ELECTRON BEAM SOURCE DEVICE

Information

  • Patent Application
  • 20080073556
  • Publication Number
    20080073556
  • Date Filed
    February 05, 2007
    17 years ago
  • Date Published
    March 27, 2008
    16 years ago
Abstract
An electron beam source device is provided in which the disconnection and deterioration of a filament of the electron beam source device can be accurately predicted and determined, so as to avoid an unnecessary resource waste and increase of cost due to a premature replacement of a still-functional filament in a conventional device. Additionally, disorganization caused by a sudden disconnection or by the subsequent recovery procedure when the deformation of the filament occurs can be avoided to, reduce the measuring time, the maintenance and management man-hour. A filament current is measured at all time through a filament current measuring circuit 11, and a ratio of the filament current when the light-on time is zero to the current filament current is calculated at all time through an operational circuit 12.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.



FIG. 1 is a view of a structure of a first embodiment of the present invention.



FIG. 2 are examples of the relationships between the light-on time and the filament current.



FIG. 3 is a view of a structure of a second embodiment of the present invention.



FIG. 4 is a view of a structure of a conventional electron beam source device.





DESCRIPTION OF EMBODIMENTS

The electron beam source device provided by the present invention has the following characteristics. The first characteristic lies in that the electron beam source device includes a mechanism for measuring the filament current all the time, and detecting and displaying the following circumstance, i.e., the ratio of the filament current for providing the specified emission current to the originally used filament current for providing the specified emission current is decreased to a predetermined threshold value or below the predetermined threshold value. The second characteristic lies in that the electron beam source device includes a mechanism for measuring the filament current all the time, and detecting and displaying the following circumstance, i.e., the decrement per unit time of the filament current for providing the specified emission current, i.e., the decreasing speed of the filament current, exceeds a predetermined threshold value.


The third characteristic lies in that the electron beam source device as claimed in Claim 1 or 2 includes a mechanism for detecting and displaying the following circumstance, i.e., the ratio of the filament current for providing the specified emission current to the originally used filament current for providing the specified emission current is increased to the predetermined threshold value or above the predetermined threshold value. The fourth characteristic lies in that the electron beam source device as claimed in Claim 1 includes a mechanism for calculating and displaying the remaining life span of the filament according to the ratio of the filament current for providing the specified emission current to the originally used filament current for providing the specified emission current. The fifth characteristic lies in that the electron beam source device as claimed in Claim 2 includes a mechanism for calculating and displaying the remaining life span of the filament according to the decrement per unit time of the filament current for providing the specified emission current, i.e., the decreasing speed of the filament current. Therefore, the configurations having these characteristics are the most preferred configurations.


First Embodiment

Hereinafter, the present invention is illustrated with reference to the accompanying figures. FIG. 1 is a sectional view of a first embodiment of the present invention. In FIG. 1, the parts marked with the same symbols as those in FIG. 4 have the same constructions and operations as those in FIG. 4. The emission current emitted from the filament F is incident into the ionization chamber 2 from one opening of the ionization chamber 2, and exited from the ionization chamber 2 through another opening disposed on the other side opposite to the above opening, so as to be collected in the electron collector 4. While being measured and displayed by the emission current meter 6, the value of the emission current collected by the electron collector 4 is further provided to the emission controller 7. The output of the emission controller 7 is fed back to the filament power supply 1, so as to maintain the emission current at a specified value.


The filament current is measured all the time by a filament current measuring circuit 11, and an initial filament current (i.e., the filament current when the light-on time is zero) and a current filament current are stored through an operational circuit 12 at every fixed time, for example, every 1 second. FIG. 2(A) shows an example (extracted and tabled) of the relationship between the light-on time (marked as “T” in the figure, with the time unit being hr) and the normal filament current (marked as “I” in the figure, with the current unit being Ampere) under the emission current of 90 μA. In addition, the values of ΔI/ΔT are summarized in the right column of the table in FIG. 2(A), which will be described in a second embodiment.


