1. Field of the Invention
Embodiments of the present invention relate, in general, to radiation detection and particularly to direct conversion x-ray detectors which have embedded electrodes of various composition and use radiation-induced conductivity found in various solid, dielectric materials.
2. Relevant Background
Radiation detectors are used for detection of incoming radiation, such as x-rays, gamma photons and charged/uncharged particles, in a wide range of different applications. For direct detection of photons of various energies, the incoming photons ionize the material of which the detector is made, releasing energetic electrons through interactions such as the photoelectric effect, pair production and the Compton effect. The emitted electrons also cause additional ionization in proportion to the energy of such electrons, which in turn may be detected by a suitable device.
Typically, in radiographic imaging systems, an x-ray source emits x-rays toward a subject or object, such as a patient or a piece of luggage. The beam, after being attenuated by the subject or object, impinges upon an array of radiation detectors wherein the intensity of the attenuated radiation beam received at the detector array is detected. Each detector element of the detector array produces a separate electrical signal indicative of the attenuated beam received by each detector element which is thereafter transmitted to a data processing system for analysis, ultimately producing an image.
X-ray detectors typically include a collimator for excluding scattered radiation that might be received at the detector, a scintillator adjacent to the collimator for converting x-rays to light energy and a photodiode for receiving the light energy from an adjacent scintillator and producing electrical signals therefrom. In this type of detector, the x-ray energy absorbed by the scintillating material is converted to visible photons which are then directed into a silicon photodiode. The outputs of these photodiodes are converted into digital data by means of various amplifiers followed by analog-to-digital converters and then transmitted to the data processing system for image reconstruction.
A drawback to this indirect approach to x-ray detection is the fact that it is a two step process to convert x-rays into electrical signals that can be further processed for applications such as computed tomography or digital radiography. Also, detectors using scintillator material suffer from the fact that such materials possess memory effects. Visible light that enters a scintillator based detector promptly decays after the cessation of irradiation by x-rays. However this decay is followed by an afterglow effect that may persist for tens of milliseconds. Another drawback of indirect detection is optical cross-talk between two or more detector elements in close proximity. The scintillator material is typically glued to the photodiode array using an optically transparent adhesive. This adhesive is of a finite thickness, thus allowing light, within a certain angle of incidence with respect to the exit plane of the scintillator exiting a certain distance from the edge of such scintillator, to enter the adjacent detector element. This effect can be minimized by making the adhesive as thin as possible, but the integrity of the bond between scintillator and photodiode degrades with a thinner adhesive. Typically, this optical cross-talk effect is the dominant cross-talk mechanism in indirect x-ray detectors.
The direct conversion of x-rays into electrical signals is well known and often employed for dosage and exposure measurement. X-ray detection of this type has two main advantages over the scintillator-photodiode approach mentioned above. First, there is a much quicker decay in the electrical signal after the cessation of irradiation by x-ray energy. Thus the afterglow effect associated with scintillator material is greatly reduced. Secondly, there is simply no need for scintillator material thereby removing the cost of the scintillating material and the cost of assembling such scintillating material into the detector array.
One method for converting x-rays directly into an electrical current is through the use of ion-chambers. Ion-chambers may be constructed by positioning two parallel flat electrode plates a constant distance apart. The plates are typically enclosed in a chamber constructed of a dielectric material such as Plexiglas. The chamber is sealed and filled with an inert gas such as argon or xenon. X-rays are directed in one end of the chamber such that the x-rays pass through the volume of gas between the two parallel plates. The plates are electrically biased so as to create a substantial electrostatic field between the plates. The ionization of the gas by the x-rays in the presence of a large electric field leads to an electric current proportional to the x-ray energy absorbed by the gas. For a constant x-ray energy, the signal may be said to be proportional to the flux of x-ray photons. One of the most significant drawbacks to gas filled ion-chambers is poor x-ray absorption efficiency. Even using chambers filled with xenon gas at high pressure, the absorption efficiency per unit length through such an ion-chamber is poor compared with the scintillator-photodiode approach. Thus ion-chamber detectors are rarely used as x-ray detectors for any type of imaging.
The ion chamber described above is a specific instance of a detector that relies on the radiation induced conductivity of a material that is electrically insulating in the absence of a radiation field. In the case of the ion chamber, the insulating material is a gas, and the presence of a radiation field in the gas lowers the effective electrical resistivity of the gas such that the application of an external electric field causes a significant electrical current to pass through the gas. Others (such as deGaston, U.S. Pat. No. 4,135,090) have used hydrocarbon liquids as the normally insulating material, producing a radiation detector that has similar absorption properties to soft tissue, but is not sensitive to the energy of the detected x-ray.
