This application is related to the U.S. patent application entitled “High Aspect Ratio Anode And Apparatus For High-Speed Electroplating On A Solar Cell Substrate” by Sergey Lopatin et al. [Ser. No. 11/566,202], filed Dec. 1, 2006, the U.S. patent application entitled “Method Of Metallizing A Solar Cell Substrate” by Sergey Lopatin et al. [Ser. No. 11/566,201], filed Dec. 1, 2006, and the U.S. patent application entitled “Precision Printing Electroplating Through Plating Mask On A Solar Cell Substrate” by Sergey Lopatin et al. [Ser. No. 11/566,205], filed Dec. 1, 2006, which are all herein incorporated by reference.
1. Field of the Invention
Embodiments of the present invention generally relate to the fabrication of photovoltaic cells and particularly to the formation of layers on a substrate by use of an electrochemical deposition process.
2. Description of the Related Art
Solar cells are photovoltaic devices that convert sunlight directly into electrical power. The most common solar cell material is silicon, which is in the form of single or polycrystalline wafers. Because the amortized cost of forming a silicon-based solar cells to generate electricity is higher than the cost of generating electricity using traditional methods, there has been an effort to reduce the cost to form solar cells.
When light falls on the solar cell, energy from the incident photons generates electron-hole pairs on both sides of the p-n junction region 103. Electrons diffuse across the p-n junction to a lower energy level and holes diffuse in the opposite direction, creating a negative charge on the emitter and a corresponding positive charge builds up in the base. When an electrical circuit is made between the emitter and the base and the p-n junction is exposed to certain wavelengths of light, a current will flow. The electrical current generated by the semiconductor when illuminated flows through contacts disposed on the frontside 120, i.e. the light-receiving side, and the backside 121 of the solar cell 100. The top contact structure, as shown in
The fingers 104 are in contact with the substrate are adapted to form an ohmic connection with doped region (e.g., n-type emitter region 102). An ohmic contact is a region on a semiconductor device that has been prepared so that the current-voltage (I-V) curve of the device is linear and symmetric, i.e., there is no high resistance interface between the doped silicon region of the semiconductor device and the metal contact. Low-resistance, stable contacts are critical for the performance of the solar cell and reliability of the circuits formed in the solar cell fabrication process. Hence, after the fingers 104 have been formed on the light-receiving surface and on the backside, an annealing process of suitable temperature and duration is typically performed in order to produce the necessary low resistance metal silicide at the contact/semiconductor interface. A backside contact completes the electrical circuit required for solar cell to produce a current by forming an ohmic contact with p-type base region of the substrate.
Widening the current carrying metal lines (e.g., fingers 104) on the light-receiving surface of the solar cell lowers the resistance losses, but increases the shadowing losses due to the reduced effective surface area of the light-receiving surface. Therefore, maximizing solar cell efficiency requires balancing these opposing design constraints.
Traditionally, the current carrying metal lines, or conductors, are fabricated using a screen printing process in which a silver-containing paste is deposited in a desired pattern on a substrate surface and then annealed. However, there are several issues with this manufacturing method. First, the thin fingers of the conductors, when formed by the screen printing process, may be discontinuous since the fingers formed using a metal paste do not always agglomerate into a continuous interconnecting line during the annealing process. Second, porosity present in the fingers formed during the agglomeration process results in greater resistive losses. Third, electrical shunts may be formed by diffusion of the metal (e.g., silver) from the contact into the p-type base region or on the surface of the substrate backside. Shunts on the substrate backside are caused by poor definition of backside contacts such as waviness, and/or metal residue. Fourth, due to the relatively thin substrate thicknesses commonly used in solar cell applications, such as 200 micrometers and less, the act of screen printing the metal paste on the substrate surface can cause physical damage to the substrate. Lastly, silver-based paste is a relatively expensive material for forming conductive components of a solar cell.
One issue with the current method of forming metal interconnects using a screen printing process that utilizes a metal particle containing paste is that the process of forming the patterned features requires high temperature post-processing steps to densify the formed features and form a good electrical contact with the substrate surface. Due to the need to perform a high temperature sintering process the formed interconnect lines will have a high extrinsic stress created by the difference in thermal expansion of the substrate material and the metal lines. A high extrinsic stress, or even intrinsic stress, formed in the metal interconnect lines is an issue, since it can cause breakage of the formed metallized features, warping of the thin solar cell substrate, and/or delamination of the metallized features from the surface of the solar cell substrate. High temperature processes also limit the types of materials that can be used to form a solar cell due to the breakdown of certain materials at the high sintering temperatures. Also, screen printing processes also tend to be non-uniform, unreliable and often unrepeatable. Therefore, there is a need to form a low stress interconnect line that forms a strong bond to the surface of the substrate.
Another approach to forming very thin, robust current carrying metal lines on the surface of a solar cell substrate involves cutting grooves in the surface of the substrate with a laser. The grooves are subsequently filled by an electroless plating method. However the laser-cut grooves are a source of macro- and micro-defects. The laser-cut edge is not well defined, causing waviness on the finger edges, and the heat of the laser introduces defects into the silicon.