As seen from FIG. 2(A), under the circumstance of keeping the emission current as 90 μA, the filament current gradually decreases in a monotonic manner as the light-on time increases due to the consumption of the filament F. Therefore, a threshold reduction ratio (e.g., 0.94) of the filament current served as a using threshold to the initial filament current is determined in advance through experiments. The threshold reduction ratio and the transient ratio which is a ratio obtained at any time points are stored and calculated by the operational circuit 12. Then, the two ratios are compared with each other. Therefore, when the filament F reaches the using threshold, that is, the above ratios are less than the threshold reduction ratio, a signal indicating that the threshold reduction ratio is reached is generated by the operational circuit 12.


Additionally, as for the filament with standard property, the transient reduction ratio of the filament current for providing the specified emission current to the originally used filament current for providing the specified emission current, and a representative relationship between the reduction ratio and a remaining life span for the filament are measured and recorded in advance. Then, the practically measured transient current reduction ratio is compared with the current reduction ratio of the standard filament by the operational circuit 12. Further, according to the above representative relationship between the standard filament reduction ratio and the remaining life span, the remaining life span of the filament F at a certain current reduction ratio is considered as the remaining life span of the standard filament, and the appropriate information for the remaining life span can be displayed on the display 13. Furthermore, an alarm generating circuit (not shown) can be disposed in the operational circuit 12, so as to generate an alarm and send it to the operator.


When the emission current is increased, the consumption of the filament F also increases, and the signal indicating that the threshold reduction ratio has reached is automatically displayed in a shorter light-on time. When the emission current is reduced, the consumption of the filament F also decreases, such that the available light-on time is prolonged. Further, according to the present invention, the light-on time, which is the time point when the signal indicating that the threshold decreasing speed DC has reached is generated, is automatically prolonged. Thus, the unnecessary replacement of the filament F can be avoided.



FIG. 2(B) shows an example of irregular variation of the filament current caused by the deformation or internal short circuit of the filament F. In this example, the filament current increases along with the increasing of the light-on time, and the filament cannot be used at the light-on time of 674 (in any unit in the figure). Therefore, corresponding to the circumstance in FIG. 2(A), an upper limit ratio (e.g., 1.12) of the filament current is determined through a process similar to that used for determining the threshold reduction ratio described above. Once the filament current exceeds the upper limit ratio, a signal indicating that the upper limit is reached is generated by the operational circuit 12, and thus, the abnormity of the filament F can be displayed and the operator is notified. Furthermore, it is determined whether the filament current falls within a variation range with the threshold reduction ratio as the lower limit and with the upper limit ratio as the upper limit, and once exceeding the variation range, for example, once exceeding the upper limit, an information indicating the abnormity of the filament is generated, and once being lower than the lower limit, an information indicating that the filament life span is reached is generated. Therefore, the detection and display of both the threshold reduction ratio and the upper limit ratio can be combined together.


Second Embodiment


FIG. 3 is a sectional view of a second embodiment of the present invention. The parts in FIG. 3 marked with the same symbols as those in FIG. 1 have the same constructions or operations as those in FIG. 1, and thus the detailed description for the parts with the same symbols is omitted.


The filament current is measured all the time by the filament current measuring circuit 11, and the decrement of the filament current per unit time, i.e., the decreasing speed of the filament current, is calculated by an operational circuit 12N, and the necessary values are stored. FIG. 2(A) shows an example of the decreasing speed (ΔI/ΔT) of the filament current for a normal filament F. The values of ΔI/ΔT (absolute values, ×10,000) are shown in the right column of the table in FIG. 2(A). ΔT represents the value obtained by subtracting the light-on time (T in the figure) of the row immediately above the current row from the light-on time of the current row. Similarly, ΔI indicates the value obtained by subtracting the filament current (I in the figure) of the row immediately above the current row from the filament current of current row. The value of ΔI/ΔT of the current row is then calculated.


