The present invention relates generally to a method of manufacturing an epitaxial structure, and more particularly to a method of forming a group III nitride layer on a silicon carbide (SiC) substrate.
It is known that group III-V semiconductors, which are gallium nitride (GaN) as an example, are widely applied to different electronic structures, wherein one of the major applicable fields is a High Electron Mobility Transistor (HEMT). The HEMT is a transistor having a two dimensional electron gas (2-DEG) that is located close to a heterojunction of two materials with different energy gaps. As the HEMT makes use of the 2-DEG having a high electron mobility as a carrier channel of the transistor instead of a doped region, the HEMT has features of a high breakdown voltage, the high electron mobility, a low on-resistance, and a low input capacitance.
A HEMT is used as an example for illustration. Generally, in order to reduce a lattice mismatch between a silicon carbide (SiC) substrate and a gallium nitride (GaN) layer, an aluminum nitride (AlN) layer serving as a nucleation layer is grown on the SiC substrate through metal-organic chemical vapor deposition (MOCVD) before growing the GaN layer. However, when a carbon face of the SiC substrate is taken as a growth face for depositing the AlN layer, a metal face of the AlN layer faces the carbon face of the SiC substrate and a nitrogen face of the AlN layer faces upward, making a surface of the GaN layer formed on the AlN layer be not flat or be partially roughened, thereby affecting an epitaxial quality. Therefore, how to provide a method of manufacturing an epitaxial structure, which could form a group III nitride layer having a flat surface on a SiC substrate when taking a carbon face of the SiC substrate as the growth face, is a problem needed to be solved in the industry.
In view of the above, the primary objective of the present invention is to provide a method of manufacturing an epitaxial structure, which could form a gallium nitride (GaN) layer having a flat surface on a carbon surface of a silicon carbide (SiC) substrate.
The present invention provides a method of manufacturing an epitaxial structure including following steps of: A: provide a silicon carbide (SiC) substrate having a carbon face (C-face) without an off-angle; B: form an amorphous structure layer on the C-face of the SiC substrate; C: deposit a first group III nitride layer on the amorphous structure layer; and D: deposit a second group III nitride layer on the first group III nitride layer.
The present invention further provides an epitaxial structure including a silicon carbide (SiC) substrate, an amorphous structure layer, a first group III nitride layer, and a second group III nitride layer, wherein the SiC substrate has a carbon face (C-face) without an off-angle. The amorphous structure layer is located on the SiC substrate and is connected to the C-face. The first group III nitride layer is located on the amorphous structure layer. The second group III nitride layer is located on the first group III nitride layer.
With the aforementioned design, by forming the amorphous structure layer, the polarity of the first group III nitride layer deposited on the amorphous structure layer is reversed to make the top surface of the second group III nitride layer to be in a flat and smooth state, thereby solving the problem of a conventional manufacturing method that a top surface of a second group III nitride layer deposited on a first group III nitride layer is not flat or is partially roughened as a metal face of the first group III nitride layer faces downward and a nitrogen face of the first group III nitride layer faces upward when directly growing the first group III nitride layer on a carbon face of a silicon carbide substrate.
The present invention will be best understood by referring to the following detailed description of some illustrative embodiments in conjunction with the accompanying drawings, in which
A method of manufacturing an epitaxial structure according to an embodiment of the present invention is illustrated in a flowchart as shown in
The method of manufacturing the epitaxial structure includes following steps:
An epitaxial structure 1 manufactured through the method of manufacturing the epitaxial structure is illustrated in
Referring to Table 1, a comparative example and an embodiment of the present invention are illustrated as following. The epitaxial structure 1 is a High Electron Mobility Transistor (HEMT) as an example for illustration, wherein the first group III nitride layer 30 is a nucleation layer of the HEMT, and the second group III nitride layer 40 is a buffer layer and a channel layer of the HEMT, and a barrier layer 50 is formed on the second group III nitride layer 40, thereby a two dimensional electron gas (2-DEG) is formed in the channel layer along an interface between the channel layer and the barrier layer 50. In practice, the epitaxial structure 1 could be applied to other electronic structures as well.
In an epitaxial structure in the comparative example, an aluminum nitride (AlN) nucleation layer having a thickness of 0.1 um is formed on a carbon face (C-face) of a silicon carbide (SiC) substrate without an off-angle through MOCVD, then a gallium nitride (GaN) buffer layer having a thickness of 1 um and being doped is formed on the AlN nucleation layer through MOCVD, wherein the GaN buffer layer could be doped by, for example, iron, carbon, or magnesium; then a GaN channel layer having a thickness of 1 um is formed on the doped GaN buffer layer through MOCVD; the SiC substrate has the C-face without the off-angle, and the AlN nucleation layer is deposited on the C-face.
As shown in Table 1, an RMS roughness of a surface of the GaN channel layer of the epitaxial structure in the comparative example is much greater than 1 nm, and as shown in
In an epitaxial structure 1 in the current embodiment, an amorphous structure layer having a thickness between 2 nm and 5 nm is grown to form on a carbon face (C-face) of a silicon carbide (SiC) substrate without an off-angle through PVD, and an aluminum nitride (AlN) nucleation layer having a thickness of 0.1 um is formed on the amorphous structure layer through MOCVD, and then a gallium nitride (GaN) buffer layer having a thickness of 1 um and being doped is formed on the AlN nucleation layer through MOCVD, wherein the GaN buffer layer could be doped by, for example, iron, carbon, or magnesium; then a GaN channel layer having a thickness of 1 um is formed on the doped GaN buffer layer through MOCVD; the SiC substrate has the C-face without the off-angle, and the amorphous structure layer is deposited on the C-face.
As shown in Table 1, an RMS roughness of a surface of the GaN channel layer of the epitaxial structure 1 in the current embodiment is less than 1 nm, and as shown in
With the aforementioned design, through forming the amorphous structure layer 20, a polarity of the first group III nitride layer 30 deposited on the amorphous structure layer 20 is reversed (i.e., a metal face of the first group III nitride layer 30 faces upward and a nitrogen face of the first group III nitride layer 30 faces downward) to make a top surface of the second group III nitride layer 40 to be in a flat and smooth state, thereby solving the problem of a conventional manufacturing method that a top surface of a second group III nitride layer 40 deposited on the first group III nitride layer 30 is not flat or is roughened as a metal face of the first group III nitride layer 30 faces downward and a nitrogen face of the first group III nitride layer 30 faces upward when directly growing the first group III nitride layer 30 on a carbon face of a silicon carbide substrate.
It must be pointed out that the embodiments described above are only some preferred embodiments of the present invention. All equivalent structures and methods which employ the concepts disclosed in this specification and the appended claims should fall within the scope of the present invention.
Number | Date | Country | |
---|---|---|---|
63338545 | May 2022 | US |