EXPRESSION VECTORS, BACTERIAL SEQUENCE-FREE VECTORS, AND METHODS OF MAKING AND USING THE SAME

Abstract
The present disclosure provides expression vectors, bacterial sequence-free vectors, such as ministring DNA (msDNA), and methods of making the bacterial sequence-free vectors, including with vector production systems. The present disclosure also provides compositions comprising the vectors, and uses of the vectors and compositions.
Description
REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY

The content of the electronically submitted sequence listing (Name: 4471_0070003_SequenceListing_ST26; Size: 211,617 Bytes; and Date of Creation: Mar. 29, 2024) is herein incorporated by reference in its entirety.


FIELD OF DISCLOSURE

The present disclosure provides expression vectors, bacterial sequence-free vectors, vector production systems for making the bacterial sequence-free vectors, and uses thereof.


BACKGROUND

Gene therapy has significant therapeutic promise, but challenges remain in realizing its potential.


Most clinical trials have utilized viral delivery systems, such as adenoviral vectors, lentiviral vectors, and adeno-associated viral vectors. While progress has been made, viral systems vary in transduction and transgene expression efficiencies and concerns remain regarding undesirable effects such as inflammatory and immune responses or insertional mutagenesis. Moreover, production, purification, and storage of viral vectors is often costly, highly variable, and inefficient. See, e.g., Lingelbach, D., Drug Development & Delivery 20(5): 50-54 (2020); Wright, J. F., Gene Therapy 15:840-848 (2008).


Nonviral vectors also have been investigated as gene therapy delivery systems. While safer than their viral counterparts, the effectiveness of nonviral vectors can be limited, for example, by low transgene expression levels and durability of expression. See, e.g., Kay, M., Nature Reviews Genetics 12: 316-328 (2011).


There is a need for improved vectors such as those described herein.


BRIEF SUMMARY

The present disclosure is directed to an expression vector comprising: (a) a backbone sequence, (b) a sequence comprising: (i) an expression cassette comprising a nucleic acid sequence of interest, (ii) a first target sequence for a first recombinase flanking the 5′ side of the expression cassette, (iii) a second target sequence for the first recombinase flanking the 3′ side of the expression cassette, and (iv) one or more additional target sequences for one or more additional recombinases integrated within the first and second target sequences in non-binding regions for the first recombinase, and (c) one or more of: (i) an endonuclease target sequence integrated within the first and/or second target sequences for the first recombinase in non-binding regions for the first recombinase and the one or more additional recombinases, wherein the endonuclease target sequence is between the backbone sequence and cleavage sites for the first recombinase and the one or more additional recombinases, (ii) a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:12 integrated between the 3′ end of the first target sequence for the first recombinase and the 5′ end of another enhancer or a promoter in the expression cassette, (iii) a cytomegalovirus (CMV) enhancer integrated between the 3′ end of the first target sequence for the first recombinase and the 5′ end of a promoter in the expression cassette, (iv) a 5′ untranslated region (5′UTR) comprising an intron, wherein the 5′UTR is integrated in the expression cassette between a promoter and the nucleic acid sequence of interest, (v) a vertebrate chromatin insulator integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, (vi) a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, (vii) a scaffold/matrix attachment region (S/MAR) integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, or (viii) a DNA nuclear targeting sequence (DTS) integrated within the first and/or second target sequences for the first recombinase in non-binding regions for the first recombinase and the one or more additional recombinases, wherein the DTS is between the expression cassette and cleavage sites for the first recombinase and the one or more additional recombinases.


In some aspects, the expression vector comprises an endonuclease target sequence integrated within the first and/or second target sequences for the first recombinase in non-binding regions for the first recombinase and the one or more additional recombinases, wherein the endonuclease target sequence is between the backbone sequence and cleavage sites for the first recombinase and the one or more additional recombinases. In some aspects, the endonuclease target sequence is integrated within the first and second target sequences for the first recombinase. In some aspects, the endonuclease target sequence is for a homing endonuclease. In some aspects, the endonuclease target sequence is for I-AniI, I-CeuI, I-ChuI, I-CpaI, I-CpaII, I-CreI, I-DmoI, H-DreI, I-HmuI, I-HmuII, I-LlaI, I-MsoI, PI-PfuI, PI-PkoII, I-PorI, I-PpoI, PI-PspI, I-ScaI, I-SceI, PI-SceI, I-SceII, I-SecIII, I-SceIV, I-SceV, I-SceVI, I-SceVII, I-Ssp6803I, I-TevI, I-TevII, I-TevIII, PI-TliI, PI-TliII, I-Tsp061I, or I-Vdi141I. In some aspects, the endonuclease target sequence is for I-SceI. In some aspects, the endonuclease target sequence is for PI-SceI. In some aspects, the endonuclease target sequence is for a Cas endonuclease. In some aspects, the Cas endonuclease is Cas9.