Taking the row with the light-on time of 678 (hr) as an example, the value of 128 (hr) obtained by subtracting the light-on time 550 (hr) of the row above from the light-on time 678 (hr) of the current row is determined as ΔT, and the value of −0.006 (A) obtained by subtracting the filament current 3.066 (A) of the row above from the filament current 3.06 (A) of the current row is determined as ΔI. Thus, ΔI/ΔT is obtained to be −0.000047. In the table of FIG. 2(A), the absolute value of 0.47 obtained by multiplying the above value (decreasing speed) by 10,000 is shown. Hereinafter, the absolute value of the above value multiplied by 10,000 is determined as the decreasing speed D.


As seen from FIG. 2(A), the decreasing speed D gradually increases with the increasing of the light-on time due to the consumption of the filament F. Therefore, the threshold decreasing speed of the filament current served as the using threshold is determined through experiments (hereinafter, just like the above relationship between the above decreasing speed and the decreasing speed D, the absolute value of the threshold decreasing speed multiplied by 10,000 is determined as the threshold decreasing speed DC), the values of the decreasing speed D obtained at each time point is stored and calculated by the operational circuit 12N during practical measurement, and the decreasing speed D and the threshold decreasing speed DC (e.g., 1.8) are compared all the time in the operational circuit 12N. Therefore, the time point when the decreasing speed D exceeds the threshold decreasing speed DC is determined as the use limit for the filament F. Thus, a signal indicating that the threshold decreasing speed DC has reached is generated by the operational circuit 12N at that time point, and the appropriate information is displayed on the display 13.


Moreover, through the operational circuit 12N, the gradient of the actually measured decreasing speed D is compared with the gradient of the decreasing speed D for the standard filament determined in advance through experiments. The representative relationship between the value of the decreasing speed D for the standard filament obtained in advance and the remaining life span of the standard filament is considered as the actually measured remaining life span of the filament F, and the appropriate information is displayed on the display 13.


Furthermore, an alarm generating circuit (not shown) can also be disposed in the operational circuit 12N, so as to generate an alarm and send the alarm to the operator. When the emission current is increased, the consumption of the filament F is increased and the signal indicating that the threshold decreasing speed DC is reached is automatically displayed in a shorter light-on time. When the emission current is decreased, the consumption of the filament F is also decreased, and the available light-on time is prolonged. According to the present invention, the light-on time, which is the time point when the signal indicating that the threshold decreasing speed DC has reached is generated, is automatically prolonged. Thus, any unnecessary replacement of the filament F is obviated. As for the irregular variation of the filament current caused by deformation or internal short circuit of the filament F, the mechanism same as that of the first embodiment may be used. In essence, the upper limit ratio (e.g., 1.12) of the filament current is determined. Once the filament current exceeds the upper limit ratio, the signal indicating that the upper limit has reached is generated by the operational circuit 12N; thus, information indicating any abnormity of the filament F can be displayed and send to the operator.


Furthermore, whether the above decreasing speed D falls within the variation range between the initial value and the threshold decreasing speed DC and whether the ratio of the filament current to the initial value at the beginning of usage falls within the variation range between 1 and the upper limit ratio are determined. Once the decreasing speed D and the ratio of the filament current to the initial value exceed their respective variation ranges, for example, when the upper limit ratio is exceeded, the information indicating the abnormity of the filament is generated, and the threshold decreasing speed DC is exceeded, the information indicating that the filament life span has reached is generated. In the above manner, the detection and display of information regarding both the life span and the abnormity of the filament can be collectively achieved.


The present invention is not limited to above embodiments; rather the present invention covers various alternative embodiments provide they fall within the principle of this invention. For example, a personal computer or a part of personal computer can be used in the operational circuit 12, the operational circuit 12N, and the display 13, etc. In the embodiments, the display of the remaining life span of the filament also can be the display of the replacement time of the filament. Moreover, besides the characters, the information being displayed also can be displayed with color difference, such as color bar, etc., added to the characters.


