The invention is generally related to encoded information reading (EIR) terminals and is specifically related to EIR terminals using radio frequency identifier (RFID) reading devices with multi-directional antennas.
RFID methods are widely used in a number of applications, including smart cards, item tracking in manufacturing and retail, etc. An RFID tag can be attached, e.g., to a retail item. An encoded information reading (EIR) terminal deployed at the cashier's desk can be equipped with an RFID reader to read and/or modify the memory of an RFID tag attached to a retail item.
In one embodiment, there is provided an EIR terminal comprising a microprocessor, a memory communicatively coupled to the microprocessor, an RFID reading device, and two or more antennas having substantially different spatial orientation. Each antenna can be electrically coupled to a switching circuit. The switching circuit can be configured to alternatively electrically couple each antenna of said two or more antennas to the RFID reading device. The RFID reading device can be configured to output raw message data containing an encoded message and/or to output decoded message data corresponding to an encoded message.
In another embodiment, there is provided an EIR terminal comprising a microprocessor, a memory communicatively coupled to the microprocessor, an RFID reading device, an antenna, and a mechanical rotor configured to change a spatial orientation of said antenna. The RFID reading device can be configured to output raw message data containing an encoded message and/or to output decoded message data corresponding to an encoded message.
For the purpose of illustrating the invention, the drawings show aspects of one or more embodiments of the invention. However, it should be understood that the present invention is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:
The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the embodiments described herein. In the drawings, like numerals are used to indicate like parts throughout the various views.
In one embodiment, there is provided an encoded information reading (EIR) terminal comprising a radio frequency identifier (RFID) reading device. The EIR terminal can be configured to read RFID tags containing encoded messages. In one embodiment, the RFID terminal can be configured to read an RFID tag containing an encoded message and output raw message data containing the encoded message. In another embodiment, the RFID terminal can be configured to read an RFID tag containing an encoded message and output decoded message data corresponding to the encoded message.
Various embodiments of the EIR terminal can be used in a numerous applications, including but not limited to, authentication and access control systems (for example, using smart cards), item tracking in manufacturing and retail, etc. A smart card is an identification card (e.g., a credit card, a pass card) which does not need to be swiped or otherwise physically contacted by a card reader. This capability can be implemented by placing an RFID tag in the card. Item tracking can be implemented by placing an RFID tag on each individual item. In retail, item tracking with RFID tags can be used in conjunction with other technologies such as bar code scanning and payment terminals. Item tracking with RFID tags can be used in loss prevention systems by placing an RFID tag into merchandise items and placing sensors at exit points. If an exit sensor detects a tagged item with a tag, which was not deactivated at the checkout, an alarm can go off.
One of the most important operational characteristics of an RFID reading device is the distance at which an RFID tag can be read. One of the factors significantly affecting the read range is mutual orientation of the RFID tag and the RFID reader antenna. Changing the orientation of an RFID tag and/or an RFID reader antenna can dramatically change the tag read range by the RFID reader, for example within the range of 1-50 feet.
To provide consistent read range independent of the orientation of the RFID tag and/or the EIR terminal, in one embodiment the EIR terminal can comprise at least two antennas having substantially different spatial orientation and/or spaced apart from each other by a distance comparable to the antenna size, and can be configured to automatically switch between the antennas. In one embodiment, the antennas can be mounted/printed on a single printed circuit board (PCB). In an illustrative embodiment, schematically shown in
In another illustrative embodiment, schematically shown in
In one example, an RFID reader with a vertically disposed antenna can read a vertically disposed RFID tag within the range of up to 35 inches, and can read a horizontally disposed RFID tag within the range of up to 13 inches, while an RFID reader with a horizontally disposed antenna can read a horizontally disposed RFID tag within the range of up to 32 inches, and can read a vertically disposed RFID tag within the range of up to 15 inches. Hence, by employing two antennas substantially orthogonal to each other and/or spaced apart by a distance comparable with the antenna size, a consistent read range can be provided, independent of the mutual orientation of the RFID reading device and the RFID tag.
Component-level diagram of one embodiment of an EIR terminal is now being described with references to
EIR terminal 100 can further comprise a communication interface 340 communicatively coupled to the system bus 370. In one embodiment, the communication interface can be provided by a wireless communication interface. The wireless communication interface can be configured to support, for example, but not limited to, the following protocols: at least one protocol of the IEEE 802.11/802.15/802.16 protocol family, at least one protocol of the HSPA/GSM/GPRS/EDGE protocol family, TDMA protocol, UMTS protocol, LTE protocol, and/or at least one protocol of the CDMA/1×EV-DO protocol family.