In some aspects, the expression vector comprises a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:12 integrated between the 3′ end of the first target sequence for the first recombinase and the 5′ end of another enhancer or a promoter in the expression cassette. In some aspects, the synthetic enhancer comprises multiple contiguous copies of a nucleic acid sequence at least about 90% identical to SEQ ID NO:12. In some aspects, the synthetic enhancer comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:46. In some aspects, the synthetic enhancer is integrated at the 5′ end of a chicken β-actin promoter. In some aspects, a chimeric intron comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:47 is integrated at the 3′ end of the chicken β-actin promoter and 5′ to the nucleic acid sequence of interest.


In some aspects, the expression vector comprises a CMV enhancer integrated between the 3′ end of the first target sequence for the first recombinase and the 5′ end of a promoter in the expression cassette. In some aspects, the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:12 or SEQ ID NO:46. In some aspects, a CMV promoter is integrated at the 3′ end of the CMV enhancer and 5′ to the nucleic acid sequence of interest.


In some aspects, the expression vector comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39 integrated between the first target sequence for the first recombinase and the nucleic acid sequence of interest.


In some aspects, the expression vector comprises a 5′UTR comprising an intron, wherein the 5′UTR is integrated in the expression cassette between a promoter and the nucleic acid sequence of interest. In some aspects, the intron comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:1. In some aspects, the 5′UTR further comprises a non-coding sequence integrated within the intron. In some aspects, the 5′UTR comprises a non-coding sequence integrated between two of the nucleotides in the intron corresponding to any two nucleotides from positions 25 to 55 of SEQ ID NO:1. In some aspects, the non-coding sequence is an S/MAR. In some aspects, the S/MAR is MAR-5. In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90% identical SEQ ID NO:3. In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90% identical SEQ ID NO:5. In some aspects, the promoter is a chicken β-actin promoter. In some aspects, the promoter is a CMV promoter. In some aspects, the promoter is integrated at the 3′ end of a CMV enhancer. In some aspects, the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO: 12 or SEQ ID NO:46.


In some aspects, the expression vector comprises a polyadenylation signal that is integrated at the 3′ end of the nucleic acid sequence of interest. In some aspects, the polyadenylation signal comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:13, SEQ ID NO:14, or SEQ ID NO:15.


In some aspects, the expression vector comprises a vertebrate chromatin insulator integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal. In some aspects, the vertebrate chromatin insulator is 5′-HS4 chicken-β-globin insulator (cHS4). In some aspects, the polyadenylation signal comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:13, SEQ ID NO:14, or SEQ ID NO:15.


In some aspects, the expression vector comprises a WPRE integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal. In some aspects, the polyadenylation signal comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO: 13, SEQ ID NO: 14, or SEQ ID NO: 15.


In some aspects, the expression vector comprises a S/MAR integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal. In some aspects, the S/MAR is MAR-5. In some aspects, the polyadenylation signal comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO: 13, SEQ ID NO:14, or SEQ ID NO:15.


In some aspects, the expression vector comprises an enhancer sequence flanking each side of the first and second target sequences for the first recombinase. In some aspects, the expression vector comprises at least two enhancer sequences flanking each side of the first and second target sequences for the first recombinase. In some aspects, the enhancer sequence is a SV40 enhancer sequence.


In some aspects, the expression vector comprises a DTS integrated within the first and/or second target sequences for the first recombinase in non-binding regions for the first recombinase and the one or more additional recombinases, wherein the DTS is between the expression cassette and cleavage sites for the first recombinase and the one or more additional recombinases. In some aspects, the DTS is a SV40 enhancer sequence. In some aspects, the DTS is cell-specific.


In some aspects, the first and second target sequences and the one or more additional target sequences are selected from the group consisting of the PY54 pal site, the N15 telRL site, the loxP site, φK02 telRL site, the FRT site, the phiC31 attP site, and the λ attP site. In some aspects, the expression vector comprises each of the target sequences. In some aspects, the expression vector comprises the pal site and the telRL, loxP, and FRT recombinase target binding sequences integrated within the pal site. In some aspects, the first and second target sequences for the first recombinase each comprise the nucleic acid sequence of SEQ ID NO:33.