Other traditional methods of forming the metal lines (e.g., fingers 104) in a metal interconnect structure are performed by use of expensive multistep processes to form a desired pattern of metallized features on the substrate surface. These processes can include deposition of a blanket metal film, performing a masking step, such as a lithography type steps, to form a desired pattern and then performing electroless or electroplating processes to build up the thickness of the formed metal lines. In one example, the process of forming metal line includes the steps of: 1) depositing a blanket metal layer over the surface of the substrate, 2) depositing a resist layer over the metal layer, 3) exposing portions of the resist layer to some form of radiation, 4) developing the resist, 5) electroplating the metal layer in the exposed portions of the blanket metal, 6) removing the resist layer from the surface of the substrate, and then 7) etching away the blanket metal layer between the plated areas on the substrate surface. In another example, known as the ink jet printing method, the process of forming metal line includes the steps of: 1) depositing a blanket metal layer over the surface of the substrate, 2) depositing an ink layer over various portions of the blanket metal layer, 3) drying the ink layer, 4) electroplating the metal layer in the exposed portions of the blanket metal, 5) removing the ink layer from the surface of the substrate, and then 6) etching away the blanket metal layer between the plated areas on the substrate surface. These conventional processes require a number of processing steps that make the cost to produce the substrate fairly expensive and increase the chance of the substrate being misprocessed, thus causing substrate scrap and waste.
In recent years the solar cell industry has been working ways to form a low cost flexible solar cell for use in varied electrical applications, such as computers, smart cards, curved building surfaces, clothing, retractable satellite solar arrays, portable electronic devices, and cell phones. Flexible solar cells are attractive since they can be formed inexpensively using a high speed production processes, such as roll-to-roll manufacturing methods. Flexible substrate can be constructed from polymeric materials, such as a polyimide (e.g., KAPTON™ by DuPont Corporation), polyethyleneterephthalate (PET), polyacrylates, polycarbonate, silicone, epoxy resins, silicone-functionalized epoxy resins, polyester (e.g., MYLAR™ by E.I. du Pont de Nemours & Co.), APICAL AV manufactured by Kanegaftigi Chemical Industry Company, UPILEX manufactured by UBE Industries, Ltd.; polyethersulfones (PES) manufactured by Sumitomo, a polyetherimide (e.g., ULTEM by General Electric Company), and polyethylenenaphthalene (PEN). In some cases the substrate can be constructed from a metal foil, such as stainless steel that has an insulating coating disposed thereon. Alternately, flexible substrate can be constructed from a relatively thin glass that is reinforced with a polymeric coating. In most low cost applications flexible substrates use a material that cannot be to brought to temperatures exceeding 250° C. and thus the metallizing process must be performed at temperatures well below these temperatures. Also, typical conventional deposition processes will not allow a conductive layer to selectively formed on the surface of the substrate. Therefore, there is a need for a low cost process that can rapidly and selectively form a conductive on the surface of a flexible substrate. Also, there is a need for a low cost method of forming a contact structure for solar cells that can be rapidly formed the have an low cost of ownership (CoO).
Embodiments of the present invention generally provide an apparatus for forming a metal layer on a flexible solar cell substrate, comprising an electrode that is in electrical communication with a power supply, a flexible substrate assembly comprising a support that is adapted to retain a portion of a flexible substrate, and an actuator that is connected to the support and is adapted to position a metallized surface of the flexible substrate in a desired position proximate to the electrode, a contact that is in communication with the power supply, and a thrust plate that is adapted to urge the metallized surface of the flexible substrate against the contact.
Embodiments of the present invention may further provide an apparatus for forming a metal layer on a solar cell substrate, comprising a first processing chamber that is adapted to deposit a first metal layer on a surface of a flexible substrate, a second processing chamber that is adapted to form a second metal layer on the seed layer, wherein the second processing chamber comprises an electrical contact that is in communication with a power supply, a thrust plate that is adapted to urge the first metal layer formed on the flexible substrate against the contact, and an electrode that is in electrical communication with the power supply, wherein the power supply is adapted to bias the electrode relative to the electrical contact, and a flexible substrate assembly comprising a support that is adapted to retain a portion of the flexible substrate, and an actuator that is connected to the support and is adapted to position a portion of the flexible substrate in a desired position in the first and second processing chambers.
Embodiments of the present invention may further provide a method of forming a metal layer on a flexible solar cell substrate, comprising forming a seed layer on a portion of a flexible substrate, disposing a masking plate having a plurality of apertures formed therein over a portion of the seed layer formed on the flexible substrate, contacting the seed layer with one or more electrical contacts, and forming a first metal layer over the seed layer by immersing the seed layer and an electrode in a first electrolyte and biasing the electrical contacts relative to the electrode using a power supply, wherein the first metal layer is formed within the areas exposed by apertures formed in the masking plate.
