/051238 dated Oct. 31, 2017, 13 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/063076 dated Mar. 30, 2017, 9 pages.
IPRP for application PCT/US2016/063076, dated May 29, 2018, 7 pages.
Search Report for GB Application No. 1520540.4 dated May 24, 2016.
IPRP PCT/GB17/51981 dated Jan. 8, 2019, 7 pages.
IPRP for International application No. PCT/GB2018/051206, dated Nov. 5, 2019, 7 pages.
International Search Report and Written Opinion for International Application No. PCT/GB2018/051206, dated Jul. 12, 2018, 9 pages.
Examination Report under Section 18(3) for Application No. GB1906258.7, dated May 5, 2021, 4 pages.
Author unknown, “Electrostatic lens ,” Wikipedia, Mar. 31, 2017 (Mar. 31, 2017), XP055518392, Retrieved from the Internet:URL: https://en.wikipedia.org/w/index.php?title=Electrostatic_lens&oldid=773161674 [retrieved on Oct. 24, 2018].
Hussein, O.A. et al., “Study the most favorable shapes of electrostatic quadrupole doublet lenses” , AIP Conference Proceedings, vol. 1815, Feb. 17, 2017 (Feb. 17, 2017), p. 110003.
Guan S., et al. “Stacked-ring electrostatic ion guide” Journal of the American Society for Mass Spectrometry, Elsevier Science Inc, 7(1):101-106 (1996). Abstract.
International Search Report and Written Opinion for application No. PCT/GB2018/052104, dated Oct. 31, 2018, 14 pages.
International Search Report and Written Opinion for application No. PCT/GB2018/052105, dated Oct. 15, 2018, 18 pages.
International Search Report and Written Opinion for application PCT/GB2018/052100, dated Oct. 19, 2018, 19 pages.
International Search Report and Written Opinion for application PCT/GB2018/052102, dated Oct. 25, 2018, 14 pages.
International Search Report and Written Opinion for application No. PCT/GB2018/052099, dated Oct. 10, 2018, 16 pages.
International Search Report and Written Opinion for application No. PCT/GB2018/052101, dated Oct. 19, 2018, 15 pages.
Combined Search and Examination Report under Sections 17 and 18(3) for application GB1807605.9 dated Oct. 29, 2018, 5 pages.
Combined Search and Examination Report under Sections 17 and 18(3) for application GB1807626.5, dated Oct. 29, 2018, 7 pages.
Yavor, M.I., et al., “High performance gridless ion mirrors for multi-reflection time-of-flight and electrostatic trap mass analyzers”, International Journal of Mass Spectrometry, vol. 426, Mar. 2018, pp. 1-11.
Search Report under Section 17(5) for application GB1707208.3, dated Oct. 12, 2017, 5 pages.
Communication Relating to the Results of the Partial International Search for International Application No. PCT/GB2019/01118, dated Jul. 19, 2019, 25 pages.
Doroshenko, V.M., and Cotter, R.J., “Ideal velocity focusing in a reflectron time-of-flight mass spectrometer”, American Society for Mass Spectrometry, 10(10):992-999 (1999).
Kozlov, B. et al. “Enhanced Mass Accuracy in Multi-Reflecting TOF MS” www.waters.com/posters, ASMS Conference (2017).
Kozlov, B. et al. “Multiplexed Operation of an Orthogonal Multi-Reflecting TOF Instrument to Increase Duty Cycle by Two Orders” ASMS Conference, San Diego, CA, Jun. 6, 2018.
Kozlov, B. et al. “High accuracy self-calibration method for high resolution mass spectra” ASMS Conference Abstract, 2019.
Kozlov, B. et al. “Fast Ion Mobility Spectrometry and High Resolution TOF MS” ASMS Conference Poster (2014).
Verenchicov., A. N. “Parallel MS-MS Analysis in a Time-Flight Tandem. Problem Statement, Method, and Instrucmental Schemes” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004) Abstract.