In some aspects, the expression vector is for producing a bacterial sequence-free vector. In some aspects, the bacterial sequence-free vector is a circular covalently closed vector. In some aspects, the bacterial sequence-free vector is a linear covalently closed vector.


The present disclosure is directed to a vector production system comprising recombinant cells encoding a recombinase under the control of an inducible promoter, wherein the recombinant cells comprise any of the above expression vectors, and wherein the recombinase targets the first and second target sequences for the first recombinase or one of the one or more additional target sequences for the one or more additional recombinases in the expression vector. In some aspects, the recombinase is TelN, Tel, Cre, or Flp.


In some aspects, the recombinant cells further encode an endonuclease under the control of an inducible promoter, wherein the endonuclease targets the endonuclease target sequence in an expression vector comprising the endonuclease target sequence. In some aspects, the endonuclease is a homing endonuclease. In some aspects, the homing endonuclease is I-AniI, I-CeuI, I-ChuI, I-CpaI, I-CpaII, I-CreI, I-DmoI, H-DreI, I-HmuI, I-HmuII, I-LlaI, I-MsoI, PI-PfuI, PI-PkoII, I-PorI, I-PpoI, PI-PspI, I-ScaI, I-SceI, PI-SceI, I-SceII, I-SecIII, I-SceIV, I-SceV, I-SceVI, I-SceVII, I-Ssp6803I, I-TevI, I-TevII, I-TevIII, PI-TliI, PI-TliII, I-Tsp061I, or I-Vdi141I. In some aspects, the endonuclease is I-SceI. In some aspects, the endonuclease is PI-SceI. In some aspects, the recombinant cells encode a nuclease genome editing system comprising the endonuclease. In some aspects, the nuclease genome editing system is a clustered regularly interspaced short palindromic repeats (CRISPR) nuclease system comprising a guide RNA and a Cas endonuclease. In some aspects, the Cas endonuclease is Cas9. In some aspects, the inducible promoter is thermally-regulated, chemically-regulated, IPTG regulated, glucose-regulated, arabinose inducible, T7 polymerase regulated, cold-shock inducible, pH inducible, or combinations thereof.


The present disclosure is directed to a method of producing a bacterial sequence-free vector comprising incubating any of the above vector production systems under suitable conditions for expression of the recombinase. In some aspects, the method further comprises incubating any of the above vector production systems that encode an endonuclease under suitable conditions for expression of the endonuclease. In some aspects, the method further comprises incubating any of the above vector production systems that encode a nuclease genome editing system under suitable conditions for expression of the nuclease genome editing system. In some aspects, the method further comprises harvesting the bacterial sequence-free vector.


The present disclosure is directed to a bacterial sequence-free vector produced by any of the above methods of producing a bacterial sequence-free vector.


The present disclosure is directed to a bacterial sequence-free vector comprising: (a) an expression cassette comprising a nucleic acid sequence of interest, and (b) one or more of: (i) a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:12 located 5′ to another enhancer or a promoter in the expression cassette, (ii) a CMV enhancer located 5′ to a promoter in the expression cassette, (iii) a 5′UTR comprising an intron, wherein the 5′UTR is integrated in the expression cassette between a promoter and the nucleic acid sequence of interest, (iv) a vertebrate chromatin insulator integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, (v) a WPRE integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, (vi) a S/MAR integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, or (vii) a DTS located 5′ to the expression cassette.


In some aspects, the bacterial sequence-free vector comprises a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:12 located 5′ to another enhancer or a promoter in the expression cassette. In some aspects, the synthetic enhancer comprises multiple contiguous copies of a nucleic acid sequence at least about 90% identical to SEQ ID NO: 12 In some aspects, the synthetic enhancer comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:46. In some aspects, the synthetic enhancer is integrated at the 5′ end of a chicken β-actin promoter. In some aspects, a chimeric intron comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:47 is integrated at the 3′ end of the chicken β-actin promoter and 5′ to the nucleic acid sequence of interest.


In some aspects, the bacterial sequence-free vector comprises a CMV enhancer located 5′ to a promoter in the expression cassette. In some aspects, the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:12 or SEQ ID NO:46. In some aspects, a CMV promoter is integrated at the 3′ end of the CMV enhancer and 5′ to the nucleic acid sequence of interest.


In some aspects, the bacterial sequence-free vector comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39 located 5′ to the nucleic acid sequence of interest.