Embodiments of the present invention may further provide an apparatus for forming a metal layer on a solar cell substrate, comprising a processing chamber that is adapted to deposit a first metal layer on a surface of a first flexible substrate, a first flexible substrate support assembly comprising, a first support that is adapted to retain a portion of a first flexible substrate, and an first actuator that is connected to the first support and is adapted to position a portion of the first flexible substrate in a desired position in the processing chamber, and a second flexible substrate support assembly comprising a second support that is adapted to retain a portion of a second flexible substrate, and an second actuator that is connected to the second support and is adapted to position a portion of the second flexible substrate in a desired position in the processing chamber, and a third actuator that is adapted to urge a portion of the first flexible substrate against a portion of the second flexible substrate so that a conductive region formed on the first flexible substrate can form an electrical connection to a conductive region formed on the second flexible substrate.
Embodiments of the present invention may further provide a method of forming a solar cell array, comprising positioning a flexible substrate that has an first n-type region and a first p-type region that comprise elements of a first solar cell device and a second n-type region and a second p-type region that comprise elements of a second solar cell device in a solar cell processing system, forming a conductive region on a first flexible substrate within the solar cell processing system, wherein the forming the conductive region on the first flexible substrate comprises forming a first metal layer on a portion of the first n-type region, forming a second metal layer on a portion of the first p-type region, forming a third metal layer on a portion of the second n-type region, and forming a fourth metal layer on a portion of the second p-type region, forming a conductive layer on a portion of a second substrate, and forming an electrical connection between the conductive layer formed on the second substrate and at least two of the conductive regions selected from the group consisting of the first metal layer, second metal layer, the third metal layer and the fourth metal layer by urging the conductive layer and the at least two conductive regions together.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
For clarity, identical reference numerals have been used, where applicable, to designate identical elements that are common between figures. It is contemplated that features of one embodiment may be incorporated in other embodiments without further recitation.
Embodiments of the invention contemplate the formation of a low cost flexible solar cell using a novel electroplating method and apparatus to form a metal contact structure. The apparatus and methods described herein remove the need to perform the often costly processing steps of performing a mask preparation, formation and removal steps, such as lithographic steps and inkjet printing steps, to form a contact structure. Solar cell substrates that may benefit from the invention include flexible substrates may have an active region that contains organic material, single crystal silicon, multi-crystalline silicon, polycrystalline silicon, germanium (Ge), and gallium arsenide (GaAs), cadmium telluride (CdTe), cadmium sulfide (CdS), copper indium gallium selenide (CIGS), copper indium selenide (CuInSe2), gallilium indium phosphide (GaInP2), as well as heterojunction cells, such as GaInP/GaAs/Ge or ZnSe/GaAs/Ge substrates, that are used to convert sunlight to electrical power. The flexible substrates may have a flexible base 301 that is adapted to support the active region of the solar cell device. The flexible base 301 may be formed from polymeric materials (e.g., polyimide, PET, PEN, silicones, epoxy resin, polyesters), metal foils, thin glass, silicon or other similar materials. Typically, the flexible substrate may be between about 30 micrometers (μm) and about 1 cm thick.
The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. As noted above, silver (Ag) interconnecting lines formed from a silver paste is one of the currently the preferred interconnecting method. However, while silver has a lower resistivity (e.g., 1.59×10−8 ohm-m) than other common metals such as copper (e.g., 1.67×10−8 ohm-m) and aluminum (e.g., 2.82×10−8 ohm-m) it costs orders of magnitude more than these other common metals. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper. However, generally the electroplated portions of the interconnecting layer may contain a substantially pure metal or a metal alloy layer containing copper (Cu), silver (Ag), gold (Au), tin (Sn), cobalt (Co), rhenium (Rh), nickel (Ni), zinc (Zn), lead (Pb), palladium (Pd), and/or aluminum (Al). Preferably, the electroplated portion of the interconnect layer contains substantially pure copper or a copper alloy.
In one embodiment, the backside metal layer 302 consists of at least two layers of metal that are used to promote adhesion to the surface of the flexible base 301 and/or improve the backside metal layer's mechanical or electrical properties. In one example, the backside metal layer 302 contains a first metal layer that is deposited on the substrate surface(s) and a second metal layer that contains copper. In this configuration the second layer is deposited over the first metal layer so that it can act as a seed on which a subsequent electrochemically deposited layer can be formed. In this case the first layer may contain one or more metals or metal alloys selected from the group consisting of nickel (Ni), cobalt (Co), titanium (Ti), titanium nitride (TiN), titanium tungsten (TiW), tantalum (Ta), tantalum nitride (TaN), molybdenum (Mo), tungsten (W), and ruthenium (Ru) that is deposited using an electroless deposition process, a conventional physical vapor deposition (PVD) process or a conventional chemical vapor deposition (CVD) process, and a second copper containing layer may be a substantially pure layer or an alloy that contains one or more metals selected from the group consisting of cobalt (Co), tin (Sn), silver (Ag), gold (Au), aluminum (Al), and nickel (Ni). In one embodiment, the second layer may be deposited using an electroless deposition process, a conventional physical vapor deposition (PVD) process or a conventional chemical vapor deposition (CVD) process. In one embodiment, the second layer is formed by use of an electrochemical deposition process, such as the processes discussed below.
