The present invention relates to the technical field of semiconductor devices, and more particularly relates to an enhancement-mode semiconductor device and a preparation method therefor.
A third-generation semiconductor material represented by a GaN material has a great development space in high-temperature, high-frequency, radiation-resistance, and high-power application fields due to the advantages of wide band gap, high saturated drift velocity, high breakdown electric field and the like.
A GaN-based electronic device usually uses high-concentration and high-mobility two-dimensional electron gas (2DEG) at an AlGaN/GaN heterostructure interface to work, so that the device has the advantages of low on-resistance, large output current, and high switching speed. However, just because of this AlGaN/GaN heterostructure, under the condition of zero external gate bias, the device is naturally in an on state, i.e., a depletion-mode operation.
The realization of a high-performance GaN-based enhancement-mode electronic device is an important challenge, and it requires a more positive threshold voltage to simplify a peripheral circuit of the device and ensure system-level failure safety, thus ensuring the reliable operation of power electronic system. A general idea of realizing a normally-off device is to reserve high-conduction 2DEG in AlGaN/GaN access region, that is to say, the conduction capacity in gate-source access region and gate-drain access region of the device is not influenced and at the same time, 2DEG under gate channel is depleted, so that the gate electrode of the device can be switched off under the condition of zero bias. At present, the industry generally adopts three methods to realize a normally-off GaN-based device (IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 64, NO. 3, MARCH 2017, Page 779-795): (1) an insulated trench gate structure (MOSFET), (2) a Cascode structure, and (3) a p-type gate structure (p-GaN gate structure, as shown in
In the above structures, due to the advantages of simple structure, good threshold voltage stability and the like, a p-type gate device has attracted the attention of the academic and industrial circles. At present, the p-type gate device has begun to be industrialized. The main companies launching this structure include Panasonic Corporation from Japan, EPC Corporation from United State and GaN Systems Inc. from Canada. In particular, the Panasonic Corporation has prepared p-type gate devices with better threshold voltage characteristics (IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 64, NO. 3, MARCH 2017, Page 1026-1031) by adopting the technical solutions of combining groove etching, regrowth and p-type layer etching.
For the realization of p-type gate normally-off AlGaN/GaN HEMT devices, the industry mainly adopts etching-based technical solutions. This technology has become a commonly used method in the industry due to its advantage of easy realization. However, this method has many shortcomings, for example, when a p-GaN material in an access region is removed through etching, since the etching uniformity is poor, the over-etching problem exists, and lattice damage will be brought to the surface of the AlGaN barrier layer by the etching, additional defect energy levels will be introduced, and the degradation of electric characteristics of 2DEG in the access region will be caused, so that the performance uniformity and stability of the device can be deteriorated.
Another technical solution of selective-area p-GaN growth technology is also adopted (as shown in
In addition, the hole concentration of the p-GaN layer is generally not high, and a current mainstream reported value is basically lower than 1×1018 cm−3. Therefore, the Al content in the AlGaN barrier layer under the p-GaN layer is generally required to be less than 20%, and the thickness is required to be less than 18 nm, this is conducive to the realization of enhancement-mode operation, but at the same time, it will cause resistance increase of the access region. The relatively thin AlGaN barrier layer will also make doping elements (such as magnesium) in the p-GaN layer more easily diffuse to AlGaN/GaN channel to further influence the reliability of the device.
In order to overcome at least one of the above defects in the prior art, the present invention provides an enhancement-mode semiconductor device capable of realizing higher threshold voltage, lower on-resistance, lower leakage current and more stable work state.
In order to solve the technical problems, the present invention adopts the following technical solution: an enhancement-mode semiconductor device, including a substrate, a semiconductor epitaxial layer growing on the substrate, a gate electrode, a source electrode, and a drain electrode. The epitaxial layer includes a nitride nucleation layer, a nitride stress buffer layer, a nitride channel layer, a primary epitaxial nitride barrier layer, a p-type nitride layer and a secondary epitaxial nitride barrier layer from bottom to top; the p-type nitride layer is only reserved on the primary epitaxial nitride barrier layer in a gate electrode region, realizing the depletion of two-dimensional electron gas channel under the gate electrode; a secondary epitaxy is maskless, and the secondary epitaxial nitride barrier layer is grown on the primary epitaxial barrier layer and the p-type nitride layer in the gate electrode region; and gate electrode metal is in direct contact with the secondary epitaxial nitride barrier layer.