In some aspects, the bacterial sequence-free vector comprises a 5′UTR comprising an intron, wherein the 5′UTR is integrated in the expression cassette between a promoter and the nucleic acid sequence of interest. In some aspects, the intron comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:1. In some aspects, the 5′UTR further comprises a non-coding sequence integrated within the intron. In some aspects, the 5′UTR further comprises a non-coding sequence integrated between two of the nucleotides in the intron corresponding to any two nucleotides from nucleotide positions 25 and 55 of SEQ ID NO: 1. In some aspects, the non-coding sequence is an S/MAR. In some aspects, the S/MAR is MAR-5. In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90% identical SEQ ID NO:3. In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90% identical SEQ ID NO:5. In some aspects, the promoter is a chicken β-actin promoter. In some aspects, the promoter is a CMV promoter. In some aspects, the promoter is integrated at the 3′ end of a CMV enhancer. In some aspects, the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO: 12 or SEQ ID NO:46.


In some aspects, the bacterial sequence-free vector comprises a polyadenylation signal that is integrated at the 3′ end of the nucleic acid sequence of interest. In some aspects, the polyadenylation signal comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:13, SEQ ID NO: 14, or SEQ ID NO:15.


In some aspects, the bacterial sequence-free vector comprises a vertebrate chromatin insulator integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal. In some aspects, the vertebrate chromatin insulator is cHS4. In some aspects, the polyadenylation signal comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO: 13, SEQ ID NO: 14, or SEQ ID NO: 15.


In some aspects, the bacterial sequence-free vector comprises a WPRE integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal. In some aspects, the polyadenylation signal comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:13, SEQ ID NO:14, or SEQ ID NO:15.


In some aspects, the bacterial sequence-free vector comprises a S/MAR integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal. In some aspects, the S/MAR is MAR-5.


In some aspects, the bacterial sequence-free vector comprises an enhancer sequence flanking each side of the expression cassette. In some aspects, the bacterial sequence-free vector comprises at least two enhancer sequences flanking each side of the expression cassette. In some aspects, the enhancer sequence is a SV40 enhancer sequence.


In some aspects, the bacterial sequence-free vector comprises a DTS located 5′ to the expression cassette. In some aspects, the DTS is a SV40 enhancer sequence. In some aspects, the DTS is cell-specific.


In some aspects, the bacterial sequence-free vector is a circular covalently closed vector.


In some aspects, the bacterial sequence-free vector is a linear covalently closed vector.


The present disclosure is directed to a recombinant cell comprising any of the above expression vectors or any of the above bacterial sequence-free vectors.


The present disclosure is directed to a composition comprising any of the above expression vectors or any of the above bacterial sequence-free vectors. In some aspects, the composition further comprises a delivery agent. In some aspects, the delivery agent is a nanoparticle. In some aspects, the delivery agent comprises a targeting ligand. In some aspects, the composition is a pharmaceutical composition further comprising a pharmaceutically acceptable carrier.


The present disclosure is directed to a method of treating a disease or disorder in a subject in need thereof, comprising administering to the subject any of the above expression vectors, any of the above bacterial sequence-free vectors, or the above pharmaceutical composition.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:1.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:2.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:3.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:5.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO: 12.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:46.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:13.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:14.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:15.


In some aspects, any of the above polynucleotides comprising a nucleic acid sequence at least about 90% identical to any one of SEQ ID NOs: 13-15 further comprises 100 to 120 adenine nucleotides at the 3′ end of the nucleic acid sequence.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:16.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:17.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:18.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:35.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:36.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:37.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:38.


The present disclosure is directed to a polynucleotide comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:39.


The present disclosure is directed to an expression vector comprising any of the above polynucleotides.


The present disclosure is directed to an expression vector comprising a polynucleotide comprising a nucleic acid sequence at least about 90% identical to any one of SEQ ID NOs:2, 3, or 5, and (i) a polynucleotide comprising a nucleic acid sequence at least about 90% identical to any one of SEQ ID NOs: 13-18, or (ii) a polynucleotide comprising a nucleic acid sequence at least about 90% identical to any one of SEQ ID NOs:13-15 and 100 to 120 adenine nucleotides at the 3′ end of the nucleic acid sequence.


The present disclosure is directed to a method of gene editing comprising inserting a nucleic acid sequence of interest from any of the above expression vectors, any of the bacterial sequence-free vectors, or any of the above pharmaceutical compositions into a target site for gene editing. In some aspects, the gene editing is by non-homologous end joining. In some aspects, the gene editing is by homology-directed repair.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a vector map of the expression vector pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS*.



FIG. 2 shows a vector map of the expression vector pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA.