EIR terminal 100 can further comprise a keyboard interface 354 and a display adapter 355, both also coupled to the system bus 370. EIR terminal 100 can further comprise a battery 356. In one embodiment, the battery 356 can be provided by a replaceable rechargeable battery pack.
EIR terminal 100 can further comprise a GPS receiver 380. EIR terminal 100 can further comprise at least one connector 390 configured to receive a subscriber identity module (SIM) card.
EIR terminal 100 can further comprise one or more EIR devices 330, provided, for example, but not limited to, by an RFID reading device, a bar code reading device, or a card reading device. In one embodiment, the RFID terminal can be configured to read an encoded message using EIR device 330, and to output raw message data containing the encoded message. In another embodiment, the RFID terminal can be configured to read an encoded message using EIR device 330, and to output decoded message data corresponding to the encoded message. As used herein, “message” is intended to denote a character string comprising alphanumeric and/or non-alphanumeric characters. An encoded message can be used to convey information, such as identification of the source and the model of a product, for example, in a UPC code.
Of course, devices that read bar codes, read RFID, or read cards bearing encoded information may read more than one of these categories while remaining within the scope of this disclosure. For example, a device that reads bar codes may include a card reader, and/or RFID reader; a device that reads RFID may also be able to read bar codes and/or cards; and a device that reads cards may be able to also read bar codes and/or RFID. For further clarity, it is not necessary that a device's primary function involve any of these functions in order to be considered such a device; for example, a cellular telephone, smartphone, or PDA that is capable of reading bar codes is a device that read bar codes for purposes of this disclosure.
As noted herein supra, in one embodiment, EIR terminal 100 can further comprise an RFID reading device 333. EIR terminal 100 can be configured to read RFID tags containing decoded messages. In one embodiment, the RFID terminal can be configured to read, using RFID reading device 333, an RFID tag containing an encoded message, and to output raw message data containing the encoded message. In another embodiment, the RFID terminal can be configured to read, using RFID reading device 333, an RFID tag containing an encoded message, and to output decoded message data corresponding to the encoded message.
In one embodiment, RFID reading device 333 can be compliant with EPC™ Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz-960 MHz by EPCglobal, commonly known as the “Gen 2” standard, which defines physical and logical requirements for a passive-backscatter, Interrogator-talks-first (ITF) RFID system operating in the 860 MHz-960 MHz frequency range.
In one embodiment, EIR terminal 100 can transmit information to a passive RFID tag by modulating an RF signal in the 860-960 MHz frequency range. An RFID tag can receive both information and operating energy from the RF signal transmitted by EIR terminal 100. EIR terminal 100 can receive information from the RFID tag by transmitting a continuous-wave (CW) RF signal to the RFID tag. “Continuous wave” can refer to any waveform transmitted by an RFID reading device and suitable to power a passive RFID tag, e.g., a sinusoid at a given frequency. The RFID tag can respond by modulating the reflection coefficient of its antenna, thus backscattering an information signal to the EIR terminal 100. In one embodiment, the RFID tag can modulate the reflection coefficient of its antenna only responsive to receiving an RFID signal from EIR terminal 100.
In a further aspect, EIR terminal 100 can be configured to send information to one or more RFID tags by modulating an RF carrier using double-sideband amplitude shift keying (DSB-ASK), single-sideband amplitude shift keying (DSB-ASK), or phase-reversal amplitude shift-keying (PR-ASK) using a pulse-interval encoding (PIE) format. RFID tags can receive their operating energy from the same modulated RF carrier.
EIR terminal 100 can be configured to receive information from an RFID tag by transmitting an unmodulated RF carrier and listening for a backscatter reply. RFID tags can transmit information by backscatter-modulating the amplitude and/or phase of the RFID carrier. RFID tags can encode the backscattered data using, e.g., FM0 baseband or Miller modulation of a subcarrier at the data rate. The encoding method to be employed by an RFID tag can be selected by EIR terminal 100.
In another aspect, the communication link between EIR terminal 100 and an RFID tag can be half-duplex, meaning that the RFID tag is not required to demodulate EIR terminal's commands while backscattering. A half-duplex system means communication in both directions, but only one direction at a time (not simultaneously). Typically, once a party begins receiving a signal, it must wait for the transmitter to stop transmitting, before replying.
In another aspect, EIR terminal can establish one or more sessions with one or more RFID tags. An RFID tag can support at least one session-dependent flag for every session. The session-dependent flag can have two states. An RFID tag can invert a session-dependent flag responsive to receiving a command from EIR terminal 100. Tag resources other than session-dependent flags can be shared among sessions. In another aspect, an RFID tag can support a selected status flag indicating that the tag was selected by EIR terminal 100.