Another promising direct conversion method in x-ray detection is the use of compound semiconductors composed of materials that have a significantly higher atomic number than silicon. One such material is cadmium zinc telluride (“CZT”). While CZT detectors hold promise, the quality and expense of grown CZT crystals has so far prevented CZT from being used in mainstream x-ray detection.
Whether indirect or direct conversion is used, it is desirable to have not only a measure of the attenuation of the x-rays through a patient or object being imaged, but also a measure of the energy of the x-rays that are not absorbed by the patient or object. This is desirable for determining the composition of the material in the patient or object. This has been accomplished in several ways: 1) The x-ray source energy may be modulated and detector signals recorded for the various x-ray generator tube energies, 2) some portion of the detector array can be masked with a filter that absorbs lower energy x-rays such that the underlying detector of that portion of the detector array responds only to some higher energy portion of the transmitted x-rays, or 3) the detector can be operated in a mode whereby individual x-ray photon events are counted and the size of the respective current pulses produced by a single x-ray photon being absorbed are quantified.
Each such method has its drawbacks. In the case of modulating the x-ray generator tube (method 1 above), the patient or object must receive a higher dose of irradiation, since the detection is done at two different exposures. In the case of masking a portion of the detector array (method 2 above), x-ray energy is needlessly wasted (i.e. not converted into signal) in a portion of the detector. This shortcoming has been minimized by using an entire detector, itself, as the filter such that simultaneous low and high energy signals are created (e.g. by stacking one detector upon another). In the case of photon counting (method 3 above), one must decrease the size of a detection element such that the number of incident x-ray photons per unit time is small enough that one can count the current pulse produced by an x-ray photon without multiple pulses “piling up”, causing the detector electronics to incorrectly classify both the number and the energy of the x-ray photons.
Briefly stated, embodiments of the present invention involve direct conversion of x-ray radiation to electrical current(s) utilizing the radiation induced conductivity (“RIC”) effect in solid insulating materials, wherein the detailed geometry of the electrodes employed in the detector both enhances the ionization produced in the detector and provides for energy sensitivity in the signal(s). In one embodiment of the present invention, a direct conversion x-ray detector is configured comprising one or more anodes and cathodes separated by differing thicknesses of dielectric material. Departing from the operating theory of gas filled ion-chambers and direct conversion semiconductors, the present invention enables x-ray absorption to occur primarily by the electrodes themselves rather than the material between the electrodes (unlike CZT and other photoconductors comprised of elements with high atomic numbers).
According to one embodiment of the present invention, ionization occurs in the dielectric material positioned between the electrodes from energetic photoelectrons. This is the result of the energetic photo- or Compton electrons produced by the primary x-ray interaction in the electrode. By controlling detector characteristics such as choice and thickness of electrode material, placement and geometry of the anode with respect to the cathode (electrodes) and choice of the dielectric material found between the electrodes, the present invention can achieve nearly 100% absorption of incident x-rays with the additional benefit of producing signals within a detector element that are energy sensitive. Unlike photon counting energy sensitive methods, the size of the detector element used in the present invention is not limited. According to one embodiment of the present invention and unlike filtration methods, even such filtration methods wherein stacked detectors are employed, no x-ray signal is lost due to absorption in materials used in the stacked detector array whose function is purely mechanical (e.g. substrates between various detector elements). In addition, the energy sensitivity of the present invention does not depend upon modulation of the x-ray generator tube energy.
The features and advantages described in this disclosure and in the following detailed description are not all-inclusive, and particularly, many additional features and advantages will be apparent to one of ordinary skill in the relevant art in view of the drawings, specification and claims hereof. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes and may not have been selected to delineate or circumscribe the inventive subject matter; reference to the claims is necessary to determine such inventive subject matter.
The aforementioned and other features and objects of the present invention and the manner of attaining them will become more apparent, and the invention itself will be best understood, by reference to the following description of a preferred embodiment taken in conjunction with the accompanying drawings, wherein:
The Figures depict embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.
Specific embodiments of the present invention are hereafter described in detail with reference to the accompanying Figures. Like elements in the various Figures are identified by like reference numerals for consistency. Although the invention has been described and illustrated with a certain degree of particularity, it is understood that the present disclosure has been made only by way of example and that numerous changes in the combination and arrangement of parts can be resorted to by those skilled in the art without departing from the spirit and scope of the invention.
