1. Field
The disclosed embodiments relate generally to a method and apparatus for applying metal structures to a workpiece, and more particularly to a method and apparatus for depositing a lead-free solder into micro-scale patterns in the surface of a workpiece coated with a photo-resist patterning film, and more particularly to a method and apparatus for electroplating tin-silver alloy solder bumps.
2. Brief Description of Related Developments
The semiconductor industry has been working towards eliminating lead in electronics, as required under the European Union's Restriction of Hazardous Substances (RoHS) Directive. The industry is moving faster than the regulation to offer “green” consumer's electronics with lead-free packaging. Electrodepositon of lead-free solder such as using through mask patterned deposition, is a technology capable eof providing tight pitch bumping (connection pitch less than approximately 300 microns) or microbumping for advanced electronic packaging. An alloy of tin (Sn) and silver (Ag) is the leading candidate metal for these applications. Substantially pure tin has many desirable properties of a solder metal, for example fatigue resistance, thermal cycling and ductile mechanical properties, however the industry has found that tin whisker growth in substantially pure tin solder makes it an unreliable joining solder for advanced packaging applications. It has been found that a small addition of silver, between approximately 1% and 4% Ag by weight, may significantly reduce the likelihood of Sn whisker formation in the solder joint. Tin-silver alloy (SnAg) solder plating in a conventional manner is more difficult than substantially pure tin electroplating or lead-tin (PbSn) electroplating because of the large difference in electrochemical reduction potential between tin (−0.130 volts SHE) and silver (+0.799 volts SHE). This reduction potential difference causes Ag+ ions in the solution to spontaneously react with metallic Sn and or the stannous ion (Sn+2) oxidizing the Sn or Sn+2 to Sn+2 or Sn+4 and thereby immersion depositing metallic Ag on the Sn surface. Similarly the Ag+ ion in the plating solution can immersion deposition other metals such as nickel or copper. Chemical suppliers have developed organic molecules that are to complex the Ag+ ion to bring its reduction potential close to that of Sn+2 and thereby stabilize the Ag+ ion in the plating solution. The organic Ag+ ion complex in the plating solution does not eliminate the likelihood of unwanted Ag immersion deposition on the Under Bump Metal (UBM), which is typically Nickel or Copper, when electroplating SnAg lead free solder on such UBM structures. This unwanted immersion deposition may cause void defects at the UBM/SnAg interface, said voids are observable after reflowing the solder, and such voids can cause mechanical and electrical failures of the chip to package joint. There is therefore a need for an alternate method of electroplating SnAg solder to form reliable lead-free bump attachment to the underlying metal to solve the problem facing the electronics industry as it moves toward eliminating all lead from integrated circuit products. Further, the industry also needs to develop economical methods of replacing the lead-tin (PbSn) plated bump structures with a lead-free (SnAg) plated bump structures. Due to the thigh cost of the Ag-complexor and other components in commercial SnAg plating chemistries, the typical cost of SnAg plated bumps is several multiples of the PbSn bumps. Existing methods of electrodepositing SnAg bumps involve expensive control systems in the manufacturing equipment, for example as described in U.S. patent application Ser. No. 11/840,748, which is hereby incorporated by reference in its entirety discloses a commercial plating equipment with a control system to ensure that a constant alloy compositions is provided in the solder metal throughout the deposition. There is therefore a need for a method of SnAg electroplating that minimizes the use of expensive chemistry while providing a reliable interface between the SnAg and the underlying metal.
The foregoing aspects and other features of the embodiments are explained in the following description, taken in connection with the accompanying drawings. The technology described above may be better understood by referring to the following description taken in conjunction with the accompanying drawings. In the drawings, like reference characters generally refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the technology.
Although the present embodiments will be described with reference to the embodiments shown in the drawings, it should be understood that the embodiments can be embodied in many alternate forms of embodiments. In addition, any suitable size, shape or type of elements or materials could be used. The present disclosed embodiments provide a method of providing a reliable interface between an electrodeposited lead-free solder bump and an underlying bump metal (UBM).