Responsive to receiving an interrogation signal transmitted by EIR terminal 100, an RFID tag can transmit a response signal back to EIR terminal 100. The response signal can contain useful data, e.g., an Electronic Product Code (EPC) identifier, or a tag identifier (TID). The response signal can include a representation of a binary string, at least part of which is equal to at least part one of the specified one or more target item identifiers.
In one embodiment, EIR terminal can implement EPC™ Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz-960 MHz by EPCglobal. EIR terminal 100 can interrogate RFID tags using the commands described herein infra.
Select command can be used by EIR terminal 100 to select a particular RFID tag population for the subsequent inventory round. Select command can be applied successively to select a particular tag population based on user-specified criteria. Select command can include the following parameters:
Inventory command set can be used by EIR terminal 100 to single out one or more individual tags from a group. A tag can maintain up to four simultaneous sessions and a binary Inventoried flag for each session. Inventory command set includes the following commands:
An RFID tag can implement a state machine. Once energized, a tag can change its current state to Ready. A selected tag can, responsive to receiving Query command, select a random integer from the range of [0; 2Q-1]. If the value of zero is selected, the tag can transition to Reply state, backscaterring a 16-bit random number. If a non-zero value is selected, the tag can load the selected random integer into its slot counter and change its state to Arbitrate.
Responsive to receiving the tag transmission, EIR terminal can acknowledge it with Ack command containing the same random number. Responsive to receiving Ack command, the tag can change its state to Acknowledged and backscatter its protocol control (PC) bits, EPC and cyclic redundancy check (CRC) value. Unacknowledged tag can select a new random integer from the range of [0; 2Q-1], load the value into its slot counter, and change its state to Arbitrate. Responsive to receiving QueryAdjust command, a tag in the Arbitrate state should decrement the value of its slot counter and backscatter its protocol control (PC) bits, EPC and CRC value if its slot counter is equal to zero.
Responsive to receiving the tag's transmission of its PC, EPC and 16-bit CRC value, EIR terminal can send a QueryAdjust command causing the tag to invert its Inventoried flag and to transition to Ready state.
Access command set can be used by EIR terminal 100 for communicating with (reading from and writing to) a tag. An individual tag must be uniquely identified prior to access. Access command set includes the following commands:
ReqRn command can be used by EIR terminal 100 to request a handle from a tag; the handle can be used in the subsequent Access command set commands. Responsive to receiving Req_RN commands, a tag returns a 16-bit random integer (handle) and transitions from Acknowledged to Open or Secured state.
Read command can be used by EIR terminal 100 to read tag's Reserved, EPC, TID and User memory;
Write command can be used by EIR terminal 100 to write to tag's Reserved, EPC, TID and User memory;
Kill command can be used by EIR terminal 100 to permanently disable a tag;
Lock command can be used by EIR terminal 100 to lock passwords preventing subsequent read or write operations; lock individual memory banks preventing subsequent write operations; permanently lock the lock status of passwords or memory banks;
Access command can be used by EIR terminal 100 to cause a tag having a non-zero access password to transition from Open to Secured state.
A skilled artisan would appreciate the fact that other methods of interrogating RFID tags by EIR terminal 100 are within the scope of this disclosure.
As noted herein supra, in one embodiment, EIR terminal 100 can comprise at least two antennas 338a-338b feeding RF signals to RFID reading device 333 and having different spatial orientation. In one embodiment, antennas 338a-338b can be made of a metamaterial (MTM). Metamaterials are artificial composite materials engineered to produce a desired electromagnetic behavior which surpasses that of natural materials. MTM-based objects can include structures which are much smaller than the wavelength of electromagnetic waves propagating through the material. MTM technology advantageously allows for precise control of the propagation of electromagnetic waves in the confines of small structures by determining the values of operating parameters which can include operating frequency, bandwidth, phase offsets, constant phase propagation, and matching conditions.
In one aspect, an MTM antenna can be physically small as compared to other types of antennas: an MTM antenna can be sized, for example, on the order of one tenths of a signal's wavelength, while providing performance equal to or better than an antenna made of a conventional material and sized on the order of one half of the signal's wavelength. Thus, for a frequency range of 860 MHz-930 MHz, an antenna made of a conventional material should have the size of approximately 165 mm for a dipole antenna (or 82.5 mm for a monopole antenna), while a M™ antenna can have a size of 33 mm.
