Alder, Jeffery, “Determining the Therapeutic Potential of Experimental Antibacterial Agents: The Use of Animal Models” Current Pharm. Design 1997, 3: 143-158. |
Hopwood, et al., “Factors Affecting Recombinant Frequency in Protoplast Fusions of Streptomyces coeilcolor” J. of General Microbiology (1979) 111, 137-143. |
Lavery et al. (1990) Properties of recA441 Protein-catalyzed DNA Strand Exchange Can Be Attributed to an Enhanced Ability to Compete with SSB Protein Journal of Biological Chemistry 265(7): 4004-4010. |
Sipiczki et al., “Enzymic Methods for Enrichment of Fungal Mutants . . . ” Mutation Research (1978) 50:163-173. |
Allard, R.W., (1960) Principles of Plant Breeding, John Wiley & Sons, Inc., New York, Chapter 23 Recurrent Selection, pp. 282-302. |
William P.C. Stemmer, “DNA Shuffling by Random Fragmentation and Reassembly in Vitro Recombination for Molecular Evolution”, Proc. natl. Acad. Sci, 91:10747-10751 (10/94). |
William P.C. Stemmer, “Rapid Evolution of a Protein in Vitro by DNA Shuffling”, Nature 370:389-391 (Aug. 4, 1994). |
Stemmer, W.P.C. et al., (1995), Single-step assembly of a gene and entire plasmid form large numbers of oligodeoxyribonucleotides, Gene, 164:49-53. |
Stemmer, W.P.C., (1995), Searching Sequence Space, Bio/Technology 13:549-553. |
Stemmer, W.P.C., (1995), The Evolution of Molecular Computation, Science 270:1510. |
Crameri, A. and Stemmer, W.P.C. (1995), Combinatorial multiple casette mutagenesis creates all the permutations of mutant and wild-type cassettes, Biotechniques 18:194-195. |
Stemmer, W.P.C. (1996), Sexual PCR and Assembly PCR. In: The Encyclopedia of Molecular Biology, VCH Publishers, New York. Pp. 447-457. |
Gates, C.M. et al., (1996), Affinity selective isolation of ligands from peptide libraries through display on a lac repressor ‘headpiece dimer’, Journal of Molecular Biology 255:373-386. |
Crameri, A., et al., (1996), Improve green fluorescent protein by molecular evolution using DNA shuffling, Nature Biotechnology 14:315-319. |
Crameri, A., et al., (1996), Construction and evolution of antibody-phage libraries by DNA shuffling, Nature Medicine 2:100-103. |
Zhang, J., et al., (1997), Directed evolution of fucosidase from a galactosidase by DNA shuffling and screening, Proceedings of the National Academy of Sciences, U.S.A. 94:4504-4509. |
Patten, P.A., et al., (1997), Applications of DNA Shuffling to Pharmaceuticals and Vaccines, Current Opinion in Biotechnology 8:724-733. |
Crameri, A., et al., (1997), Molecular evolution of an arsenate detoxification pathway by DNA shuffling, Nature Biotechnology 15:436-438. |
Gerritse, Gijs, et. al., (1998), The phenoltype enhancement method identifies the Xcp outer membrane secretion machinery from Pseudomonas alcaligenes as a bottleneck for lipase production, Journal of Biotechnology 24:23-38. |
Crameri, A., et al., (1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution, Nature 391:288-291. |
Christians, F.C., et al. (1999), Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling, Nature Biotechnology 17:259-264. |
Minshull, J., et al., (1999), Protein evolution by molecular breeding, Current Opinions in Chemical Biology 3:284-290. |
Stemmer, W.P.C., et al., (1999) Molecular breeding of viruses for targeting and other clnical properties. Tumor Targeting 4:1-4. |
Chang, et al., “Evilution of a cytokine using DNA family shuffling” Nature Biology vol. 17 (1999) pp. 793-797. |
Crameri & Stemmer “1020-Fold aptamer library amplification without gel purification” Nucleic Acid Research (1993) vol. 21, No. 18, pp. 4410. |
Ness et al., “DNA Shuffling of Subgenomic sequences of subtilisin” Nature Biotechnology vol. 17 (1999) pp. 893-896. |
Capecchi “Altering the Genome by Homologous Recombnation.” Science vol. 244, 1288-1292 (1989). |
