This application relates to chambers, systems, and methods for electroplating substrates.
Microelectronic devices such as semiconductor devices are generally fabricated on and/or in substrates or wafers. In a typical fabrication process, one or more layers of metal or other conductive materials are formed on a wafer in an electroplating processor. The processor may have a bath of electrolyte held in vessel or bowl, with one or more anodes in the bowl. The wafer itself may be held in a rotor in a head movable into the bowl for processing and away from the bowl for loading and unloading. A contact ring on the rotor generally has a large number of contact fingers that make electrical contact with the wafer. A seal may be used to seal the fingers from contact with the electrolyte, to avoid plating metal onto the fingers. After the electroplating step, the wafer must be removed from the rotor. Under certain conditions, the wafer may adhere to the seal, making removal of the wafer more time consuming and complicated, as well as risking damage to the wafer. Accordingly, improved processors and methods are needed.
In the drawings, the same element number indicates the same element in each of the views.
Referring to
A gas operated wafer handling system 80 may be provided in the rotor 64. In general terms, the system 80 uses a flow of compressed gas to provide a vortex effect to lift a wafer 100 up off of a robot end effector and into the rotor, and a vacuum effect to pull the wafer up off of the contact ring 65, and specifically a contact ring seal, after a plating process. The vortex and the vacuum may both be generated within the head using a single common supply of compressed gas or air supplied to the head 50.
As shown in
In use, the head 50 is lifted up off of the bowl 60 via an actuator lifting the lift arm 56. The contact ring 65 is in the open position shown in
A check step may then optionally be performed to confirm the presence of a wafer in the head, by switching the solenoid 82 momentarily into the vacuum position. In this position, a main flow of gas or air is provided to the aspirator 84, with a secondary flow via a T-connection going to the air cylinder 90. This causes a flow of gas to actuate the air cylinder 90 moving the vacuum pad 104 down into contact with the vacuum pad landing 106, with the aspirator 84 providing vacuum to the vacuum pad 104. With the vacuum pad 104 connected to the vacuum pad landing 106, vacuum is applied to the vacuum channel 96.
Since the vacuum pad landing 106 rotates with the backing plate 72 on the rotor 50, and the vacuum pad 104 does not, the rotor is indexed via control of the motor 68 to bring them into alignment, before actuating the air cylinder 90. A hole in the rotor connects to the vacuum channel 96 which is aligned with the vacuum pad 104. If liquid is drawn into the vacuum system, it is routed to the exhaust for removal or return to the bowl.
A vacuum is established if a wafer is present. The vacuum switch 86 detects the presence of vacuum indicating the presence of a wafer. If no wafer is present, or if the wafer is broken or out of position, air leaks into the vacuum channel to cause the vacuum switch to detect reduced or no vacuum, indicating an error condition. If the check step is performed, the ring, wafer and rotor may close before switching from vortex to vacuum to run the check step. This avoids potential for the wafer to drop due to a time lag between vortex shutoff and establishing the vacuum. \
After the check step, if any, the contact ring 65 is pulled up towards the backing plate 72. This movement brings the wafer 100 into contact with contact fingers 66 and a seal 76 on the contact ring 65 shown in
After processing the head 50 is lifted away from the bowl 60 the contact ring 65 is moved back down. If the wafer adheres to the seal 76, the wafer will then not be in position to be removed from the rotor by the robot. Rather, the wafer 100 must remain with the backing plate as the contact ring seal moves down. Since the vortex effect applies force more towards the center of the wafer, as opposed to the edges, it is not well adapted for holding the wafer onto the backing plate against the pulling force of the seal 76.
To more effectively hold an adhering wafer onto the backing plate, the solenoid 82 is switched into the vacuum position. This causes the air cylinder 90 to actuate, which moves the vacuum pad 104 down onto the vacuum pad landing. 106. As a result, the vacuum channel 96 is connected to vacuum generated by the aspirator 84. The vacuum force may be larger than the vortex force. In addition, the vacuum force acts at or very close to the seal, at the edges of the wafer. Accordingly the vacuum channel may securely hold the wafer 100 onto the backing plate, without undue bending and stressing of the wafer as an adhering seal moves away.
The vacuum switch 86 senses whether the wafer has been successfully held onto the backing plate 72. The robot may then move back into the rotor, with the solenoid switched back to the vortex position, and with no gas flow provided, to allow the wafer to drop onto the robot.
As described here, the term vacuum means a partial vacuum suitable for lifting and holding a wafer. The term wafer here means any substrate or work piece on or in which microelectronic, micro-mechanical or micro-optical devices are formed.
If the backing plate 72 or the back side of the wafer is wet, the wafer may tend to stick to the backing plate via liquid surface tension. To prevent this sticking, a plastic Bellville washer or other spring element ejector 98 shown in
Table I below shows parameters as in the method described above. A mass flow controller (MFC) connected to the head via the flex line 58 supplies gas or air under pressure to the head 50 at the relative flow rates described.
The head 50 provides for extraction of the wafer 100 regardless of any tendency of the wafer to adhere to the seal. In addition, the extraction is achieved without contacting and pulling or holding on the front side of the wafer, a technique generally not desirable or permissible in many processes.
Thus, novel apparatus and methods have been shown and described. Various changes and substitutions may of course be made without departing from the spirit and scope of the invention. The invention, therefore, should not be limited except by the following claims and their equivalents.