FIG. 3 shows photomicrographs evaluating fluorescence in HEK-293 cells via live imaging. (A) shows negative control cells exposed to lipofectamine without plasmid, (B) shows cells transfected with the expression vector of FIG. 1, (C) shows cells transfected with the expression vector of FIG. 2, and (D) shows positive control cells transfected with a parental expression vector, pGL2-SS*-CAG-eGFP-BGpA-SS* (PP-CAG-GFP), expressing eGFP under the control of a CAG promoter.



FIG. 4 shows a bar graph of the relative fluorescence intensities of cells transected according to FIG. 3(A)-(D). “pGL2-SecNLuc-eGFP” in FIGS. 4-5 indicates cells transfected with the pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS* expression vector of FIG. 1. “pcDNA-SecNLuc-eGFP” in FIGS. 4-5 indicates cells transfected with the pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA expression vector of FIG. 2.



FIG. 5 shows a bar graph of relative luciferase intensities in the media of cells transfected according to FIG. 3(A)-(C).



FIG. 6 shows a vector map of the expression vector pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS*.



FIG. 7 shows a vector map of the expression vector pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS*.



FIG. 8 shows a vector map of the expression vector pGL2-SS*-CMV-UTR2-SecNLuc-2A-eGFP-WPRE-BGpA-SS*.



FIG. 9 shows a line graph of long-term luciferase activity as indicated by luminescence in Relative Luminometer Units (also termed Relative Light Units, RLU) in the media of HEK-293 cells at Days 2, 6, 10, 14, 17, 20, 27, and 34 after electroporation of cells with the expression vectors of FIG. 1 (pGL2-SecNLuc-eGFP), FIG. 6 (WPRE), FIG. 7 (5′UTR1+WPRE), and FIG. 8 (5′UTR2+WPRE) as compared to a negative control in which cells were electroporated with a puc57 plasmid lacking a mammalian expression cassette (Neg. Ctl. (no plasmid)). *=p<0.05, **=p<0.01, *p<0.001, and ****=p<0.0001.



FIG. 10 shows a bar graph of luciferase activity as indicated by luminescence in RLU in the media of transfected and negative control HEK-293 cells as described in FIG. 9 at passage numbers 1, 2, 3, and 5.



FIG. 11 shows a line graph of relative luciferase intensity in HEK-293 cells at passage numbers 1, 2, 3, 4, 5, 6, and 7, corresponding to Days 8, 15, 24, 31, 38, 45, and 52, respectively, after electroporation of the cells with the expression vectors of FIG. 7 (2nd gen pDNA (CMV+U1+W)), msDNA produced from the expression vector of FIG. 7 (2nd gen msDNA (CMV+U1+W)), or the expression vector of FIG. 2 containing a luciferase transgene (conventional pcDNA). **=p<0.01, ***=p<0.001, and ****=p<0.0001 as compared to the conventional pcDNA dataset.



FIG. 12 shows fluorescence in cells transfected with the expression vector of FIG. 1 or FIG. 7 as described in FIG. 9. (A) shows photomicrographs evaluating fluorescence in HEK-293 cells via live imaging at passage numbers 1, 2, 3, and 5. (B) shows a line graph of eGFP positive (GFP) cells observed in the field of view from three live fluorescent images at each passage number; non-significant (ns)=p>0.05. (C) shows a dot plot depicting Mean Fluorescence Intensity (MFI) for GFP′ cells measured from three live fluorescent images at passage number 5. The underlying bar graph for each construct shows the average MFI value from all measured GFP+ cells. ****=p<0.0001.



FIG. 13 shows a line graph of RLU/mg protein in plasma collected from wild-type mice at days 1, 3, 7, 10, 15, 22, 28, 42, and 56 after a single hydrodynamic tail vein injection of 50 μg of pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA (positive control, PSNLuc), pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS* (pCAGLuc), or pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (pGSNLuc-WPRE).



FIG. 14 shows a line graph of RLU/mg protein in plasma collected from wild-type mice at days 1, 3, 7, 10, 15, 22, 28, 42, and 56 after a single hydrodynamic tail vein injection of 50 μg of pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA (positive control, PSNLuc), pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS* (pCAGLuc), or pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (pCAGLucWPRE).



FIG. 15 shows a line graph of RLU/mg protein in plasma collected from wild-type mice at days 1, 3, 7, 10, 15, 22, 28, 42, and 56 after a single hydrodynamic tail vein injection of 5 μg of pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA (positive control, pDNA CMV-U (no SSeq)), pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS* (SSeq pDNA CAG), or pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (SSeq pDNA CAG-W).



