The etchant of the present invention comprises peracetic acid, a peracetic acid stabilizer, an organic acid, an inorganic acid, a salt and water, which may be used to etch either a composite layer comprising two different metal layers in one single step or a single metal layer. The composite layer may be, for instance, a two-layered structure of first metal layer/second metal layer or a three-layered structure of second metal layer/first metal layer/second metal layer, wherein the first metal comprises copper or copper alloy, and the second metal comprises a material selected from the group consisting of molybdenum, silver, tantalum, titanium, chromium, nickel, tungsten, gold and an alloy comprising one or more of these materials. The single metal layer is a copper alloy layer, wherein the element in the copper alloy layer is selected from the group consisting of magnesium, silver, chromium, tungsten, molybdenum, niobium, nitrogen, silver, ruthenium, carbon and an alloy comprising one or more of these elements.
Peracetic acid is about 0.5% to 40% by weight based on the total weight of the etchant. Preferably, peracetic acid is about 5% to 39% by weight.
In one embodiment, the etchant is used to etch a structure containing copper and molybdenum, wherein the reaction mechanism for peracetic acid and copper is as follows:
CH3COOOH+Cu═CuO+CH3COOH
CuO+2CH3COOH═Cu(CH3COO)2+H2O
The reaction mechanism for peracetic acid and molybdenum is as follows:
3CH3COOOH+Mo═MoO3+3CH3COOH
The product, MoO3, formed by reacting peracetic acid with molybdenum, is easily soluble in water.
The peracetic acid stabilizer is used to stabilize the peroxidized peracetic acid to prevent self-decomposition of the peracetic acid. Peracetic acid stabilizer is about 3% to 20% by weight based on the total weight of the etchant. Preferably, peracetic acid stabilizer is about 5% to 15% by weight. Peracetic acid stabilizer is, for instance, 1-Hydroxyethylidene-1,1-Diphosphonic Acid (HEDP), or 2,6-pyridinedicarboxylic acid.
The organic acid is used to assist in etching copper and molybdenum. The organic acid comprises a chemical selected from the group consisting of acetic acid, citric acid, oxalic acid, tartatic acid and a mixture comprising one or more of these chemicals. Preferable choice of the organic acid includes citric acid and acetic acid. Organic acid is about 2% to 15% by weight based on the total weight of the etchant. Preferably, the organic acid is about 5% to 10% by weight.
The inorganic acid may also be used to etch metals such as copper and molybdenum. The inorganic acids comprises a chemical selected from the group consisting of sulfuric acid (H2SO4), nitric acid (HNO3), hydrochloric acid (HCl), phosphoric acid (H3PO4) and a mixture comprising one or more of these chemicals. The inorganic acid is about 2% to 20% by weight based on the total weight of the etchant. Preferably, inorganic acid is about 5% to 15% by weight.
The salt is used to control the pH value of the etchant, adjusting the relative etch ratio of copper to molybdenum. The salt comprises a chemical selected from the group consisting of halides, sulfates, iodates, phosphates, acetates and a mixture comprising one or more of these chemicals. Examples of halides include potassium chloride (KCl) and sodium chloride (NaCl). Examples of sulfates include potassium sulfates (KHSO4). Examples of iodates include, KIO4. Examples of phosphates include (NH4)HPO4. Examples of acetates include CH3COONH4, CH3COONa, and CH3COOK. Preferable choices of salt include KCl, NaCl, KHSO4, KIO4, (NH4)HPO4, CH3COONH4, CH3COONa, CH3COOK and a mixture comprising one or more of these chemicals. The salt is about 5% to 20% by weight based on the total weight of the etchant. Preferably, the salt is about 8% to 15% by weight.
Water may be either pure water or deionized water. Water is about 10% to 80% by weight based on the total weight of the etchant. Preferably, water is about 15% to 75% by weight.
The etchant of the present invention may be used in etching a composite layer such as the metal conductive lines of TFT-LCD or that of plasma display panel. The following embodiments illustrate the etchant of the present invention used in TFT-LCD, which are exemplary, and the present invention is not limited thereto.
In
In
Thereafter, in
Thereafter, in
In
Then, the underlying ohmic contact layer 154 is patterned again to form ohmic contact layers 154a and 154b. Next, the photoresist layer 120 is removed. Thereafter, through another photolithographic and etching process, the dielectric layer 150 formed on the scan line terminal 142a is patterned again to form an opening 155.
Next, in
Thereafter, in
Etchants having different concentration of peracetic acid: 5% by weight of the etchant, 15% by weight of the echant and 39% by weight of the etchant, are used to etch the composite layer containing copper and molybdenum in the experiment. The results show: after etching, the taper angle of the composite layer falls within the range of 450 to 750; the critical dimension loss is less than 2 micrometers (μm); and no residues. Furthermore, the etch rate may reach 1500 angstroms/minute and the uniformity may reach 10%.
The etchant of the present invention may achieve the etching of a composite layer in one single step, curtailing the process time. Moreover, the concentration of the etchant may be effectively controlled, facilitating the precise formation of the desired shape such as a trapezoid. In addition, using the etchant of the present invention eliminates the Galvanic effect, and will not cause damages to the machines or pose occupational hazards.
Although the present invention has been disclosed above by the preferred embodiments, they are not intended to limit the present invention. Anybody skilled in the art may make some modifications and alteration without departing from the spirit and the scope of the present invention. Therefore, the protecting range of the present invention falls in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
95132305 | Sep 2006 | TW | national |