The cathode 130 of the present invention is composed of a high atomic number material such as, but not limited to, tungsten. The anode 110 may be composed of the same such material, or a lower Z material such as, but not limited to, aluminum or copper. The volume between the two parallel plates (which may be of different sizes to minimize the effect of fringing electric fields) is filled with a dielectric material 120 such as, but not limited to, silicon dioxide or alumina. One skilled in the art will recognize that other materials possessing similar atomic numbers can be used without departing from the novelty of the present invention. Indeed the present invention contemplates a wide variety of combinations of material so as to achieve optimal conversion of x-ray radiation to electrical signals. It is well known that primary interaction of x-rays with matter in the energy range of 0 to 200 keV occurs generally in three processes: 1) coherent scattering, 2) photoelectric effect and 3) Compton scattering. Coherent scattering does not result in direct ionization at the scattering site and, accordingly, is ignored for the purposes of the present invention. Both photoelectric and Compton scattering produce energetic electrons originating at the site of the primary absorption/scattering event. It is also well known that the range of such energetic electrons is proportional to a power of the electron energy for sufficiently high electron energies. For the photoelectric effect, the electron energy is the difference between the x-ray photon energy and the K-, L-, or M-edge energy of the absorbing atom. For example, a 58 keV x-ray photon interacting with an atom of tungsten with an L-edge energy of approximately 10 keV will produce an energetic photoelectron having an energy of approximately 48 keV. This energetic photoelectron will produce further ionization in both the electrode (tungsten) and the dielectric material. Ionization in the dielectric material will promote electrons from the valence band of the dielectric material into the conduction band, leaving behind a positively charged hole in the valence band. Under the influence of a sufficiently high electric field, these charge carriers can be collected at the electrodes producing an electrical current proportional to the amount of ionization caused by the energetic photoelectron. Significantly, the thickness of the electrodes and the thickness of the dielectric material between anode and cathode can be configured to achieve nearly 100% absorption of incident x-ray radiation while producing signals within the detector proportional to the x-ray energies.
To determine the thickness of the cathode 130, anode 110 and dielectric material 120, an examination of x-ray radiation in the various material must be conducted. One measure of a material's ability to absorb x-ray energy is the continuous slowing down approximation (“CSDA”) range. The CSDA range is a very close approximation to the average path length traveled by a charged particle as it slows down to rest. In this approximation, the rate of energy loss at every point along the track is assumed to be equal to the same as the total stopping power of the material through which the particle is traveling. Energy loss fluctuations are typically neglected. The CSDA range is obtained by integrating the reciprocal of the total stopping power with respect to energy. CSDA range equations for various materials can be derived from best fit data from selected stopping power data from the National Institute of Standards and Technology's (“NIST”) Stopping Power and Range for Electrons program (“eSTAR”). This program and other information regarding CSDA can be found at http://www.physics.nist.gov and more specifically at http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html. The eSTAR program calculates stopping power, density effect parameters, range and radiation yield tables for energetic electrons in various materials.
In the case of tungsten, the CSDA range of energetic photoelectrons can be modeled by the following equation:
R=0.0092 E1.6105
In this equation, R is the range in microns and E is the energy of the photoelectron in keV. Referring back to the previous example of a 58 keV incident x-ray, the 48 keV photoelectron that is the result of the x-ray's photoelectric interaction in tungsten has a range in tungsten of 4.7 microns. According to the geometry of the detector 100 with respect to an incident x-ray 140 shown in
Likewise, the CSDA range of the photoelectron traveling through a dielectric material composed of alumina can be modeled by the following equation:
R=0.016 E1.7261
Again, R is the range in microns and E is the energy of the photoelectron in keV. For a 58 keV incident x-ray 140 that is absorbed by a tungsten atom on the surface of the anode 110 facing the alumina dielectric, and assuming that the resulting photoelectron 160 is emitted normal to the surface of the anode 110, the maximum CSDA range in the alumina is 12.8 microns. Thus, for this energy of incident x-ray 140, the minimum dielectric thickness 125 should be no less than 12.8 microns to allow for maximum ionization in the dielectric material 120 (i.e. the shortest path across the dielectric is no less than the CSDA for that material). The actual optimum dielectric thickness will depend upon both the range of the electron of interest and the space charge region formed due to ionization in the dielectric for the electric field applied between anode and cathode. In another embodiment of the present invention, an anode 110 can be located on each side of the cathode 130.
