The present invention relates to an electronic device which can automatically determine a dirtiness level, and particularly relates to an electronic device which can automatically determine a dirtiness level according to optical data.
As the technique advances, the auto clean machine (e.g. a robot cleaner) becomes more and more popular. An auto clean machine always has an image sensor to capture images, based on which the auto clean machine can track a location thereof. However, a cover for protecting the image sensor may become dirty if the auto clean machine has worked for a period of time. Such situation may affect the tracking function of auto clean machine.
A conventional auto clean machine does not have a proper solution for such problem, thus a user must clean the cover frequently, or knows that the cover needs to be cleaned only when the automatic cleaning machine does not operate smoothly.
Therefore, one objective of the present invention is to provide an electronic device which can determine a dirtiness level.
Another objective of the present invention is to provide an optical navigation device which can determine a dirtiness level of a cover for an optical sensor.
One embodiment of the present invention discloses an electronic device, comprising: a first light source, configured to emit first light; a second light source, configured to emit second light; a first optical sensor, configured to sense first optical data generated based on reflected light of the first light; a light guiding device, configured to receive the second light; and a second optical sensor, configured to sense second optical data generated based on the second light emitted by the light guiding device.
Another embodiment of the present invention discloses an electronic device, comprising: a first light source, configured to emit first light; at least one second light source, configured to emit second light; a light guiding device, configured to receive the second light; and an optical sensor, configured to sense first optical data generated based on reflected light of the first light, and configured to sense second optical data generated based on the second light emitted by the light guiding device.
Still another embodiment of the present invention discloses an electronic device, which comprises: a first light source, configured to emit first light; an optical component, disposed in the transmission path of the first light, wherein at least partial of the first light passes through the optical element; and an optical sensor, configured to sense first optical data generated based on reflected light of the first light, wherein the reflected light of the first light is reflected by the optical component and transmitted to the optical sensor.
In view of above-mentioned embodiments, the electronic device provided by the present invention can automatically determine a dirtiness level of the light guiding device. If the electronic device is an optical navigation device, the electronic device can automatically determine a dirtiness level of the cover for the optical sensor. Therefore, the user does not need to frequently check whether the cover is clean or not.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Several embodiments are provided to explain the concept of the present invention. Please note, each component in the embodiments can be implemented by hardware (e.g. device or circuit) or firmware (e.g. processor installed with at least one program). Further, the term “first”, “second” . . . are only for defining different steps or components, but do not mean any sequence thereof.
In one embodiment, the electronic device 100 is an optical navigation device, such as an auto clean machine (or named an i-robot), an optical touch sensing device or an optical mouse, and the first optical data is for determining a motion of the electronic device. For example, an optical mouse can compute the motion of the optical mouse according to different images by an image sensor thereof. Detail steps of determining a motion according to optical data are well known by persons skilled in the art, thus are omitted for brevity here.
In one embodiment, the processing circuit P can determine a dirtiness level of the light guiding device LG according to the second light L_2 emitted from the light guiding device LG. For example, the processing circuit P can determine the dirtiness level according a brightness level of the second optical data generated according to the second light L_2 emitted from the light guiding device LG. In one embodiment, the second light L_2 emitted by the light guiding device LG may be blocked by the material (e.g., dust) on the light guiding device LG. Therefore, in such case the processing circuit P determines the dirtiness level is higher than a dirtiness threshold if a brightness level of the second optical data is lower than a brightness threshold. However, in another embodiment, the second light L_2 emitted by the light guiding device LG may be enhanced by the material on the light guiding device LG. Therefore, in such case the processing circuit P determines the dirtiness level is higher than a dirtiness threshold if a brightness level of the second optical data is higher than a brightness threshold.
Besides, in one embodiment, the processing circuit P can determine the dirtiness level according to a light pattern formed by the second optical data. For example, a light pattern which is generated by a clean light guiding device LG can be pre-recorded. After that, if some material such as oil is on the light guiding device LG, the light pattern is changed. Accordingly, the processing circuit P can determine the dirtiness level via comparing an instant light pattern and the pre-recorded light pattern.
Additionally, since the first optical sensor OS_1 for sensing the first optical data and the second optical sensor OS_2 for sensing the second optical data are two different optical sensors, the first light L_1 and the second light L_2 can be emitted simultaneously. However, the first light L_1 and the second light L_2 can also be emitted non-simultaneously.
Also, in the embodiment illustrated in
Besides, in the embodiment of
However, please note the arrangement of the components illustrated in
The number of the light sources and the optical sensors are not limited to the embodiments illustrated in
The first light source LS_1 is configured to emit first light L_1. The second light sources LS_21, LS_22 are configured to emit second light L_2. The light guiding device LG is configured to receive the second light L_2. The optical sensor OS is configured to sense first optical data generated based on reflected light of the first light L_1, and configured to sense second optical data generated based on the second light L_2 emitted by the light guiding device LG.
Also, in the embodiment illustrated in
Detail operations of the embodiments illustrated in
As above-mentioned, the electronic devices 100, 200, 300, 400 respectively illustrated in
In view of above-mentioned embodiments, the electronic device provided by the present invention can automatically determine a dirtiness level of the light guiding device. If the electronic device is an optical navigation device, the electronic device can automatically determine a dirtiness level of the cover for the optical sensor. Therefore, the user does not need to frequently check whether the cover is clean or not.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
This application is a continuation-in-part of applicant's earlier application, Ser. No. 16/423,165, filed 2019 May 28, and earlier application, Ser. No. 16/907,329, filed 2020 Jun. 22, which are included herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 16423165 | May 2019 | US |
Child | 17242296 | US | |
Parent | 16907329 | Jun 2020 | US |
Child | 16423165 | US |