In step 203, a layer 303 (
In step 204, an interconnect structure may be formed in the layer 303 so that conductors 325 can be made to the desired regions of the solar cell device. In one embodiment, an aperture 310 is formed in the arc layer 304 so that a metal line can directly contact the top surface of the layer 303 and an aperture 311 is formed through the arc layer 304 and layer 303 to expose the backside metal layer 302. The apertures 310, 311 may be formed using a conventional lithography and wet or dry etching processing techniques or by use of conventional laser drilling processes. It should be noted that the order of forming the interconnect structure (e.g., steps 202-208) in the process sequence 200 is not intended to be limiting as to the scope of the invention described herein.
Metallization Steps
In the next step, step 206, which is discussed below in conjunction with FIGS. 2B and 3E-3G, one or more conductors 325 are formed over desired regions of the substrate surface. In the first processing step 214 of step 206, a seed layer 305 is formed over the layer 303 using an electroless deposition process, a conventional physical vapor deposition (PVD) process or a conventional chemical vapor deposition (CVD) process. An example of an electroless deposition process that may be adapted to grow a seed layer 305 on the layer 303 is further described in the U.S. patent application Ser. No. 11/385,047 [APPM 9916.02], filed Mar. 20, 2006, U.S. patent application Ser. No. 11/385,043 [APPM 9916.04], filed Mar. 20, 2006, and U.S. patent application Ser. No. 11/385,041 [APPM 10659], filed Mar. 20, 2006, which are all incorporated by reference in their entirety. In another embodiment, the seed layer 305 may be selectively formed by use of an inkjet, rubber stamping, or any technique for the pattern wise deposition (i.e., printing) of a metal containing liquid or colloidal media on the surface of the substrate. After depositing the metal containing liquid or colloidal media on the surface of the substrate, it is generally desirable to perform a thermal post treatment to remove any solvent and promote adhesion of the metal to the substrate surface. An example of pattern wise deposition process that may be used to form a seed layer 305 on a region of a substrate is further described in the U.S. patent application Ser. No. 11/530,003 [APPM 10254], filed Sep. 7, 2006, which is incorporated by reference in its entirety.
In one embodiment, as shown in
In general, the seed layer 305 may contain a conductive material such as a pure metal, metal alloy or other conductive material. In one embodiment, the seed layer 305 contains one or more metals selected from the group consisting of nickel (Ni), cobalt (Co), titanium (Ti), tantalum (Ta), rhenium (Rh), molybdenum (Mo), tungsten (W), and ruthenium (Ru). It is desirable to select a deposition process and a metal that forms a good electrical contact, or ohmic contact, between the doped silicon region and the deposited seed layer 305. In one aspect, the seed layer 305 is selected so that it acts as a barrier to the diffusion of a metal in the subsequently formed conductor 325 during subsequent processing steps. For example, the seed layer 305 may contain one or more metals or metal alloys selected from the group consisting of nickel (Ni), cobalt (Co), titanium (Ti), their silicides, titanium tungsten (TiW), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), molybdenum (Mo), tungsten (W), tungsten silicide (WSi), molybdenum silicide (MoSi), and ruthenium (Ru). In one embodiment, the thickness of the seed layer 305 may be between about 100 Å and about 2000 Å. In another embodiment, for higher power applications the thickness of the seed layer 305 may be between about 2000 and about 5000 Å.
In one embodiment, the seed layer 305 consists of at least two layers of metal that are used to promote adhesion to the surface of the substrate, act as a diffusion barrier, and/or promote the growth of a subsequently deposited metal layer 306 contained within the conductor 325 (
Electrochemical Metal Layer formation Process(es)
In the second processing step 216 of step 206, which is discussed below in conjunction with
The flexible substrate assembly 460 may contain a feed roll 461, a feed actuator 463 (
Referring to
It should be noted that the apertures 413 formed in the masking plate 410 may be formed in any desirable shape and/or pattern. In one embodiment, the apertures 413 formed in the masking plate 410 may be a rectangular or a circular feature that is between about 100 μm and about 240 μm in size. In another embodiment, the apertures formed in the masking plate 410 may be a rectangular features that are between about 100 μm and about 240 μm wide and have a length that extends across the substrate surface, such as between about 100 μm and about 40 cm in length. In another embodiment, the apertures formed in the masking plate 410 may be a rectangular features that are used to form an interconnecting element 807 (see
The system controller 251 is adapted to control the various components used to complete the electrochemical process performed in the electrochemical plating cell 400. The system controller 251 is generally designed to facilitate the control and automation of the overall process chamber and typically includes a central processing unit (CPU) (not shown), memory (not shown), and support circuits (or I/O) (not shown). The CPU may be one of any form of computer processors that are used in industrial settings for controlling various system functions, chamber processes and support hardware (e.g., detectors, robots, motors, gas sources hardware, etc.) and monitor the electrochemical plating cell processes (e.g., electrolyte temperature, power supply variables, chamber process time, I/O signals, etc.). The memory is connected to the CPU, and may be one or more of a readily available memory, such as random access memory (RAM), read only memory (ROM), floppy disk, hard disk, or any other form of digital storage, local or remote. Software instructions and data can be coded and stored within the memory for instructing the CPU. The support circuits are also connected to the CPU for supporting the processor in a conventional manner. The support circuits may include cache, power supplies, clock circuits, input/output circuitry, subsystems, and the like. A program (or computer instructions) readable by the system controller 251 determines which tasks are performable on a substrate. Preferably, the program is software readable by the system controller 251 that includes code to perform tasks relating to monitoring and execution of the electrochemical process recipe tasks and various chamber process recipe steps.
