The present disclosure relates to surgical instruments and, more specifically, to articulating end effector assemblies for use in robotic surgical systems.
Robotic surgical systems are increasingly utilized in various different surgical procedures. Some robotic surgical systems include a console supporting a robotic arm. One or more different surgical instruments may be configured for use with the robotic surgical system and selectively mountable to the robotic arm. The robotic arm provides one or more inputs to the mounted surgical instrument to enable operation of the mounted surgical instrument.
The surgical instruments or portions thereof may be configured as single-use instruments or portions that are discarded after use, or may be configured as reusable instruments or portions that are cleaned and sterilized between uses. Regardless of the configurations of the surgical instruments, the console and robotic arm are capital equipment configured for long-term, repeated use. The console and robotic arm may be protected by a sterile barrier during use and/or wiped clean after use to ensure cleanliness for subsequent uses.
As used herein, the term “distal” refers to the portion that is being described which is further from an operator (whether a human surgeon or a surgical robot), while the term “proximal” refers to the portion that is being described which is closer to the operator. The terms “about,” substantially,” and the like, as utilized herein, are meant to account for manufacturing, material, environmental, use, and/or measurement tolerances and variations, and in any event may encompass differences of up to 10%. To the extent consistent, any of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.
Provided in accordance with aspects of the present disclosure is an end effector assembly of a robotic surgical instrument. The end effector assembly includes a clevis, a first jaw member pivotably coupled to the clevis via a pivot pin, a second jaw member coupled to the clevis, and a cam bar having a distal end portion received within the clevis. The first jaw member defines a cam slot, and the distal end portion of the cam bar has a cam pin received in the cam slot. The distal end portion of the cam bar defines a cutout therein. The cam bar is configured to move through the clevis, whereby the cam pin of the cam bar pivots at least one of the first or second jaw members relative to the clevis between a closed state in which the first and second jaw members are closer to one another, and an open state in which the first and second jaw members are further apart from one another.
In aspects, the distal end portion of the cam bar may be configured to move between a distal position, in which the first and second jaw members are in the open state, and a proximal position, in which the first and second jaw members are in the closed state.
In aspects, the pivot pin may be configured to be received in the cutout of the distal end portion of the cam bar when the distal end portion of the cam bar is in the distal position.
In aspects, the distal end portion of the cam bar may include a cam block and the cam pin. The cam bar may define the cutout therein, and the cam pin may extend laterally outward from at least a first lateral side of the cam block.
In aspects, the cutout may have an annular shape.
In aspects, the cam block may have a distal-facing surface, and the cutout may be formed in the distal-facing surface.
In aspects, the clevis may have a side wall defining a linear slot, and the cam pin of the cam bar may be received in the linear slot.
In aspects, the first jaw member may include a distal body portion, and a proximal flange portion extending proximally from the distal body portion. The proximal flange portion may define the cam slot therein.
In aspects, the clevis may define an opening having the pivot pin received therein. The opening may be disposed distally of the linear slot.
In accordance with another aspect of the disclosure, a robotic surgical instrument is provided and includes a housing configured to be operably coupled to a surgical robotic arm, a shaft assembly extending distally from the housing, and an end effector assembly. The end effector assembly includes a clevis coupled to a distal end portion of the shaft assembly and configured to articulate relative thereto, a first jaw member pivotably coupled to the clevis via a pivot pin, a second jaw member coupled to the clevis, and a cam bar having a distal end portion received within the clevis. The first jaw member defines a cam slot, and the distal end portion of the cam bar has a cam pin received in the cam slot. The distal end portion of the cam bar defines a cutout therein. The cam bar is configured to move through the clevis, whereby the cam pin of the cam bar pivots at least one of the first or second jaw members relative to the clevis between a closed state in which the first and second jaw members are closer to one another, and an open state in which the first and second jaw members are further apart from one another.