Yavor, M. I. “Planar Multireflection Time-of-Flight Mass Analyser with Unlimited Mass Range” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004) Abstract.
Khasin, Y. I. et al. “Initial Experimenatl Studies of a Planar Multireflection Time-of-Flight Mass Spectrometer” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004) Abstract.
Verenchicov., A. N. et al. “Stability of Ion Motion in Periodic Electrostatic Fields” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004) Abstract.
Verenchicov., A. N. “The Concept of Multireflecting Mass Spectrometer for Continuous Ion Sources” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006) Abstract.
Verenchicov., A. N., et al. “Accurate Mass Measurements for Inerpreting Spectra of atmospheric Pressure Ionization” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006) Abstract.
Kozlov, B. N. et al., “Experimental Studies of Space Charge Effects in Multireflecting Time-of-Flight Mass Spectrometes” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006) Abstract.
Kozlov, B. N. et al., “Multireflecting Time-of-Flight Mass Spectrometer With an Ion Trap Source” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006) Abstract.
Hasin, Y. I., et al., “Planar Time-of-Flight Multireflecting Mass Spectrometer with an Orthogonal Ion Injection Out of Continuous Ion Sources” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006) Abstract.
Lutvinsky Y. I. et al., “Estimation of Capacity of High Resolution Mass Spectra for Analysis of Complex Mixtures” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006) Abstract.
Verenchicov., A. N. et al. “Multiplexing in Multi-Reflecting TOF MS” Journal of Applied Solution Chemistry and Modeling, 6:1-22 (2017).
Supplementary Partial EP Search Report for EP Application No. 16869126.9, dated Jun. 13, 2019.
Supplementary Partial EP Search Report for EP Application No. 16866997.6, dated Jun. 7, 2019.
“Reflectron—Wikipedia”, Oct. 9, 2015, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?title=Reflectron&oldid=684843442 [retrieved on May 29, 2019].
Scherer, S., et al., “A novel principle for an ion mirror design in time-of-flight mass spectrometry”, International Journal of Mass Spectrometry, Elsevier Science Publishers, Amsterdam, NL, vol. 251, No. 1, Mar. 15, 2006.
Combined Search and Examination Report under Sections 17 and 18(3) for Application No. GB2001232.4, dated Jul. 1, 2020, 5 pages.
Combined Search and Examination Report under Sections 17 and 18(3), for Application No. GB1901411.7, dated Jul. 31, 2019, 7 pages.
Deng, L., et al., “Serpentine Ultralong Path with Extended Routing (SUPER) High Resolution Traveling Wave Ion Mobility-MS using Structures for Lossless Ion Manipulations”, Anal Chem 89(8): 4628-4634 (2017).
Deng, L., et al., “Compression Ratio Ion Mobility Programming (CRIMP) Accumulation and Compression of Billions of Ions for Ion Mobility-Mass Spectrometry Using Traveling Waves in Structures for Lossless Ion Manipulations (SLIM)”, Anal Chem 89(12):6432-6439 (2017).
International Search Report and Written Opinion for International Application No. PCT/EP2017/070508 dated Oct. 16, 2017, 17 pages.
Search Report for United Kingdom Application No. GB1613988.3 dated Jan. 5, 2017, 4 pages.
Sakurai et al., “A New Multi-Passage Time-of-Flight Mass Spectrometer at JAIST”, Nuclear Instruments & Methods in Physics Research, Section A, Elsevier, 427(1-2): 182-186, May 11, 1999. Abstract.
Toyoda et al., “Multi-Turn-Time-of-Flight Mass Spectometers with Electrostatic Sectors”, Journal of Mass Spectrometry, 38: 1125-1142, Jan. 1, 2003.
Wouters et al., “Optical Design of the TOFI (Time-of-Flight Isochronous) Spectrometer for Mass Measurements of Exotic Nuclei”, Nuclear Instruments and Methods in Physics Research, Section A, 240(1): 77-90, Oct. 1, 1985.