In one embodiment of step 216, one or more direct current (DC) and/or pulse plating waveforms are delivered to the seed layer 305 during the electrochemical deposition process to form the metal layer 306 that has desirable electrical and mechanical properties. The applied bias may have a waveform that is DC and/or a series of pulses that may have a varying height, shape and duration to form the conductor 325. In one embodiment, a first waveform is applied to the seed layer 305 by use of a power supply 450 to cause some electrochemical activity at the surface of the seed layer. In this case, while the bias applied to the seed layer need not always be cathodic, the time average of the energy delivered by the application of the first waveform is cathodic and thus will deposit a metal on the surface of the seed layer 305. In another embodiment, it may be desirable to have a time average that is anodic (i.e., dissolution of material) to clean the surface of the seed layer prior to performing the subsequent filling process steps. The concentration gradients of metal ions or additives in the electrolyte “A” (
In one example, as shown in
It is believed that by controlling the magnitude, duration and polarity of successive pulses the grain size of the metal layer formed using an electrochemical deposition process can be controlled. It is generally well known that by using pulse plating waveform that has many rapid pulses that have a high magnitude or a number of pulses having alternating polarity will generate a layer that has a lower stress and generally a smaller grain size than an electrochemically deposited layer that is formed using a DC waveform or pulse type waveform that are of a longer duration and/or have a smaller pulse magnitude. Therefore, by controlling the waveform, deposition rate, and chemistry used to form the metal layer 306 having a varying grain size a low stress metal layer can be formed that is able to form a reliable low stress conductors 325 on the surface of the substrate.
Electrolyte Solution
In general, it is desirable to form a conductor 325 that is defect free, has a low stress that can fill any deep features formed on the substrate surface from the bottom-up. The electrochemical process performed in the electrochemical plating cell 400 utilizes an electrolyte solution containing a metal ion source and an acid solution. In some cases one or more additives, such as an accelerator, a suppressor, a leveler, a surfactant, a brightener, or combinations thereof may be added to the electrolyte solution to help control the grain size and uniformity of the electrochemically deposited metal layer(s). However, additives generally make the control of the electrochemical process more complex and make the cost of the consumables generated during the electrochemical plating process to increase, since they are generally consumed or breakdown during the electrochemical process. In one embodiment, to increase the planarization power, the electrolyte can optionally contain an inorganic acid, (e.g., sulfuric acid, phosphoric acid or pyrophosphoric acid), various inorganic supporting salts, and other additives that may be used to improve the quality of plated surfaces (e.g., oxidizers, surfactants, brighteners, etc.).
In one example, the metal ion source within the electrolyte solution used in step 216 in
In one example, the electrolyte is an aqueous solution that contains between about 200 and 250 g/l of copper sulfate pentahydrate (CuSO4.5(H2O)), between about 40 and about 70 g/l of sulfuric acid (H2SO4), and about 0.04 g/l of hydrochloric acid (HCl). In some cases it is desirable to add a low cost pH adjusting agent, such as potassium hydroxide (KOH) or sodium hydroxide (NaOH) to form an inexpensive electrolyte that has a desirable pH to reduce the cost of ownership required to form a metal contact structure for a solar cell. In some cases it is desirable to use tetramethylammonium hydroxide (TMAH) to adjust the pH.
In another example, the electrolyte is an aqueous solution that contains between about 220 and 250 g/l of copper fluoroborate (Cu(BF4)2), between about 2 and about 15 g/l of tetrafluoroboric acid (HBF4), and about 15 and about 16 g/l of boric acid (H3BO3). In some cases it is desirable to add a pH adjusting agent, such as potassium hydroxide (KOH), or sodium hydroxide (NaOH) to form an inexpensive electrolyte that has a desirable pH to reduce the cost of ownership required to form a metal contact structure for a solar cell. In some cases it is desirable to use tetramethylammonium hydroxide (TMAH) to adjust the pH.
In yet another example, the electrolyte is an aqueous solution that contains between about 60 and about 90 g/l of copper sulfate pentahydrate (CuSO4.5(H2O)), between about 300 and about 330 g/l of potassium pyrophosphate (K4P2O7), and about 10 to about 35 g/l of 5-sulfosalicylic acid dehydrate sodium salt (C7H5O6SNa.2H2O). In some cases it is desirable to add a pH adjusting agent, such as potassium hydroxide (KOH), or sodium hydroxide (NaOH) to form an inexpensive electrolyte that has a desirable pH to reduce the cost of ownership required to form a metal contact structure for a solar cell. In some cases it is desirable to use tetramethylammonium hydroxide (TMAH) to adjust the pH.