Another extension of embodiment 1 replaces the cathode material with tungsten (or the same material as the anode). As can be seen from
The configuration shown in
According to this embodiment of the present invention, x-rays of varied energies can be detected by the same detector and directly converted into electrical signals. An x-ray 350 of significantly higher energy than 56 keV will have a high probability of passing through the various layers 380 of the design shown in
The embodiment of the present invention shown in
Another embodiment of the present invention comprises filling the space between the electrodes with a dielectric material containing a heavy metal atom such as, but not limited to, lead, tellurium or gadolinium. Since the material between electrodes must have high resistivity at temperatures on the order of 0 to 100 degrees Celsius, one embodiment of the material is a glass consisting partly of oxides of such heavy metal elements. The addition of heavy metal atoms to the dielectric matrix provides for increased absorption of x-rays by the dielectric material. This increased absorption allows for a thinner total detector stack. In situations wherein the dielectric material can be made sufficiently absorbant, the need to have a high atomic number material for the electrode can be obviated. One must be cautious of introducing a dielectric material that has too high of an x-ray radiation stopping power since energetic photo- or Compton electrons that slow down in the dielectric material may escape the channel as electromagnetic radiation due to the Bremsstrahlung effect and either be lost to detection in the appropriate channel or be detected in a neighboring channel and thus be a source of cross-talk between channels. Also, such enhanced absorption glass must not be a scintillator, which would cause x-ray photons to generate visible light. Such visible light will not be detected since it does not have sufficient energy to ionize the dielectric material.
Accordingly, blocks of the flowchart illustrations support combinations of means for performing the specified functions and combinations of steps for performing the specified functions. It will also be understood that each block of the flowchart illustrations, and combinations of blocks in the flowchart illustrations, can be implemented by special purpose hardware-based computer systems which perform the specified functions or steps, or combinations of special purpose hardware and computer instructions.
The first step in converting x-ray radiation directly into electrical currents is to identify 410 the range of the energetic photo-, Compton, or pair-production particle(s) that will be generated for an x-ray of a particular energy. The particular range of energies of such particle(s) is of significant interest in configuring the present invention. Second, the type of material 420 must be determined. Typically, the cathode is composed of a material with an atomic number in excess of 26 such as gold or tungsten and the dielectric material is composed of a material having a sufficiently high band gap to have a low conductivity at temperatures at which the detector will be operated and maintain such low conductivity at the electrical biases that will be used during detector operation, but at the same time be susceptible to radiation induced conductivity.
Based on the particular energy range of the detector and the types of materials selected for the various components, a maximum thickness of the electrodes and a minimum width of the dielectric material separating the electrodes is determined 430. Thereafter the cathode and the anode are configured 440 so as to be substantially parallel with one another and separated 450 by the dielectric material.
Energetic photoelectrons are created 460 by the interaction of an x-ray of the particular energy range and the anode. The interaction of the photoelectron in the electrode and the dielectric material ionizes the dielectric material. The ionization produces 470 free carriers in the dielectric material creating an electrical current under the influence of the applied electrical potential between anode and cathode that is proportional to the particular energy of the electron that caused the ionization.
Finally, multiple sets of the anode/cathode/and dielectric material can be configured 480 to ensure substantially 100% absorption of either a particular energy or a range of energies of x-rays. These sets can include, but are not limited to, parallel configuration of inter-digitated, cone-like structures, wherein the dielectric thickness between electrodes varies with position along either electrode, and wherein the cone-like structures act to increase the local electric field to enhance charge transport and collection. Although the invention has been described and illustrated with a certain degree of particularity it is understood that the present disclosure has been made only by way of example and that numerous changes in the combination and arrangement of parts can be resorted to by those skilled in the art without departing from the spirit and scope of the invention, as is hereafter described in the following claims.
The present application relates to and claims the benefit of priority to U.S. Provisional Patent Application No. 60/938,114 filed May 15, 2007, which is hereby incorporated by reference in its entirety for all purposes as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
2445305 | Hochgesang | Jul 1948 | A |
5635706 | She et al. | Jun 1997 | A |
6037595 | Lingren | Mar 2000 | A |
6891166 | Brahme et al. | May 2005 | B2 |
7127027 | Hoffman | Oct 2006 | B2 |
20070036512 | Winston et al. | Feb 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080283764 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60938114 | May 2007 | US |