FIG. 16 shows a line graph of RLU/mg protein in plasma collected from wild-type mice at days 1, 3, 7, 10, 15, 22, 28, 42, and 56 after a single hydrodynamic tail vein injection of 5 μg of pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA (positive control, No-SSeq pDNA CMV-U), pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (2×SSeq pDNA CAG-W), or msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA (2×SSeq msDNA CAG-W).



FIGS. 17A, 17B, 17C, and 17D show bar graphs of GFP expression as determined by ELISA in liver from wild-type mice at day 56 after a single hydrodynamic tail vein injection of 5 μg of the vectors described in FIG. 16 as well as a negative control mouse with no injection of vector. (FIG. 17A) shows the GFP concentration in μg/mL. (FIG. 17B) shows μg of GFP normalized to μg of total protein. (FIG. 17C) shows μg of GFP normalized to g of total tissue. (FIG. 17D) shows expression levels of GFP relative to control. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.



FIG. 18 shows a bar graph of cytoplasmic GFP protein concentration (pg/mL) in liver from wild-type mice at day 56 after a single hydrodynamic tail vein injection of 5 μg of vectors as described in FIG. 16 as well as a negative control mouse with no injection of vector.



FIG. 19 shows a bar graph of total flux in photons/second from in vivo whole body bioluminescence imaging after a single intravenous tail vein injection in mice with a lipid nanoparticle (LNP) carrier (Vehicle(control)) or lipoplex of the LNP and msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA (LNP-2G msDNA-CAG-SecretedNanoLuc), pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (LNP-2G ppDNA-CAG-SecretedNanoLuc), msDNA-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA (LNP-2G msDNA-CMV-SecretedNanoLuc), pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (LNP-2G ppDNA-CMV-SecretedNanoLuc), or pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA (LNP-Conv.pDNA-CMV-SecretedNanoLuc) on days 1, 3, 10, 30, 58, 92, 119, and 174 as indicated by the bar graphs from left to right for each injection. The bar graphs for the LNP-2G msDNA-CAG-SecretedNanoLuc injection are enclosed within the hashed lines.



FIG. 20 shows photomicrographs of green fluorescent protein (GFP) expression in sagittal brain sections from the cortex, thalamus, brainstem, and cerebellum from a mouse injected with msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA. White arrows indicate transgene expression. Nuclei are indicated by staining with diamidino-2-phenylindole (DAPI).



FIGS. 21-22 show photomicrographs of GFP expression in sagittal brain sections from the cortex and thalamus (FIG. 21) and from the cerebellum and brainstem (FIG. 22) from a mouse injected with msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA. Neurons are indicated with the neuronal marker NeuN.



FIGS. 23-24 show photomicrographs of GFP expression in sagittal brain sections from the cortex and thalamus (FIG. 23) and from the cerebellum and brainstem (FIG. 24) from a mouse injected with msDNA-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA. Neurons are indicated with the neuronal marker NeuN.



FIGS. 25-26 show bar graphs of luminescence associated with luciferase expression in human T cells (Pan-T(TA+) cells, FIG. 25) or hepatocytes (Huh7 cells, FIG. 26) at 3 and 5 days after transfection with a lipoplex of a lipid nanoparticle carrier (LNP) and pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA (positive control, LNP-Conv.pDNA-CMV-SecretedNLuc), pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (LNP-ppDNA-CMV-SecretedNLuc), msDNA-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA (LNP-msDNA-CMV-SecretedNLuc), pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (LNP-ppDNA-CAG-SecretedNLuc), or msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA (LNP-msDNA-CAG-SecretedNLuc), a PBS control, or untreated cells.



FIGS. 27A, 27B, 27C, 28A, 28B, 28C, 29A, and 29B show fluorescence activated cell sorting (FACS) scatter plots of knock-in (KI) efficiencies (Q3) for a gene of interest (GOI) at 3 days (FIGS. 27A, 27B, and 27C), 7 days (FIGS. 28A, 28B, and 28C), and 15 days (FIGS. 29A and 29B) after transfection of a CRISPR gene editing system and either a conventional plasmid or msDNA carrying the GOI flanked by 5′ and 3′ homology arms (HDR-GOI-HDR). (FIGS. 27A and 28A) show a FACS scatter plot for control, wild-type (WT) induced pluripotent stem cells (iPSCs) without any HDR KI of the GOI. (FIGS. 27B and 28B) and (FIG. 29A) show a FACS scatter plot in iPSCs following HDR KI of the GOI using a conventional plasmid (Plasmid DNA HDR-GOI-HDR). (FIGS. 27C and 28C) in and (FIG. 29B) show a FACS scatter plot in iPSCs following HDR KI of the GOI using msDNA (msDNA HDR-GOI-HDR).