In yet another example, the electrolyte is an aqueous solution that contains between about 30 and about 50 g/l of copper sulfate pentahydrate (CuSO4.5(H2O)), and between about 120 and about 180 g/l of sodium pyrophosphate decahydrate (Na4P2O7.10(H2O)). In some cases it is desirable to add a pH adjusting agent, such as potassium hydroxide (KOH), or sodium hydroxide (NaOH) to form an inexpensive electrolyte that has a desirable pH to reduce the cost of ownership required to form a metal contact structure for a solar cell. In some cases it is desirable to use tetramethylammonium hydroxide (TMAH) to adjust the pH.
In one embodiment, it may be desirable to add a second metal ion to the primary metal ion containing electrolyte bath (e.g., copper ion containing bath) that will plate out or be incorporated in the growing electrochemically deposited layer or on the grain boundaries of the electrochemically deposited layer. The formation of a metal layer that contains a percentage of a second element can be useful to reduce the intrinsic stress of the formed layer and/or improve its electrical and electromigration properties. In one example, it is desirable to add an amount of a silver (Ag), nickel (Ni), zinc (Zn), or tin (Sn) metal ion source to a copper plating bath to form a copper alloy that has between about 1% and about 4% of the second metal in the deposited layer.
In one example, the metal ion source within the electrolyte solution used in step 216 in
Contact Interface Layer
Referring to
In one embodiment, the contact interface layer 307 is formed by use of an electrochemical process. In some cases it is desirable to perform step 208 in the same electrochemical plating cell as step 216 was performed. In this configuration, the seed layer 305 and metal layer 306 are cathodically biased relative to an electrode (e.g., electrode 420 in
Contact Interface Layer Electrolyte Solution
Referring to
In one example, the electrolyte is an aqueous solution that contains between about 200 and 250 g/l of tin sulfate pentahydrate (SnSO4.5(H2O)), between about 40 and 70 g/l of sulfuric acid (H2SO4), and about 0.04 g/l of hydrochloric acid (HCl). In some cases it is desirable to add one or more organic additives (e.g., levelers, accelerators, suppressors) to promote uniform growth of the deposited layer. In some cases it is desirable to add a low cost pH adjusting agent, such as potassium hydroxide (KOH) or sodium hydroxide (NaOH) to form an inexpensive electrolyte that has a desirable pH to reduce the cost of ownership required to form a metal contact structure for a solar cell. In some cases it is desirable to use tetramethylammonium hydroxide (TMAH) to adjust the pH.
In an effort to reduce the production time to form the metal layers 306 and/or 307 it is desirable to take steps to maximize the plating rate, while producing a low stress uniform layer that has good electrical properties. Typical methods that can be used to improve the plating rate include agitation of the electrolyte solution, increase the electrolyte flow and or motion of the substrate in the electrolyte. In one aspect, the plating rate is increased by controlling the temperature of electrolyte. In one embodiment, the temperature of the electrolyte is controlled within a range of about 18° C. and about 85° C., and preferably between about 30° C. and about 70° C. to maximize the plating rate. It has been found that the higher the temperature the faster the plating rate.
Referring to
Multiple Metallization Steps
The embodiments discussed above in conjunction with
Disposable Masking Plate
In one embodiment of the electrochemical plating cell 400, as shown in
The support rollers 617 are positioned to support the flexible masking substrate 618 when the portion of the flexible base 301 is pressed against a surface of the flexible masking substrate 618 by the motion of the thrust plate 414 and actuator 415. After an aperture region 619 of the flexible masking substrate 618 has been used for a desired number of electrochemical plating processes the take-up actuator 663 and/or feed actuator 656 can be used to reposition the a new aperture region 619 in the old one's place so that a electrochemical plating process can be performed using the new aperture region 619. In this case a new aperture region 619 can be used to form a metal layer 306 on the surface of the substrate whenever the system controller 251 (
The flexible masking substrate 618 is typically formed from a thin compliant material that can be inexpensively formed. In one aspect, the flexible substrate is formed from a plastic, polymeric or elastomeric material, such as Mylar™, polyethylene or other similar material. The thickness of the flexible masking substrate 618 may vary between about 10 μm and about 2 mm. The apertures 413 may be formed in the flexible masking substrate 618 using conventional stamping, laser cutting, punch and die techniques.
Processing System
In one embodiment, process chamber 701 is adapted to clean and/or prepare the surface of the flexible base 301 prior to performing subsequent processing steps. In one aspect, the process chamber is 701 is adapted to perform a preprocessing step before the seed layer 305 is deposited on the flexible base 301 in the processing chamber 702. A typical preclean step may include a rinse or immersion in a cleaning solution that may contain DI water and/or a cleaning agent to remove metals, particles, or other contamination found on the flexible substrate surface. The cleaning agent may be an acidic or basic solution that may contain hydrofluoric acid (HF), sulfuric acid (H2SO4), hydrochloric acid (HCl), ammonia (NH3), or other suitable etchant or solvent. In one example, the cleaning solution contains sulfuric acid, hydrogen peroxide, and water mixed in a concentration of 3:1:1 by weight, which is used to etch copper.