The p-type nitride layer beyond the gate electrode region is etched to reserve the p-type nitride in the gate electrode region, realizing the depletion state of gate channel. Mask influence in a secondary growth process is avoided, and the secondary epitaxial nitride barrier layer is grown on the primary epitaxial barrier layer and the p-type nitride layer in the gate electrode region, realizing a high-conduction access region. At the same time, by adjusting the thickness and Al component of the primary epitaxial nitride barrier layer and the secondary epitaxial nitride barrier layer, the more superior turn-off capability of gate electrode and high-conduction gate-source access region and gate-drain access region are realized. Additionally, the method can effectively repair access region damage caused by etching, and the requirements for the etching process are also reduced. Finally, the enhancement-mode semiconductor device is realized with high threshold voltage, high conductivity and high stability.
Further, the substrate is any one of a Si substrate, a sapphire substrate, a silicon carbide substrate, a GaN self-supporting substrate or AlN.
Further, the nitride stress buffer layer contains any one of AlN, AlGaN, GaN and SiN or a combination of AlN, AlGaN, GaN and SiN; and the nitride nucleation layer is an Al-containing nitride layer.
Further, the nitride channel layer is a GaN or AlGaN layer.
Further, the primary epitaxial nitride barrier layer is a material of one of AlGaN, AlInN, InGaN, AlInGaN, and AlN, or a material of a combination of any of AlGaN, AlInN, InGaN, AlInGaN, and AlN, an Al component content in the primary epitaxial nitride barrier layer is 1% to 30%, and a thickness of the primary epitaxial nitride barrier layer is 1 nm to 30 nm.
Further, the secondary epitaxial nitride barrier layer is one of AlGaN, AlInN, InGaN, AlInGaN and AlN or a combination of any of AlGaN, AlInN, InGaN, AlInGaN and AlN, an Al component content in the secondary epitaxial nitride barrier layer is 1% to 40%, and a thickness of the secondary epitaxial nitride barrier layer is 1 nm to 40 nm.
Further, the p-type nitride layer is GaN, AlGaN, AlInN or AlInGaN, and a thickness of the p-type nitride layer is not less than 5 nm.
Further, an AlN space layer is further inserted between the primary epitaxial nitride barrier layer and the nitride channel layer, and a thickness of the AlN space layer is 0.3 nm to 3 nm.
Further, an AlN barrier layer is further inserted between the p-type nitride layer and the primary epitaxial nitride barrier layer, and a thickness of the AlN barrier layer is 0.3 nm to 5 nm.
Further, the Al component content in the secondary epitaxial nitride barrier layer is generally higher than that in the primary epitaxial nitride barrier layer.
Further, the p-type nitride layer in the gate electrode region is reserved, and the primary epitaxial nitride barrier layer beyond a region under the p-type nitride layer in the gate electrode region is partially removed, and a thickness of the rest primary epitaxial nitride barrier layer is 1 nm to 30 nm.
Further, a cap layer and a passivation layer are in-situ grown on the secondary epitaxial nitride barrier layer; the cap layer is GaN, and a thickness of the cap layer is 0.5 nm to 8 nm; and the passivation layer is SiN, and a thickness of the passivation layer is 1 nm to 100 nm.
Further, the source electrode and the drain electrode are in ohmic contact, and the gate electrode is in ohmic contact or Schottky contact.
The present invention further provides a preparation method for an enhancement-mode semiconductor device, including the following steps:
In the background, it is mentioned that when a traditional etching solution is used to prepare a p-type gate enhancement-mode device, the requirements for equipments and processes are very harsh. Some problems caused by over-etching and etching damage will seriously degrade device characteristics. The present invention proposes to combine etching method with regrowth technology: firstly, a partial primary epitaxial nitride barrier layer and a p-type nitride layer beyond a gate electrode region are removed through dry etching, and the primary epitaxial nitride barrier layer and the p-type nitride layer in the gate electrode region are reserved, so as to realize the depletion of the gate electrode channel. Then, regrowth process is performed. The lattice damage of the primary epitaxial barrier layer induced by etching is repaired through high temperature treatment in MOCVD chamber (the repair may be in nitrogen gas, ammonia gas environment or environment of mixed gas of nitrogen gas and ammonia gas). The regrowth process is maskless, and the secondary epitaxial barrier layer is grown on whole wafer surface, and the influence of SiO2 mask on the regrowth can be eliminated. The secondary epitaxial nitride barrier layer grown in accessed region will help to realize high-conduction AlGaN/GaN heterostructure channel. The secondary epitaxial barrier layer grown at the side surface and the upper surface of the p-type nitride layer in the gate region will form AlGaN/GaN heterostructures. It has few influence on gate switch-off state. Switch-off can be completely ensured in the two surfaces due to non-polar surface or half-polar surface formation and hole depletion effects. Additionally, the obvious improvement of the switch characteristics can be achieved through the redesign of the primary epitaxial barrier layer and the secondary epitaxial barrier layer of the device, including the design on aluminum components in the barrier layers and the thickness of the barrier layers.