The ability of an MTM antenna to produce a desired electromagnetic behavior can be explained by the fact that while most natural materials are right-handed (RH) materials (i.e. propagation of electromagnetic waves in natural materials follows the right-hand rule for the trio (E, H, β), where E is the electrical field, H is the magnetic field, and β is the phase velocity) exhibiting a positive refractive index, a metamaterial due to its artificial structure can exhibit a negative refractive index and follow the left-hand rule for the trio (E, H, β). A metamaterial exhibiting a negative refractive index can be a pure left-handed (LH) metamaterial by simultaneously having negative permittivity and permeability. A metamaterial can combine RH and LH features (Composite Right and Left Handed (CRLH) materials).
Electromagnetic metamaterials can be synthesized by embedding various constituents with novel geometric shapes such as transmission line and split ring resonator into some host media (e.g., a PCB board). A transmission line can combine series capacitance (CL) and shunted inductance (LL), and can have the left-hand properties which can support backward wave with propagation phase constant. Since pure left-hand transmission line does not exist due to parasitic right-hand capacitors (CR) and inductors (LR) occurring in fabrication processes, a realizable transmission line approach can be a Composite Right/Left-hand (CRLH) transmission line with propagation phase constant β shown in
In one embodiment, antenna 338 can be provided by a multiple-cell transmission line MTM antenna shown in
In one embodiment, schematically shown in
In the illustrative embodiment of
In a further aspect, switching circuit 505 of
In another embodiment, switching circuit 505 of
In a yet another embodiment schematically shown in
In a further aspect, mechanical rotor 190 can be configured to periodically rotate antenna 338 by a pre-defined angle around axis 610. In another embodiment, mechanical rotor 190 can be configured to periodically rotate antenna 338 by a pre-defined angle around axis 610, until a radio signal having a signal strength exceeding a pre-defined threshold is detected. In a yet another embodiment, mechanical rotor 190 can be configured to rotate antenna 338 by a pre-defined angle around axis 610 responsive to establishing that the current radio signal strength is below a pre-defined threshold.
In another aspect, EIR terminal 100 can be incorporated in a data collection system. The data collection system, schematically shown in
In one embodiment, the communications between EIR terminal 100c and the host computer 171 can comprise a series of HTTP requests and responses transmitted over one or more TCP connections. In one embodiment, the communications between EIR terminal 100c and the host computer 171 can comprise VoIP traffic transmitted over one or more TCP and/or UDP ports. A skilled artisan would appreciate the fact that using other transport and application level protocols is within the scope and the spirit of the invention.
In one aspect, at least one of the messages transmitted by the EIR terminal can include decoded message data corresponding to, e.g., a bar code label or an RFID label attached to a product or to a shipment item. For example, an EIR terminal can transmit a request to the host computer to retrieve product information corresponding to a product identifier encoded by a bar code label attached to the product, or to transmit an item tacking record for an item identified by a bar code label attached to the product.
Form factors and housings for the EIR terminal according to the invention are now being described. The components of EIR terminal 100 can be incorporated into a variety of different housings. As indicated by the embodiment of
In the illustrative embodiments of
In certain operating modes as indicated in
Referring to
In the view of
While the present invention has been particularly shown and described with reference to certain exemplary embodiments, it will be understood by one skilled in the art that various changes in detail may be affected therein without departing from the spirit and scope of the invention as defined by claims that can be supported by the written description and drawings. Further, where exemplary embodiments are described with reference to a certain number of elements it will be understood that the exemplary embodiments can be practiced utilizing less than the certain number of elements.
A small sample of systems methods and apparatus that are described herein is as follows:
A1. An encoded information reading terminal comprising:
a microprocessor;
a memory communicatively coupled to said microprocessor;
a radio frequency identifier (RFID) reading device configured to perform at least one of: outputting raw message data containing an encoded message and outputting decoded message data corresponding to an encoded message;
two or more antennas, each antenna of said two or more antennas being electrically coupled to a switching circuit;
wherein said two or more antennas have substantially different spatial orientation; and
wherein said switching circuit is configured to alternatively electrically couple each antenna of said two or more antennas to said RFID reading device.
A2. The encoded information reading terminal of A1, further comprising an encoded information reading (EIR) device selected from the group consisting of: a bar code reading device and a card reading device, said EIR device configured to perform at least one of: outputting raw message data containing an encoded message and outputting decoded message data corresponding to an encoded message.
A3. The encoded information reading terminal of A1, wherein said two or more antennas are provided by a first antenna and a second antenna; and
wherein said first antenna is substantially orthogonal to said second antenna.
A4. The encoded information reading terminal of A1, wherein said two or more antennas are provided by a first antenna and a second antenna; and
wherein said first antenna is spaced apart from said second antenna by a distance comparable with a size of said first antenna.
A5. The encoded information reading terminal of A1, wherein said two or more antennas are provided by metamaterial antennas.