Various aspects and features of the present disclosure are described hereinbelow with reference to the drawings wherein:
Referring to
Shaft assembly 30 of instrument 10 includes a distal segment, such as, for example, a collar or clevis 32, a proximal segment 34, and an articulating section 36 disposed between the distal and proximal segments 32, 34. In aspects, the clevis 32 may alternatively form part of the end effector assembly 40. Articulating section 36 includes one or more articulating components, e.g., links, joints, etc. A plurality of articulation cables 38, e.g., four (4) articulation cables, or other suitable actuators, extends through articulating section 36. More specifically, articulation cables 38 are operably coupled to clevis 32 of shaft assembly 30 at the distal ends thereof and extend proximally from clevis 32 of shaft assembly 30, through articulating section 36 of shaft assembly 30 and proximal segment 34 of shaft assembly 30, and into housing 20, wherein articulation cables 38 operably couple with an articulation assembly (not explicitly shown) of the actuation assembly to enable selective articulation of clevis 32 (and, thus end effector assembly 40) relative to proximal segment 34 and housing 20, e.g., about at least two axes of articulation (yaw and pitch articulation, for example). Articulation cables 38 are arranged in a generally rectangular configuration, although other suitable configurations are also contemplated.
With reference to
With reference to
With reference to
Proximal flange portions 60, 62 of respective first and second jaw members 42, 44 are pivotably coupled to one another about pivot pin 58 (
Proximal flange portion 62 of second jaw member 44 may include a pair of first and second proximal flange portions 62a, 62b that are laterally spaced from one another to define a gap 82 therebetween. The proximal flange portion 60 of first jaw member 42 is received in the gap 82. Second jaw member 44 may further include a knife guide feature 84, such as, for example, a protuberance, supported on a proximal end of the distal body portion 66 of the second jaw member 44. The knife guide feature 84 protrudes toward the first jaw member 42 and defines a slot 86 having the knife blade 78b received therein when the knife blade 78b is in a proximal, pre-deployed position. As such, knife blade 78b is safely concealed within knife guide feature 84 when in the proximal position. Second jaw member 44 may further be secured to clevis 32, e.g., via welding of proximal flange portion 62 to clevis 32, or in any other suitable manner. Opposed slots 33 defined within side walls 32c, 32d (only slot 33 of side wall 32c is shown), for example, may provide access to facilitate welding proximal flange portions 62 to clevis 32, although other configurations are also contemplated.
With reference to
Cam block assembly 88 of cam bar 59 includes a cam block 90, and the cam pin 55 extending outwardly from opposing lateral sides 90a, 90b of cam block 90. Cam block 90 may have a generally rectangular configuration and include first and second opposing lateral sides 90a, 90b and upper and lower opposing surfaces 90c, 90d. In aspects, each of the lateral sides 90a, 90b and upper and lower surfaces 90c, 90d may be planar. In aspects, cam block 90 may assume any suitable shape, such as, for example, cylindrical or the like. Lateral sides 90a, 90b and upper and lower surfaces 90c, 90d of cam block 90 are supported and guided by internal structures, e.g., complementary structures, within clevis 32 as cam bar 59 translates between proximal and distal positions to transition the end effector assembly 40 between the respective open and closed states.
The cam block 90 has a distal-facing surface 90e that extends between the upper and lower surfaces 90c, 90d. The distal-facing surface 90e defines a cutout 92 formed therein configured to receive the pivot pin 58 (
A first end of cam pin 55 of cam block assembly 88 is received in linear cam slot 54 of clevis 32 to guide and support a linear movement of cam bar 59, and a second end of cam pin 55 (not explicitly shown) is received in angled cam slot 80 of proximal flange portion 60 of first jaw member 42. Cam slot 80 in proximal flange portion 60 of first jaw member 42 is shaped such that retraction (e.g., proximal translation) of cam bar 59 relative to proximal flange portion 60 from a distal position to a proximal position causes the cam pin 55 to ride proximally through cam slot 80 and drive jaw member 42 to pivot toward second jaw member 44 to transition end effector assembly 40 from a spaced-apart position (e.g., an open position of end effector assembly 40) to an approximated position (e.g. a closed position of end effector assembly 40) for grasping tissue between tissue-contacting surfaces 70, 72. Similarly, advancement (e.g., distal translation) of cam bar 59 relative to proximal flange portion 60 causes cam pin 55 to ride distally through cam slot 80 and drive first jaw member 42 to pivot away from second jaw member 44 to transition end effector assembly 40 from the closed state to the open state. As an alternative to this unilateral configuration, a bilateral configuration may be provided whereby both jaw members 42, 44 are pivotable relative to one another and clevis 32 of shaft assembly 30. Additionally or alternatively, cam bar 59 may be moved distally to transition end effector assembly 40 to the approximated position and proximally to transition end effector assembly 40 to the spaced-apart position.