Referring now to
Referring now to
Referring now to
The importance of providing a repeatable and well controlled intermetallic structure (IMC) between the underbump metal (UBM) and the solder, along with a well controlled grain structure within the solder, may influence both the mechanical and electromigration reliability of the solder bump. In addition, during cooldown the nucleation and growth of the solder grain structure is strongly influenced by the IMCs that were formed. Prohibiting the presence of Ag away at the underbump metal interface during the initial phase of reflow is advantageous as is demonstrated by comparing
Referring now to
% Ag=CSnAg×TSnAg/(TSnAg+TSn).
For example, to achieve a final composition % Ag equal to 1.5% Ag the TSn=TSnAg and CSnAg=3.0%.
It has been considered to apply substantially pure silver (Ag) and substantially pure tin (Sn) to facilitate fabrication of the SnAg alloy, or even to apply Ag, then Cu, then Sn which would then be reflowed to form a SnAgCu alloy, this method could have particular cost advantages since substantially pure Ag and substantially pure Sn plating materials are less expensive then SnAg alloy plating. When using a combination of substantially pure metal layers it is necessary to apply the more noble metals prior to applying the substantially pure tin for two reasons: (1) electrodeposition of Ag onto a Sn surface is difficult to control because of the problem of uncontrolled Ag immersion deposition on Sn, thereby producing an unstable Sn/Ag interface which will cause production control problems between the deposition step and the thermal treatment reflow step; (2) during the thermal reflow process the substantially pure Ag doesn't melt, instead it dissolves into the Sn, and therefore a Ag metal layer would be unstable on the melted tin solder ball, drifting around during the period between Sn melting and Ag fully dissolving into the Sn. However, to apply the Ag directly on top of the UBM material during the reflow process where the intermetallic layer is formed, the presence of Ag between the Sn and the UBM causes the formation of voids in the intermetallic layer, and these voids reduce the reliability of the solder joint. Because the SnAg materials are several times more expensive than Sn materials the present disclosed embodiments provide some of the economic benefit of the substantially pure Ag and substantially pure Sn method, for example reducing the solder deposition cost by approximately 50% or more, without the associated disadvantage of worsening the solder joint reliability.
Referring now to
Referring now to
The illustrated process may be performed, such as will be described further below with apparatus 200 for example. As may be realized, controller(s) 220 may be suitably programmed to effect the process at least in part in an automatic manner.
Referring now to
In accordance with an embodiment, a method of forming a metal feature on a workpiece with deposition is provided. The workpiece is provided with an under bump metal layer for solder of an electronic device. A substantially pure tin layer is deposited directly to the under bump metal layer. A tin silver alloy layer is deposited onto the substantially pure tin layer.
In the embodiment, substantially all of the substantially pure tin plating chemistry from the workpiece may be rinsed.
In the embodiment, the deposition is accomplished by electrodeposition.
In the embodiment, the under bump metal comprises either copper or nickel.
In the embodiment, an apparatus for forming a lead free solder bump on a workpiece having an electrically conducting seed layer, the electrically conducting seed layer covered by a patterned resist mask layer having a plurality of feature openings is provided. The apparatus has a first plating bath with a metal ion content adapted to deposit a substantially pure tin layer in the resist pattern features. A rinse tank may be provided and adapted to rinse substantially all of the substantially pure tin plating chemistry from the workpiece. A second plating bath is provided with a metal ion content adapted to deposit at tin-silver, alloy layer in the resist pattern features.
In the embodiment, a copper electrodeposition module is provided.
In the embodiment, a copper electrodeposition module and a nickel electrodeposition module are provided.
In the embodiment, a cleaning module is provided.
In the embodiment, an electronic device having a lead free solder feature is prepared by a process having a step of depositing a substantially pure tin layer directly to a layer of under bump metal for solder of the electronic device. A step of depositing a tin silver alloy layer onto the substantially pure tin layer is provided.
In the embodiment, a step of rinsing substantially all of the substantially pure, tin plating chemistry from the electronic device may be provided.
In the embodiment, the deposition is accomplished by electrodeposition.
In the embodiment, the under bump metal comprises either copper or nickel.
In the embodiment, a method for forming a lead free solder bump on a workpiece is provided, the method comprising providing a step of providing the workpiece with an electrically conducting seed layer, the electrically conducting seed layer covered by a patterned resist mask layer having a plurality of feature openings. The workpiece is immersed in a first plating bath with a metal ion content. The method comprises providing electrical contact to the seed layer and providing an electrical potential through the metal ion content of the first plating bath to cause between about 2 and about 150 microns of substantially pure tin to deposit in the resist pattern features. The workpiece is immersed in a second plating bath with a metal ion content. Electrical contact to the seed layer is formed and an electrical potential between through the metal ion content in the second plating bath is provided to cause between about 2 and about 150 microns of a tin-silver alloy to deposit in the resist pattern features is provided.