A6. The encoded information reading terminal of A1, wherein at least one of: said first antenna, said second antenna is provided by at least one of: a patch cell array comprising one or more patch cells, a patch cell stack comprising two or more patch cells.
A7. The encoded information reading terminal of A1, wherein said two or more antennas are mounted/printed on one or more printed circuit boards (PCB).
A8. The encoded information reading terminal of A1, wherein said two or more antennas are provided by a first antenna mounted or printed on a first printed circuit board (PCB) and a second antenna mounted or printed on a second PCB; and
wherein said first PCB and said second PCB are mounted within a housing component of said encoded information reading terminal.
A9. The encoded information reading terminal of A1, wherein said switching circuit is configured to electrically couple each antenna of said two or more antennas to said RFID front end for a pre-defined period of time in a pre-defined sequential manner.
A10. The encoded information reading terminal of A1, wherein said two or more antennas are provided by a first antenna and a second antenna; and
wherein said switching circuit is configured to alternatively electrically couple said first antenna and said second antenna to said RFID front end for a pre-defined period of time.
A11. The encoded information reading terminal of A1, wherein said switching circuit is configured to electrically couple each antenna of said two or more antennas to said RFID front end for a pre-defined period of time in a pre-defined sequential manner, until a radio signal having a signal strength exceeding a pre-defined signal strength threshold is detected.
A12. The encoded information reading terminal of A1, wherein said two or more antennas are provided by a first antenna and a second antenna; and
wherein said switching circuit is configured to alternatively electrically couple said first antenna and said second antenna to said RFID front end for a pre-defined period of time, until a radio signal having a signal strength exceeding a pre-defined signal strength threshold is detected.
A13. The encoded information reading terminal of A1, wherein said switching circuit is configured to electrically couple each antenna of said two or more antennas to said RFID front end in a pre-defined sequential manner responsive to establishing that a radio signal from a currently connected antenna has a signal strength below a pre-defined signal strength threshold.
A14. The encoded information reading terminal of A1, wherein said two or more antennas are provided by a first antenna and a second antenna; and
wherein said switching circuit is configured to alternatively electrically couple said first antenna and said second antenna to said RFID front end responsive to establishing that a radio signal from a currently connected antenna has a signal strength below a pre-defined signal strength threshold.
B1. An encoded information reading terminal comprising:
a microprocessor;
a memory communicatively coupled to said microprocessor;
a radio frequency identifier (RFID) reading device configured to perform at least one of: outputting raw message data containing an encoded message and outputting decoded message data corresponding to an encoded message;
an antenna electrically coupled to said RFID reading device;
a mechanical rotor configured to change a spatial orientation of said antenna.
B2. The encoded information reading terminal of B1, further comprising an encoded information reading (EIR) device selected from the group consisting of: a bar code reading device and a card reading device, said EIR device configured to perform at least one of: outputting raw message data containing an encoded message and outputting decoded message data corresponding to an encoded message.
B3. The encoded information reading terminal of B1, wherein said antenna is provided by a metamaterial antenna.
B4. The encoded information reading terminal of B1, wherein said antenna is provided by at least one of: a patch cell array comprising one or more patch cells, a patch cell stack comprising two or more patch cells.
B5. The encoded information reading terminal of B1, wherein said rotor is configured to rotate said antenna around an axis substantially orthogonal to a printed circuit board on which said antenna is mounted/printed.
B6. The encoded information reading terminal of B1, wherein said rotor is configured to rotate said antenna around an axis directed under an acute angle with respect to a printed circuit board on which said antenna is mounted/printed.
B7. The encoded information reading terminal of B1, wherein said rotor is configured to periodically rotate said antenna by a pre-defined angle.
B8. The encoded information reading terminal of B1, wherein said rotor is configured to rotate said antenna by a pre-defined angle responsive to responsive to establishing that a radio signal from said antenna has a signal strength below a pre-defined signal strength threshold.
B9. The encoded information reading terminal of B1, wherein said rotor is configured to rotate said antenna by a pre-defined angle until a radio signal having a signal strength exceeding a pre-defined signal strength threshold is detected.