Turning to
Robotic surgical system 500 generally includes a plurality of robot arms 502, 503; a control device 504; and an operating console 505 coupled with control device 504. Operating console 505 may include a display device 506, which may be set up in particular to display three-dimensional images; and manual input devices 507, 508, by means of which a person, e.g., a surgeon, may be able to telemanipulate robot arms 502, 503 in a first operating mode. Robotic surgical system 500 may be configured for use on a patient 513 lying on a patient table 512 to be treated in a minimally invasive manner. Robotic surgical system 500 may further include a database 514, in particular coupled to control device 504, in which are stored, for example, pre-operative data from patient 513 and/or anatomical atlases.
Each of the robot arms 502, 503 may include a plurality of members, which are connected through joints, and a mounted device which may be, for example, a surgical tool “ST.” One or more of the surgical tools “ST” may be instrument 10 (
Robot arms 502, 503 may be driven by electric drives, e.g., motors, connected to control device 504. Control device 504, e.g., a computer, may be configured to activate the motors, in particular by means of a computer program, in such a way that robot arms 502, 503, and, thus, their mounted surgical tools “ST” execute a desired movement and/or function according to a corresponding input from manual input devices 507, 508, respectively. Control device 504 may also be configured in such a way that it regulates the movement of robot arms 502, 503 and/or of the motors.
It will be understood that various modifications may be made to the aspects and features disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various aspects and features. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended thereto.
Number | Name | Date | Kind |
---|---|---|---|
5238002 | Devlin | Aug 1993 | A |
5700276 | Benecke | Dec 1997 | A |
5752973 | Kieturakis | May 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5848986 | Lundquist et al. | Dec 1998 | A |
6309397 | Julian | Oct 2001 | B1 |
6817974 | Cooper et al. | Nov 2004 | B2 |
7799028 | Schechter et al. | Sep 2010 | B2 |
7861906 | Doll et al. | Jan 2011 | B2 |
7918230 | Whitman et al. | Apr 2011 | B2 |
8469991 | Kerr | Jun 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
9055961 | Manzo et al. | Jun 2015 | B2 |
9168050 | Peine | Oct 2015 | B1 |
9474569 | Manzo et al. | Oct 2016 | B2 |
20020099371 | Schulze et al. | Jul 2002 | A1 |
20020177842 | Weiss | Nov 2002 | A1 |
20030125734 | Mollenauer | Jul 2003 | A1 |
20030208186 | Moreyra | Nov 2003 | A1 |
20060022015 | Shelton et al. | Feb 2006 | A1 |
20060025811 | Shelton | Feb 2006 | A1 |
20070233052 | Brock | Oct 2007 | A1 |
20070282358 | Remiszewski et al. | Dec 2007 | A1 |
20080015631 | Lee et al. | Jan 2008 | A1 |
20100274265 | Wingardner et al. | Oct 2010 | A1 |
20100292691 | Brogna | Nov 2010 | A1 |
20110118707 | Burbank | May 2011 | A1 |
20110118708 | Burbank et al. | May 2011 | A1 |
20110118709 | Burbank | May 2011 | A1 |
20110118754 | Dachs, II et al. | May 2011 | A1 |
20140012290 | Cooper et al. | Jan 2014 | A1 |
20160066982 | Marczyk et al. | Mar 2016 | A1 |
20170020543 | Soni | Jan 2017 | A1 |
20180132925 | Allen, IV et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2017136710 | Aug 2017 | WO |
Entry |
---|
International Search Report and written opinion dated Dec. 6, 2021, issued in corresponding international application No. PCT/US2021/046462, 11 pages. |
International Preliminary Report on Patentability and Written Opinion issued in corresponding International Application No. PCT/US2021/046462 dated Mar. 2, 2023, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20220054210 A1 | Feb 2022 | US |