In the embodiment, the method may include moving the workpiece to a rinse tank, rinsing substantially all of the substantially pure tin plating chemistry from the workpiece is provided, and removing the workpiece from the rinse tank is provided.
In the embodiment, removal of the photoresist patterning layer is provided.
In the embodiment, substantially all of the seed layer not covered by the plated tin and tin-silver alloy is removed.
In the embodiment, thermally treating the workpiece at between about 210 to about 230 degrees centigrade to cause the tin and tin-silver layers to intermix and form a substantially uniform tin-silver alloy feature is provided.
In the embodiment, the tin layer is about 30 microns and the tin-silver alloy layer is about 30 microns, and wherein the tin-silver alloy composition is between about 1% and about 7% silver by weight before thermal treatment and about 0.5% to about 3.5% silver by weight after thermal treatment.
In the embodiment, the tin layer is about 1 micron or about 10 microns and the tin-silver alloy layer is between about 20 microns to about 120 microns.
In the embodiment, the tin layer is 10 microns, and the tin-silver alloy layer is about 10 microns, and wherein the tin-silver alloy composition is between about 1% and about 7% silver by weight before thermal treatment and about 0.5% to about 3.5% silver by weight after thermal treatment.
In the embodiment, the tin layer is about one-fourth the thickness of the tin-silver layer.
In the embodiment, an apparatus for forming a lead free solder bump on a workpiece having an electrically conducting seed layer, the electrically conducting seed layer covered by a patterned resist mask layer having a plurality of feature openings is provided. The apparatus has a controller programmable to plate the workpiece with substantially pure tin in a first process module disposed to support a first plating bath having a metal ion content adapted to deposit a substantially pure tin layer on the workpiece. The controller is further programmable to plate the workpiece with tin and silver in a second process module disposed to support a second plating bath with a metal ion content adapted to deposit a tin and silver layer on the workpiece.
In the embodiment, the controller is further programmable to rinse the workpiece in a rinse tank disposed to support rinsing substantially all of the substantially pure tin plating chemistry from the workpiece.
In the embodiment, the controller is further programmable to deposit copper on the workpiece with a copper electrodeposition module.
In the embodiment, the controller is further programmable to deposit nickel on the workpiece with a nickel electrodeposition module.
In the embodiment, the controller is further programmable to clean the workpiece with a clean module.
In the exemplary embodiment, a method for processing one or more workpieces to electrochemically form a pattern of lead-free bumps on a workpiece is provided. In one embodiment the lead-free bump is formed by a substantially two step deposition process, the first step being through mask deposition of substantially pure tin from an electroplating solution containing tin-ions (e.g. a metal ion content), and a second step being through mask deposition of tin-silver alloy from an electroplating solution containing a controlled mixture of tin-ions and silver ions (e.g. a metal ion content), the two steps being controlled to provide target layer 1 and layer 2 thicknesses, T1 and T2, along with the second step being controlled to provide X % alloy composition, such that after a subsequent thermal treatment the two layers intermix and form a substantially uniform alloy of tin-silver (SnAg), said alloy having a concentration intermediate between the deposited X % Ag in the alloy deposition step and the 0% Ag in the substantially pure tin deposition step. The disclosed embodiments prevent the immersion deposition of noble metal ion, such as Ag, and organic complexor on the Under Bump Material (UBM) surface to eliminate the potential forming of voids between the UBM and solder interface. A less noble metal layer, such as substantially pure Tin, is electrodeposited on the UBM before the lead-free solder alloy of Sn and more noble metal, such as Ag and/or Cu is co-deposited with Sn as a SnAg or SnAgCu alloy to form a bump for electronic packaging.
It should be understood that the foregoing description is only illustrative of the invention. Various alternatives and modifications can be devised by those skilled in the art without departing from the invention. Accordingly, the present invention is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.
Number | Date | Country | |
---|---|---|---|
20120152752 A1 | Jun 2012 | US |