Number | Name | Date | Kind |
---|---|---|---|
5231273 | Caswell et al. | Jul 1993 | A |
5579341 | Smith et al. | Nov 1996 | A |
5589844 | Belcher et al. | Dec 1996 | A |
5786764 | Engellenner | Jul 1998 | A |
5812605 | Smith et al. | Sep 1998 | A |
5903825 | Goode et al. | May 1999 | A |
6167099 | Rader et al. | Dec 2000 | A |
6751470 | Ella et al. | Jun 2004 | B1 |
6911945 | Korva | Jun 2005 | B2 |
6937196 | Korva | Aug 2005 | B2 |
6961544 | Hagstrom | Nov 2005 | B1 |
7072690 | Shin et al. | Jul 2006 | B2 |
7161357 | Lee et al. | Jan 2007 | B2 |
7190257 | Maltseff et al. | Mar 2007 | B2 |
7190728 | Kawada et al. | Mar 2007 | B2 |
7202776 | Breed | Apr 2007 | B2 |
7202819 | Hatch | Apr 2007 | B2 |
7218678 | Katta et al. | May 2007 | B2 |
7251499 | Ella et al. | Jul 2007 | B2 |
7265731 | Vance et al. | Sep 2007 | B2 |
7283094 | Lee | Oct 2007 | B2 |
7307331 | Kipnis et al. | Dec 2007 | B2 |
7333067 | Hung et al. | Feb 2008 | B2 |
7368311 | Tilmans et al. | May 2008 | B2 |
7423599 | Li et al. | Sep 2008 | B2 |
7446717 | Hung et al. | Nov 2008 | B2 |
7466274 | Lin et al. | Dec 2008 | B2 |
7586387 | Van Delden | Sep 2009 | B2 |
7592957 | Achour et al. | Sep 2009 | B2 |
7617342 | Rofougaran | Nov 2009 | B2 |
7696929 | Kaneda | Apr 2010 | B2 |
7741965 | Lai et al. | Jun 2010 | B2 |
7750435 | Rofougaran et al. | Jul 2010 | B2 |
7764232 | Achour et al. | Jul 2010 | B2 |
7795700 | Rofougaran et al. | Sep 2010 | B2 |
7809329 | Rofougaran et al. | Oct 2010 | B2 |
7835157 | Tilmans et al. | Nov 2010 | B2 |
7839216 | Alidio et al. | Nov 2010 | B2 |
7839236 | Dupuy et al. | Nov 2010 | B2 |
7847739 | Achour et al. | Dec 2010 | B2 |
7855696 | Gummalla et al. | Dec 2010 | B2 |
7874483 | Wang et al. | Jan 2011 | B2 |
7885600 | Rofougaran et al. | Feb 2011 | B2 |
7893790 | Van Delden | Feb 2011 | B2 |
7899394 | Rofougaran et al. | Mar 2011 | B2 |
7903724 | Rofougaran et al. | Mar 2011 | B2 |
7908420 | Rofougaran et al. | Mar 2011 | B2 |
8258956 | Kuzma et al. | Sep 2012 | B1 |
8287327 | Ghaly | Oct 2012 | B1 |
20020055368 | Lee | May 2002 | A1 |
20020183013 | Auckland et al. | Dec 2002 | A1 |
20040249915 | Russell | Dec 2004 | A1 |
20050128152 | Milosavljevic | Jun 2005 | A1 |
20050156796 | Nysen | Jul 2005 | A1 |
20050271133 | Waxman | Dec 2005 | A1 |
20050285742 | Charych et al. | Dec 2005 | A1 |
20060025102 | Kipnis et al. | Feb 2006 | A1 |
20060070089 | Shoaib et al. | Mar 2006 | A1 |
20060077039 | Ibi et al. | Apr 2006 | A1 |
20060128332 | van Rooyen et al. | Jun 2006 | A1 |
20060131377 | Zimmerman | Jun 2006 | A1 |
20060135084 | Lee | Jun 2006 | A1 |
20060261821 | Lee et al. | Nov 2006 | A1 |
20060261938 | Lai et al. | Nov 2006 | A1 |
20060279446 | Wang et al. | Dec 2006 | A1 |
20070060089 | Owen et al. | Mar 2007 | A1 |
20070138260 | Keys | Jun 2007 | A1 |
20070194929 | Wagner et al. | Aug 2007 | A1 |
20070257847 | Su et al. | Nov 2007 | A1 |
20080042847 | Hollister et al. | Feb 2008 | A1 |
20080048917 | Maha et al. | Feb 2008 | A1 |
20080076383 | Barrett et al. | Mar 2008 | A1 |
20080102805 | Balia et al. | May 2008 | A1 |
20080107213 | Gupta et al. | May 2008 | A1 |
20080150807 | Lin et al. | Jun 2008 | A1 |
20080150829 | Lin et al. | Jun 2008 | A1 |
20080157897 | Tilmans et al. | Jul 2008 | A1 |
20080181186 | Rofougaran et al. | Jul 2008 | A1 |
20080181287 | Rofougaran et al. | Jul 2008 | A1 |
20080182613 | Rofougaran et al. | Jul 2008 | A1 |