Larinov et al. “Highly selective isolation of human DNAs from rodent-human hybrid cells as circular yeast artificial chromosomes by transformation associated recombination cloning.” Proc. Natl. Sci. USA 93: 13925-13930 (1995). |
Larinov et al. “Recombination during transformation as a source or chimeric mammalian artificial chromosomes in yeast (YACs).” Nucleic Acid Res. V. 22, No. 20 4154-4162 (1994). |
Larinov et al. “Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination.” Proc. Natl. Sci USA 93: 491-496 (1996). |
Norman Rothwell “Understanding Genetics” 1-22,219 & 216 (1976). |
Ragoussis et al. “Mitotic recombination of yeast artificial chromosomes.” Nucl. Acid. Research 20(12): 3135-3138. |
Spencer et al. “Targeted Recombination-Based Cloning and Manipulation of Large DNA Segments in Yeast.” Methods 5: 161-175 (1993). |
Edited by Gardner et al., Principles of Genetics, 1981, pp. 9-40, Sixth Edition. John Wiley & Sons, New York, New York. |
Hopwood, D., Genetics of Industrial (1979) pp:1-9. |
Hamlyn, P., et al., Genetics of Industrial (1979) pp: 185-191. |
Ikeda, H., et al., Journal of Antibiotics (1983) 36(3):283-288. |
Matsushima, P., et al., Gene (1994) 146:39-45. |
Nguyen, D., et al., Plant Molecular Biology (1989) 12:87-93. |
Mirdamadi-Tehrani, J., et al., Microbiology Letters (1992) 91(2):187-192. |
Zhang, YX., et al., Nature (2002) 415:644-646. |
Sambrook, J., et al., Molecular Cloning: A Laboratory Manual (2nd ed.), Cold Spring Laboratory Press, Cold Spring Harbor, New York (1989). |
Arkin, A.P., et al., PNAS (1992) 89(16):7811-5. |
Beaudry, A.A., et al., Science (1992) 257:635-41. |
Berkhout, B., et al., Nucleic Acids Research (1993) 21(22):5020-4. |
Boizet, B., et al., Appl. Environ. Microbiol. (1988) 54(12):3014-8. |
Bradshaw, M.S., et al., PNAS(USA) (1996) 93(6):2426-30. |
Brzobohaty, B., et al., Folia Biol. (Praha) (1985) 31(5):333-9. |
Campbell, C., et al., PNAS(USA) (1991) 88(13):5744-8. |
Cellini, A., et al., Nucleic Acids Res. (1991) 19(5):997-1000. |
Chassy, B.M., FEMS Microbiol. (1987) 46:297-312. |
Chen, D., et al., Mutat. Res. (1987) 184(2):87-98. |
Couteaudier, Y., et al., Microb. Ecol. (1996) 32(1):1-10. |
Deb, J.K. et al., FEMS Microbiol. Lett. (1990) 59(3):287-92. |
Deshayes, A., et al., EMBO J. (1985) 4(11):2731-7. |
Heikoop, J.C., et al., Eur. J. Hum. Genet. (1995) 3(3):168-79. |
Hermanson, G.G., et al., Nucleic Acids Res. (1991) 19(18):4943-8. |
Huxley, C., et al., Bioessays. (1991) 13(10):545-50. |
Jakobovits, A., et al., YACs. Ann NY Acad. Sci. (1995) 764:525-35. |
Kunze, G., et al., Curr. Genet. (1987) 11(5):385-91. |
Laqueyrerie, A., et al., Infect. Immun. (1995) 63(10):4003-10. |
Miller, A.M., et al., PNAS(USA) (1993) 90(17):8118-22. |
Minshull, J., Chem. Biol. (1995) 2(12):775-80. |
Nakayama, J., et al., FEMS Microbiol. Lett. (1995) 128(3):283-8. |
Omirulleh, S., et al., Plant Mol. Biol. (1993) 21(3):415-28. |
Pavan, W.J. et al., Mol. Cell Biol. (1990) 10(8):4163-9. |
Pen. J., et al., Plant Mol. Biol. (1992) 18(6):1133-9. |
Pina, A., et al., Appl. Environ. Microbiol. (1986) 51(5):995-1003. |
Riley, J.H., et al., Nucleic Acids Res. (1992) 20(12):2971-6. |
Sarachek, A., et al., Arch. Microbiol. (1981) 129(1):1-8. |
Schedl, A., et al., Nucleic Acids Res. (1993) 21(20):4783-7. |
Sears, D.D., et al., PNAS(USA) (1992) 90(12):5296-300. |
Shimizu-Kadota, M., et al., Agric. Biol. Chem, (1984) 48(4):1105-1107. |
Sienko, M., et al., J. Gen. Microbiol. (1992) 138(Pt7):1409-12. |
Silverman, G.A., et al., PNAS(USA) (1990) 87(24):9913-7. |
Simpson, K., et al., Mol. Cell. Biol. (1996) 16(9):5117-26. |
Tam, Y.C., et al., Biochem. Biophys. Res. Commun. (1988) 156(3):1403-10. |
Wada, M., et al., Biochem. Biophys. REs. Commun. (1994) 200(3):1693-700. |
Wang, C.Y., et al., Biochemistry (1989) 28(24):9508-14. |
Opposition Statement in matter of Australian Patent Application 743305 (Maxygen, Inc.), filed by Diversa Corporation on Jul. 24, 2002. |