In addition, the filament is automatically extinguished when the life span is reached or abnormity occurs. In the electron beam source device with two or more filaments disposed therein, the filaments can be switched automatically. Furthermore, in the above embodiments, the construction of the present invention is illustrated through the ion source used in a gas chromatography mass spectrometer; however, the present invention is not only applicable to the gas chromatography mass spectrometer. The present invention is also applicable to ion source or electron source devices that employ filaments. The present invention is applicable to all types of ion source or electron source devices.


Availability in Industry


The present invention is applicable to an electron beam source device using a filament for emitting hot electrons, such as an ion source of a mass spectrometer or a gas chromatography mass spectrometer in the analysis field, atom force field, vacuum field, and semiconductor field, etc.


It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.

Claims
  • 1. An electron beam source device, comprising a filament for generating an emission current composed of hot electrons and an electron collector for collecting the emission current, wherein the electron beam source device controls a filament current at all time to obtain a specified emission current, wherein the electron beam source device comprises a mechanism for measuring the filament current at all time, and detecting and displaying that a ratio of the filament current for providing the specified emission current to an originally used filament current for providing the specified emission current is reduced to a predetermined threshold value or below the predetermined threshold value.
  • 2. An electron beam source device, comprising a filament for generating an emission current composed of hot electrons and an electron collector for collecting the emission current, wherein the electron beam source device controls a filament current at all time to obtain a specified emission current, wherein the electron beam source device comprises a mechanism for measuring the filament current at all time, and detecting and displaying that a decrement per unit time of the filament current for providing the specified emission current exceeds a predetermined threshold value.
  • 3. The electron beam source device as claimed in claim 1, comprising a mechanism for detecting and displaying the ratio of the filament current for providing the specified emission current to the originally used filament current for providing the specified emission current is increased to the predetermined threshold value or above the predetermined threshold value.
  • 4. The electron beam source device as claimed in claim 2, comprising a mechanism for detecting and displaying the ratio of the filament current for providing the specified emission current to the originally used filament current for providing the specified emission current is increased to the predetermined threshold value or above the predetermined threshold value.
  • 5. An electron beam source device, comprising a filament for generating an emission current composed of hot electrons and an electron collector for collecting the emission current, wherein the electron beam source device controls a filament current all the time to obtain a specified emission current, and measuring and recording in advance a reduction ratio of the filament current for providing the specified emission current to the originally used filament current for providing the specified emission current, and a representative relationship between the reduction ratio and a remaining life span of the filament, wherein the electron beam source device comprises a mechanism for measuring the reduction ratio of the filament current for providing the specified emission current of the filament in use to the originally used filament current for providing the specified emission current, and then, according to the representative relationship between the reduction ratio and the remaining life span of the filament with standard property, predicting and calculating the remaining life span of the filament in use.
  • 6. An electron beam source device, comprising a filament for generating an emission current composed of hot electrons and an electron collector for collecting the emission current, controlling a filament current all the time to obtain a specified emission current, and measuring and recording in advance a transient decrement, obtained at any time point, per unit time of the filament current for providing the specified emission current, and a representative relationship between the decrement and a remaining life span for the filament with standard property, wherein the electron beam source device comprises a mechanism for measuring the decrement per unit time of the filament current of the filament in use for providing the specified emission current, and according to the representative relationship relevant to the filament with standard property, predicting, calculating and displaying the remaining life span of the filament in use.
  • 7. The electron beam source device as claimed in claim 1, wherein a disconnection caused by a deterioration of the filament is detected and displayed in advance.
  • 8. The electron beam source device as claimed in claim 2, wherein a disconnection caused by a deterioration of the filament is detected and displayed in advance.
  • 9. The electron beam source device as claimed in claim 3, wherein an abnormity caused by deformation and short circuit of the filament is detected and displayed.
  • 10. The electron beam source device as claimed in claim 4, wherein an abnormity caused by deformation and short circuit of the filament is detected and displayed.
  • 11. The electron beam source device as claimed in claim 5, wherein an operator is notified of the remaining life span of the filament.
  • 12. The electron beam source device as claimed in claim 6, wherein an operator is notified of the remaining life span of the filament.
Priority Claims (1)
Number Date Country Kind
2006-049036 Feb 2006 JP national