20080237341 | Fleck et al. | Oct 2008 | A1 |
20080258981 | Maha et al. | Oct 2008 | A1 |
20080258993 | Gummalla et al. | Oct 2008 | A1 |
20080278370 | Lachner et al. | Nov 2008 | A1 |
20080297404 | Lin et al. | Dec 2008 | A1 |
20090006677 | Rofougaran et al. | Jan 2009 | A1 |
20090024550 | Wynn et al. | Jan 2009 | A1 |
20090028082 | Wynn et al. | Jan 2009 | A1 |
20090032592 | Christensen | Feb 2009 | A1 |
20090033359 | Rofougaran et al. | Feb 2009 | A1 |
20090036067 | Rofougaran et al. | Feb 2009 | A1 |
20090037627 | Rofougaran et al. | Feb 2009 | A1 |
20090058734 | Ali et al. | Mar 2009 | A1 |
20090067388 | van Rooyen et al. | Mar 2009 | A1 |
20090073065 | Jordan | Mar 2009 | A1 |
20090074106 | See et al. | Mar 2009 | A1 |
20090115549 | Lee | May 2009 | A1 |
20090121951 | Kaneda | May 2009 | A1 |
20090128446 | Gummalla et al. | May 2009 | A1 |
20090135087 | Gummalla et al. | May 2009 | A1 |
20090148074 | Xu et al. | Jun 2009 | A1 |
20090160575 | Dupuy et al. | Jun 2009 | A1 |
20090160578 | Achour | Jun 2009 | A1 |
20090167457 | Melde et al. | Jul 2009 | A1 |
20090180403 | Tudosoiu | Jul 2009 | A1 |
20090218657 | Rofougaran et al. | Sep 2009 | A1 |
20090219213 | Lee et al. | Sep 2009 | A1 |
20090227205 | Rofougaran et al. | Sep 2009 | A1 |
20090237321 | Lin | Sep 2009 | A1 |
20090245146 | Gummalla et al. | Oct 2009 | A1 |
20090251385 | Xu et al. | Oct 2009 | A1 |
20090285135 | Rousu et al. | Nov 2009 | A1 |
20090289737 | Itoh et al. | Nov 2009 | A1 |
20090295473 | Dupuy et al. | Dec 2009 | A1 |
20090295483 | Alidio et al. | Dec 2009 | A1 |
20090295660 | Xu et al. | Dec 2009 | A1 |
20090316612 | Poilasne et al. | Dec 2009 | A1 |
20090322490 | Kung et al. | Dec 2009 | A1 |
20090323783 | Buris et al. | Dec 2009 | A1 |
20100013603 | Chatani et al. | Jan 2010 | A1 |
20100019035 | Larson et al. | Jan 2010 | A1 |
20100022195 | Rofougaran et al. | Jan 2010 | A1 |
20100045554 | Xu et al. | Feb 2010 | A1 |
20100060544 | Penev et al. | Mar 2010 | A1 |
20100073254 | Lee et al. | Mar 2010 | A1 |
20100077115 | Rofougaran et al. | Mar 2010 | A1 |
20100079347 | Hayes et al. | Apr 2010 | A1 |
20100109805 | Achour | May 2010 | A2 |
20100109971 | Gummalla et al. | May 2010 | A2 |
20100109972 | Xu et al. | May 2010 | A2 |
20100110943 | Gummalla et al. | May 2010 | A2 |
20100117908 | Lee et al. | May 2010 | A2 |
20100123635 | Lopez et al. | May 2010 | A1 |
20100127085 | Yamagajo et al. | May 2010 | A1 |
20100157858 | Lee et al. | Jun 2010 | A1 |
20100171563 | Dupuy et al. | Jul 2010 | A1 |
20100176880 | Dupuy et al. | Jul 2010 | A2 |
20100207703 | Dupuy et al. | Aug 2010 | A1 |
20100207738 | Bloy | Aug 2010 | A1 |
20100225554 | Huang et al. | Sep 2010 | A1 |
20100231464 | Huang et al. | Sep 2010 | A1 |
20100231470 | Lee et al. | Sep 2010 | A1 |
20100232474 | Rofougaran et al. | Sep 2010 | A1 |
20100238075 | Pourseyed | Sep 2010 | A1 |
20100238081 | Achour et al. | Sep 2010 | A1 |
20100276498 | Rofougaran | Nov 2010 | A1 |
20100283692 | Achour et al. | Nov 2010 | A1 |
20100283705 | Achour et al. | Nov 2010 | A1 |
20100285634 | Rofougaran et al. | Nov 2010 | A1 |
20110026624 | Gummalla et al. | Feb 2011 | A1 |
20110039501 | Achour et al. | Feb 2011 | A1 |
20110050364 | Achour | Mar 2011 | A1 |
20110066774 | Rofougaran et al. | Mar 2011 | A1 |
20110068873 | Alidio et al. | Mar 2011 | A1 |
20110090057 | Kosecki et al. | Apr 2011 | A1 |
20110095950 | Yu | Apr 2011 | A1 |