Compared with the prior art, the present invention has the beneficial effects as follows:
The present invention provides the enhancement-mode semiconductor device and the preparation method therefor. The regrowth technology is adopted in the present invention, so that feasibility is also provided for the design of nitride barrier layers in the gate region and access region beyond the gate electrode. By designing structures of the primary epitaxial nitride barrier layer and the secondary epitaxial nitride barrier layer, switch-off characteristics of the heterojunction channel under gate electrode and conductivity of heterojunction channel of the access region are reasonably realized at the same time. This advantage cannot be achieved by the conventional etching solution or selective-area epitaxial p-GaN solution. Finally, the technology of the present invention can effectively realize the enhancement-mode device having high threshold voltage, high conductivity, low leakage and high stability.
In the figures, 1 denotes a substrate; 2 denotes a nitride nucleation layer; 3 denotes a nitride stress buffer layer; 4 denotes a nitride channel layer; 5 denotes a primary epitaxial nitride barrier layer; 6 denotes a p-type nitride layer; 7 denotes a secondary epitaxial nitride barrier layer; 8 denotes a source electrode; 9 denotes a drain electrode; 10 denotes a gate electrode; 11 denotes an MN space layer; 12 denotes a secondary epitaxial nitride channel layer; 13 denotes a cap layer or an in-situ passivation layer; 14 denotes a passivation layer; 15 denotes a source electrode field plate; 16 denotes a bridging dielectric layer; 17 denotes a thick drain electrode; and 18 denotes a SiO2 mask layer.
The drawings are only for exemplary description, and should not be understood as a limitation of the present invention. In order to better illustrate the embodiments, some parts of the drawings may be omitted, enlarged or reduced, so the sizes do not represent the sizes of actual products; for those skilled in the art, it is understandable that some well-known structures in the drawings and their descriptions may be omitted. The positional relationship described in the drawings is only for exemplary description, and should not be understood as a limitation of the present invention.
A manufacturing method of the semiconductor enhancement-mode transistor is as shown in
So far, the preparation process of the device is completed.
Apparently, the above embodiments of the present invention merely example to describe the present invention clearly and are not intended to limit the implementations of the present invention. The core content of the present invention is regrowth of the barrier layers after the etching of the p-type nitride layer. On one hand, the requirements on the etching process can be reduced, and on the other hand, the enhancement-mode device having high threshold voltage, high conductivity and high stability is further obtained by designing the thicknesses and Al components of the primary epitaxial nitride barrier layer and the secondary epitaxial nitride barrier layer. The present invention has been elucidated with reference to the related art by means of only a few device structures, but it is still feasible in other similar device solutions that have been modified or combined, and these descriptions will not be provided here in detail. It will be apparent to those skilled in the art that various other changes or modifications can be made on the basis of the above descriptions. The technical solutions in the various embodiments, including the sequence of steps, the selection of material types and parameters, the selection of process methods and parameters, and the like, can be varied or combined appropriately, and implementation solutions may can be varied or combined with each other appropriately to form other implementation solutions capable of being understood by those skilled in the art. Herein, examples are unnecessarily provided for all implementations. Any modification, equivalent replacement, improvement and the like made within the spirit and principle of the present invention should be included in a scope of protection of the claims of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201910037334.9 | Jan 2019 | CN | national |
This application is a continuation of international application of PCT application serial no. PCT/CN2019/072317 filed on Jan. 18, 2019, which claims the priority benefit of China application no. 201910037334.9 filed on Jan. 15, 2019. The entirety of each of the above mentioned patent applications is hereby incorporated by reference herein and made a part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
9245991 | Liu | Jan 2016 | B2 |
10790787 | Mahon | Sep 2020 | B2 |
10855230 | Mahon | Dec 2020 | B2 |
11335797 | Chen | May 2022 | B2 |
20180248027 | Okita et al. | Aug 2018 | A1 |
20180308953 | Chiu | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
103337516 | Oct 2013 | CN |
106033724 | Oct 2016 | CN |
106486363 | Mar 2017 | CN |
2005243727 | Sep 2005 | JP |
Entry |
---|
Kevin J. Chen et al., “GaN-on-Si Power Technology: Devices and Applications,” IEEE Transactions on Electron Devices, vol. 64, Mar. 2017, pp. 779-795. |
Hideyuki Okita et al., “Through Recess and Regrowth Gate Technology for Realizing Process Stability of GaN-Based Gate Injection Transistors,” IEEE Transactions on Electron Devices, vol. 64, Mar. 2017, pp. 1-6. |
Giuseppe Greco et al., “Review of technology for normally-off HEMTs with p-GaN gate,” Materials Science in Semiconductor Processing, Sep. 2017, pp. 1-11. |
Number | Date | Country | |
---|---|---|---|
20210320199 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2019/072317 | Jan 2019 | WO |
Child | 17356541 | US |