In one embodiment, the process chamber 702 is adapted to deposit the seed layer 305 on the surface of the flexible base 301 using the process discussed above in conjunction with step 214. In one aspect, the seed layer 305 is formed in the process chamber 702 using a PVD deposition process or an electroless deposition process, as discussed above. In one embodiment, the process chamber 703 is adapted to perform an electrochemical deposition process to form the metal layer 306 using an apparatus or method discussed above in conjunction with
In one embodiment, process chamber 704 is adapted to perform a post-processing step, such as step 210 in
In another embodiment, the process chamber 704 is adapted to perform a contact isolation process during step 210 to form one or more isolation features 326 in various regions of the formed metallized flexible substrate 320. The isolation features 326, such as isolation features 326A, 326B shown in
In another embodiment, the process chamber 704 is adapted to reduce the stress or improve the properties of the deposited metal layers (e.g., metal layers 305, 306, 307). In one embodiment, an annealing step is performed on the solar cell substrate to reduce or even out the intrinsic stress contained in the formed metal layers. In one aspect, the annealing process is performed at a temperature between about 200 and 450° C. in a low partial pressure of nitrogen environment. In one aspect, an anneal process is used to enhance the electrical contact between the formed metal layers and/or the adhesion of the metal layers to the substrate surface, and silicide formation.
Roll-To-Roll Solar Cell Array Formation Process
To form a useful solar cell device it is common to connect multiple solar cells together to form a solar cell array that can deliver a desired voltage and/or current to drive an external load. In one embodiment, solar cell devices formed by use of the method steps 200, or other similar process sequence, are connected together so that they form a solar cell array that is able to convert sunlight directly into usable electrical power. A solar cell array can be connected either in parallel or series depending upon the design objective or design application.
In one embodiment, the interconnecting element 807 generally contains a patterned electrically conductive structure that is formed on the flexible base 806, which can be joined with portions of the metallized substrate 820 to connect desired elements of multiple solar cell devices. The interconnecting element 807 generally contains a plurality of electrical interconnects 811 that are formed on a flexible base 806 using an electroless deposition process, a conventional PVD process or a conventional CVD process, or one or more of the processes described in steps 204-208 above. The pattern or shape of the electrical interconnects 811 is set by the design of the metallized substrate 820 and the interconnect design, and can be formed by following one or more of the patterning techniques discussed above. In one embodiment, the electrical interconnects 811 contain a metal layer 804 and an interface layer 805, where the metal layer 804 may contain a conductive metal, such as a copper, nickel, aluminum, silver, or gold, and the interfacial layer 805 may contain a conductive metal, such as tin, silver, gold, lead, or ruthenium. In one embodiment, two or more of the electrical interconnects 811 formed on the flexible base 806 may be electrically connected together (not shown) so that a solar cell array can be formed when the devices in the metallized substrate 820 are placed in contact with the electrical interconnects 811. The flexible base 806 may be formed from polymeric materials (e.g., polyimide, PET, PEN, silicones, epoxy resin, polyesters), metal foils, thin glass, silicon or other similar materials.
In one embodiment, the formation of the electrical connection between the electrical interconnects 811 and the electrical contacts 810 is completed by positioning one of more of the electrical interconnects 811 over one or more of the electrical contacts 810 by use of a feed roll 461, a flexible interconnect roll assembly 815 and/or a take-up roll 462 and then pressing the electrical interconnects 811 and the electrical contacts 810 together using an actuator assembly 402. The actuator assembly 402 generally contains at least one actuator assembly, such as the first actuator assembly 403 and/or the second actuator assembly 834 that are adapted to urge the electrical interconnects 811 and the electrical contacts 810 together so that an electrical contact can be formed. The first actuator assembly 403 and second actuator assembly 834 may each contain a thrust plate 833 and a mechanical actuator 835 that is used to urge the electrical interconnects 811 and the electrical contacts 810 together.
Forming a good electrical contact between the electrical interconnects 811 and the electrical contacts 810 may be completed due to the addition of heat or force to the contacting surface, which cause the material in the electrical interconnects 811 and the electrical contacts 810 to become electrically, mechanically and/or chemically joined. In one aspect, the thrust plate 833 contains a plurality of heating elements 840 that are connected to the temperature controller (not shown) and a system controller 251 to generate the heat required to cause the material in the electrical interconnects 811 and the electrical contacts 810 to form a good electrical contact when they are pressed together by use of the actuators 835. In one example, the electrical interconnects 811 and the electrical contacts 810 each have a layer on the top surface that contains tin and brought to a temperature between about 175° C. and about 250° C. to form a good electrical contact.