Stresau, D., et al.: “Ion Counting Beyond 10ghz Using a New Detector and Conventional Electronics”, European Winter Conference on Plasma Spectrochemistry, Feb. 4-8, 2001, Lillehammer, Norway, Retrieved from the Internet:www.etp-ms.com/file-repository/21 [retrieved on Jul. 31, 2019].
Kaufmann, R., et. al., “Sequencing of peptides in a time-of-flight mass spectrometer:evaluation of postsource decay following matrix-assisted laser desorption ionisation (MALDI)”, International Journal of Mass Spectrometry and Ion Processes, Elsevier Scientific Publishing Co. Amsterdam, NL, 131:355-385, Feb. 24, 1994.
Barry Shaulis et al: “Signal linearity of an extended range pulse counting detector: Applications to accurate and precise U-Pb dating of zircon by laser ablation quadrupole ICP-MS”, G3: Geochemistry, Geophysics, Geosystems, 11(11):1-12, Nov. 20, 2010.
Search Report for United Kingdom Application No. GB1708430.2 dated Nov. 28, 2017.
International Search Report and Written Opinion for International Application No. PCT/GB2018/051320 dated Aug. 1, 2018.
International Search Report and Written Opinion for International Application No. PCT/GB2019/051839 dated Sep. 18, 2019.
International Search Report and Written Opinion for International Application No. PCT/GB2019/051234 dated Jul. 29, 2019, 5 pages.
Combined Search and Examination Report for United Kingdom Application No. GB1901411.7 dated Jul. 31, 2019.
Extended European Search Report for EP Patent Application No. 16866997.6, dated Oct. 16, 2019.
Combined Search and Examination Report for GB 1906258.7, dated Oct. 25, 2019.
Combined Search and Examination Report for GB1906253.8, dated Oct. 30, 2019, 5 pages.
Search Report under Section 17(5) for GB1916445.8, dated Jun. 15, 2020.
International Search Report and Written Opinion for International application No. PCT/GB2020/050209, dated Apr. 28, 2020, 12 pages.
Author unknown, “Einzel Lens”, Wikipedia [online] Nov. 2020 [retrieved on Nov. 3, 2020]. Retrieved from Internet URL: https://en.wikipedia.org/wiki/Einzel_lens, 2 pages.
International Search Report and Written Opinion for International application No. PCT/GB2019/051235, dated Sep. 25, 2019, 22 pages.
International Search Report and Written Opinion for International application No. PCT/GB2019/051416, dated Oct. 10, 2019, 22 pages.
Search and Examination Report under Sections 17 and 18(3) for Application No. GB1906258.7, dated Dec. 11, 2020, 7 pages.
Carey, D.C., “Why a second-order magnetic optical achromat works”, Nucl. Instrum. Meth., 189(203):365-367 (1981).
Yavor, M., “Optics of Charged Particle Analyzers”, Advances in Imaging and Electron Physics Book Series, vol. 57 (2009) Abstract.
Sakurai, T. et al., “Ion optics for time-of-flight mass spectrometers with multiple symmetry”, Int J Mass Spectrom Ion Proc 63(2-3):273-287 (1985).
Wollnik, H., “Optics of Charged Particles”, Acad. Press, Orlando, FL (1987) Abstract.
Wollnik, H., and Casares, A., “An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of two coaxial electrostatic mirrors”, Int J Mass Spectrom 227:217-222 (2003).
O'Halloran, G.J., et al., “Determination of Chemical Species Prevalent in a Plasma Jet”, Bendix Corp Report ASD-TDR-62-644, U.S. Air Force (1964). Abstract.
Examination Report for United Kingdom Application No. GB1618980.5 dated Jul. 25, 2019.
Communication pursuant to Article 94(3) EPC for Application No. 16867005.7, dated Jul. 1, 2021, 6 pages.
Related Publications (1)
Number Date Country
20220115224 A1 Apr 2022 US