FIG. 30 shows a vector map of the expression vector SS*-CMV-UTR1-SecNLuc-2A-eGFP-3′UTR[2hBGpA-A120]-SS*.



FIG. 31 shows a vector map of the expression vector SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-3′UTR[2hBGpA-A120]-SS*.



FIG. 32 shows a vector map of the expression vector SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR[2hBGpA-A120]-SS*.



FIG. 33 shows a vector map of the expression vector SS*-UCOE-E1-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR[2hBGpA-A120]-SS*.



FIG. 34 shows a vector map of the expression vector SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-huMAR-3′UTR[2hBGpA-A120]-SS*.



FIG. 35 shows a vector map of the expression vector SS*-UCOE-E1-CMV-UTR1-SecNLuc-2A-eGFP-huMAR-3′UTR[2hBGpA-A120]-SS*.



FIG. 36 shows a vector map of the expression vector SS*-UCOE-E1-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR[2hBGpA-A120]-SS*.



FIG. 37 shows a vector map of the expression vector SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-huMAR-WPRE-3′UTR[2hBGpA-A120]-SS*.



FIG. 38 shows a vector map of the expression vector SS*-UCOE-E1-CMV-UTR1-SecNLuc-2A-eGFP-huMAR-WPRE-3′UTR[2hBGpA-A120]-SS*.



FIG. 39 shows a line graph of luciferase activity as indicated by luminescence in RLU in the media of HEK-293 cells at Days 2, 3, 7, 10, 14, 21, and 28 after electroporation of cells with the expression vectors of FIG. 2 (Conventional pDNA CMV-U), FIG. 30 (A: CMV-U1-3′UTR), FIG. 31 (B: E1-CMV-U1-3′UTR), and FIG. 32 (C: E1-CMV-U1-WPRE-3′UTR). *=p<0.05 and **=p<0.01.



FIG. 40 shows a line graph of relative luciferase intensity in HEK-293 cells at passage numbers 1, 2, 3, 4, and 5 after passaging every 7 days following electroporation of the cells at day 0 with the expression vectors described in FIG. 39. *=p<0.05 and **=p<0.01.



FIG. 41 shows a vector map of the expression vector pGL2-CAG-SecNLuc-2A-eGFP-WPRE-bGlobin poly A.



FIG. 42 shows a vector map of the expression vector 4-1 pGL2-SS*-CAG [CMV enhancer+CBA Promoter+intron]-SecNLuc-2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*.



FIG. 43 shows a vector map of the expression vector 4-2 pGL2-SS*-CAG [E1 X3+CBA promoter+introne]-SecNLuc-2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*.



FIG. 44 shows a vector map of the expression vector 4-3 pGL2-SS*-CAG [E2(U100)+CBA promoter+introne]-SecNLuc-2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*.



FIG. 45 shows a vector map of the expression vector 4-4 pGL2-SS*-CAG [E1 X3+CBA promoter+UTR1]-SecNLuc-2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*.



FIG. 46 shows a vector map of the expression vector 4-5-pGL2-SS*-CAG [E2 (U100)+CBA promoter+UTR1]-SecNLuc-2A-eGFP-WPRE-3′UTR (108 to 120 polyA)-SS*.



FIG. 47 shows a vector map of the expression vector 4-6-pGL2-SS*-CMV enhancer-EF1-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*.



FIG. 48 shows a bar graph of luciferase activity as indicated by luminescence in RLU in the media of HEK-293 cells at 3 and 6 days after transfection with the expression vectors shown in FIG. 41 (Conventional no SSeq pDNA CAG-W) and FIGS. 42-47 (4-1 to 4-6, respectively).



FIG. 49 shows a diagram of an exemplary sequence for a self-restricting CRISPR gene editing system that contains flanking Super Sequences (SSeq), a synthetic enhancer (E1), a CMV promoter (PCMv), a synthetic 5′UTR containing an optimized internal intron with a tRNA-gRNA-PAM insertion (UTR-tRNA-gRNA-PAM-1), a Casβ2 gene, and a 3′UTR containing a human beta-globin polyadenylation signal and a gRNA-PAM insertion (HBg3′UTR-gRNA-PAM).



FIG. 50 shows a diagram of self-limiting Cas expression from the sequence of FIG. 52 during homology-directed repair (HDR) of chromosomal DNA with a therapeutic GOI flanked by homology arms.