In one embodiment, one or more heat sources 831 are adapted to heat-treat or anneal the electrical interconnects 811 and the electrical contacts 810 to form a reliable and repeatable electrical contact structure. A heat source 831 may be a lamp or IR heating element that is adapted to deliver energy to the electrical interconnects 811 and the electrical contacts 810. In one example, the electrical interconnects 811 and the electrical contacts 810 each have a layer on the top surface that contains tin and brought to a temperature between about 150° C. and about 250° C. to form a good electrical contact.
After forming the solar cell array 821, each of the formed solar cell arrays 821 can be separated from the flexible substrates, or the flexible substrates can be divided up so that the finished solar cell array 821 can be placed into a device that contains the solar cell array.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
3362893 | Amaro et al. | Jan 1968 | A |
3849880 | Haynos | Nov 1974 | A |
3865698 | Kosowsky et al. | Feb 1975 | A |
4240880 | Tsuchibuchi et al. | Dec 1980 | A |
4436558 | Russak | Mar 1984 | A |
4581108 | Kapur et al. | Apr 1986 | A |
4617420 | Dilts et al. | Oct 1986 | A |
4623751 | Kishi et al. | Nov 1986 | A |
4666567 | Loch | May 1987 | A |
4789437 | Sing et al. | Dec 1988 | A |
4869971 | Nee et al. | Sep 1989 | A |
4921583 | Sewell et al. | May 1990 | A |
5057163 | Barnett et al. | Oct 1991 | A |
5198965 | Curtis et al. | Mar 1993 | A |
5209817 | Ahmad et al. | May 1993 | A |
5277786 | Kawakami | Jan 1994 | A |
5575855 | Kanai et al. | Nov 1996 | A |
5588994 | Bozler et al. | Dec 1996 | A |
5841197 | Adamic et al. | Nov 1998 | A |
5897368 | Cole, Jr. et al. | Apr 1999 | A |
5968333 | Nogami et al. | Oct 1999 | A |
5972192 | Dubin et al. | Oct 1999 | A |
6103085 | Woo et al. | Aug 2000 | A |
6146480 | Centanni et al. | Nov 2000 | A |
6197181 | Chen | Mar 2001 | B1 |
6261433 | Landau | Jul 2001 | B1 |
6294822 | Nakata | Sep 2001 | B1 |
6297155 | Simpson et al. | Oct 2001 | B1 |
6299745 | Kumar et al. | Oct 2001 | B1 |
6391166 | Wang | May 2002 | B1 |
6406610 | Lowe | Jun 2002 | B1 |
6447938 | Bianchi | Sep 2002 | B1 |
6559479 | Ludemann | May 2003 | B1 |
6572742 | Cohen | Jun 2003 | B1 |
6610189 | Wang et al. | Aug 2003 | B2 |
6656275 | Iwamoto | Dec 2003 | B2 |
6670543 | Lohmeyer et al. | Dec 2003 | B2 |
6706166 | Chou et al. | Mar 2004 | B2 |
6881318 | Hey et al. | Apr 2005 | B2 |
7172184 | Pavani et al. | Feb 2007 | B2 |
7339110 | Mulligan et al. | Mar 2008 | B1 |
7388147 | Mulligan et al. | Jun 2008 | B2 |
20030192583 | Ryan | Oct 2003 | A1 |
20030230337 | Gaudiana et al. | Dec 2003 | A1 |
20040067324 | Lazarev et al. | Apr 2004 | A1 |
20040074762 | Keigler et al. | Apr 2004 | A1 |
20040118446 | Toyomura | Jun 2004 | A1 |
20040198187 | Tolles | Oct 2004 | A1 |
20040200520 | Mulligan et al. | Oct 2004 | A1 |
20050016862 | Sano et al. | Jan 2005 | A1 |
20050061665 | Pavani et al. | Mar 2005 | A1 |
20050103377 | Saneyuki et al. | May 2005 | A1 |
20050121326 | Klocke et al. | Jun 2005 | A1 |
20050199489 | Stevens et al. | Sep 2005 | A1 |
20050272263 | Brabec et al. | Dec 2005 | A1 |
20060033678 | Lubomirsky et al. | Feb 2006 | A1 |
20060062897 | Gu et al. | Mar 2006 | A1 |
20060174935 | Sawada et al. | Aug 2006 | A1 |
20060185714 | Nam et al. | Aug 2006 | A1 |
20060185716 | Murozono et al. | Aug 2006 | A1 |
20060207885 | Basol | Sep 2006 | A1 |
20060217049 | Li et al. | Sep 2006 | A1 |
20060219565 | Preusse et al. | Oct 2006 | A1 |
20060223300 | Simka et al. | Oct 2006 | A1 |
20080092947 | Lopatin et al. | Apr 2008 | A1 |
20080121276 | Lopatin et al. | May 2008 | A1 |
20080128013 | Lopatin et al. | Jun 2008 | A1 |
20080128019 | Lopatin et al. | Jun 2008 | A1 |
20080128268 | Lopatin et al. | Jun 2008 | A1 |
20080132082 | Lopatin et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
2 348 212 | Sep 2000 | GB |
Number | Date | Country | |
---|---|---|---|
20080128013 A1 | Jun 2008 | US |