20110095964 | Pathak et al. | Apr 2011 | A1 |
20110109402 | Dupuy et al. | May 2011 | A1 |
20110116424 | Sauerwein et al. | May 2011 | A1 |
20110136457 | Yu | Jun 2011 | A1 |
20110148586 | Anderson et al. | Jun 2011 | A1 |
20110153349 | Anderson et al. | Jun 2011 | A1 |
20110174877 | Fleck et al. | Jul 2011 | A1 |
20110183688 | Dietrich et al. | Jul 2011 | A1 |
20120055988 | Qu et al. | Mar 2012 | A1 |
20120075076 | Wang | Mar 2012 | A1 |
20120092134 | Stern et al. | Apr 2012 | A1 |
20120193411 | Smith | Aug 2012 | A1 |
20120206238 | Lavedas | Aug 2012 | A1 |
20120223811 | Wild et al. | Sep 2012 | A1 |
20120313757 | Volpi et al. | Dec 2012 | A1 |
20130043981 | Wang et al. | Feb 2013 | A1 |
20130054390 | Kerchner et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
1755704 | Apr 2006 | CN |
101038618 | Sep 2007 | CN |
101414364 | Apr 2009 | CN |
102034065 | Apr 2011 | CN |
1 643 413 | Apr 2006 | EP |
2061285 | May 2009 | EP |
2 202 891 | Jun 2010 | EP |
WO-9814023 | Apr 1998 | WO |
WO 0014694 | Mar 2000 | WO |
Entry |
---|
B.P. Otis, Y.H. Chee, R. Lu, N.M. Pletcher, J.M. Rabaey, “An Ultra-Low Power MEMS-Based Two-Channel Transceiver for Wireless Sensor Networks,” (4 pages). |
C.T.-C Nguyen, “Vibrating RF MEMS for Low Power Communications (invited),” Proceedings, 2002 MRS Fall Meeting, Boston, Massachusetts, Dec. 2-6, 2002, pp. J12.1.1-J2.1.12 (12 pages). |
European Patent Office, European Patent Application No. 10191449.1, Communication Extended Search Report, dated Feb. 21, 2011 (11 pages). |
European Patent Office, Partial European Search Report, European Patent Application No. 10176444.7, dated Feb. 11, 2011 (8 pages). |
Hawaii International Conference on, IEEE, Piscataway, NJ, USA, Dynamic Dispatching and Transport Optimization—Real-World Experience with Perspectives on Pervasive Technology Integration, dated Jan. 5, 2009 (9 pages). |
S. Lee and C.T.-C Nguyen, “Influence of Automatic Level Control on Micromechanical Resonator Oscsillator Phase Noise,” proceedings, 2003 IEEE Int. Frequency Control Symposium, Tampa, Florida, May 5-8, 2003, pp. 341-349. (9 pages). |
State Intellectual Property Office, P.R. China, Notice of Amendment, Chinese Application No. 201010544113.X, dated Dec. 7, 2010, (2 pages). |
www.nano.gatech.edu/news/release.php, Georgia Institute of Technology: Nanoscience and Nanotechnology, “Researchers Win $3.5 Million to Improve Wireless,” Website, Aug. 5, 2010, (3 pages). |
U.S. Appl. No. 12/621,914, filed Nov. 19, 2009. |
U.S. Appl. No. 12/567,158, filed Nov. 19, 2009 (35 pages). |
U.S. Appl. No. 13/211,555, filed Aug. 17, 2011 (41 pages). |
U.S. Appl. No. 13/211,575, filed Aug. 17, 2011 (27 pages). |
EPC Global, Specification for RFID AIR Interface, dated Jan. 31, 2005 (94 pages). |
European Patent Office, European Search Report, European Patent Application No. 10176444.7, dated Jun. 6, 2011 (5 pages). |
Jun. 10, 2014 Partial Search Report issued in European Patent Application No. 12178927.5. |
Sep. 28, 2014 Office Action issued in European Patent Application No. 12 178 927.5. |
Jun. 1, 2016 Office Action issued in Chinese Patent Application No. 201210291709.2. |
May 16, 2017 Office Action issued in Chinese Patent Application No. 201210291709.2. |
Jan. 13, 2017 Office Action issued in Chinese Patent Application No. 20121029709.2. |
Number | Date | Country | |
---|---|---|---|
20130043981 A1 | Feb 2013 | US |