FIG. 51 shows a diagram for two gene-editing scenarios with a self-restricting CRISPR gene editing system. In Scenario 1, a msDNA containing a human expression cassette (e.g., therapeutic GOI) is first transfected for transient expression followed by the gene editing system of FIG. 42 for HDR knock-in. In Scenario 2, HDR knock-in is mediated by a single msDNA containing both the self-restricting CRISPR gene editing system and the human expression cassette flanked by homology arms.





DETAILED DESCRIPTION

The present disclosure provides expression vectors, bacterial sequence-free vectors (e.g., ministring DNA (msDNA)), vector production systems, methods of making the bacterial sequence-free vectors, compositions, and uses thereof.


All publications cited herein are hereby incorporated by reference in their entireties, including without limitation all journal articles, books, manuals, patent applications, and patents cited herein, to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.


I. Terms

In order that the present disclosure can be more readily understood, certain terms are first defined. As used in this application, except as otherwise expressly provided herein, each of the following terms shall have the meaning set forth below. Additional definitions are set forth throughout the application.


It is to be noted that the term “a” or “an” entity refers to one or more of that entity; for example, “a nucleotide sequence,” is understood to represent one or more nucleotide sequences. As such, the terms “a” (or “an”), “one or more,” and “at least one” can be used interchangeably herein.


The term “and/or” where used herein is to be taken as specific disclosure of each of the specified features or components with or without the other. Thus, the term “and/or” as used in a phrase such as “A and/or B” is intended to include “A and B,” “A or B,” “A” (alone), and “B” (alone). Likewise, the term “and/or” as used in a phrase such as “A, B, and/or C” is intended to encompass each of the following aspects: A, B, and C; A, B, or C; A or C; A or B; B or C; A and C; A and B; B and C; A (alone); B (alone); and C (alone).


It is understood that wherever aspects are described herein with the language “comprising,” otherwise analogous aspects described in terms of “consisting of” and/or “consisting essentially of” are also provided.


The terms “about” or “comprising essentially of” refer to a value or composition that is within an acceptable error range for the particular value or composition as determined by one of ordinary skill in the art, which will depend in part on how the value or composition is measured or determined, i.e., the limitations of the measurement system. For example, “about” or “comprising essentially of” can mean within 1 or more than 1 standard deviation per the practice in the art. Alternatively, “about” or “comprising essentially of” can mean a range of up to 10% (i.e., +10%). Furthermore, particularly with respect to biological systems or processes, the terms can mean up to an order of magnitude or up to 5-fold of a value. When particular values or compositions are provided in the application and claims, unless otherwise stated, the meaning of “about” or “comprising essentially of” should be assumed to be within an acceptable error range for that particular value or composition.


As described herein, any concentration range, percentage range, ratio range, or integer range is to be understood to include the value of any integer within the recited range and, when appropriate, fractions thereof (such as one tenth and one hundredth of an integer), unless otherwise indicated. Numeric ranges are inclusive of the numbers defining the range.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure is related. For example, the Concise Dictionary of Biomedicine and Molecular Biology, Juo, Pei-Show, 2nd ed., 2002, CRC Press; The Dictionary of Cell and Molecular Biology, 5th ed., 2013, Academic Press; and the Oxford Dictionary Of Biochemistry And Molecular Biology, 2006, Oxford University Press, provide one of skill with a general dictionary of many of the terms used in this disclosure.


Units, prefixes, and symbols are denoted in their Système International de Unites (SI) accepted form.


Unless otherwise indicated, nucleotide sequences are written left to right in 5′ to 3′ orientation. Amino acid sequences are written left to right in amino to carboxy orientation.


The headings provided herein are not limitations of the various aspects of the disclosure, which can be had by reference to the specification as a whole. Accordingly, the terms defined immediately below are more fully defined by reference to the specification in its entirety.


“Amino acid” is a molecule having the structure wherein a central carbon atom (the alpha-carbon atom) is linked to a hydrogen atom, a carboxylic acid group (the carbon atom of which is referred to herein as a “carboxyl carbon atom”), an amino group (the nitrogen atom of which is referred to herein as an “amino nitrogen atom”), and a side chain group, R. When incorporated into a peptide, polypeptide, or protein, an amino acid loses one or more atoms of its amino acid carboxylic groups in the dehydration reaction that links one amino acid to another. As a result, when incorporated into a protein, an amino acid is referred to as an “amino acid residue.”


“Protein” or “polypeptide” refers to any polymer of two or more individual amino acids (whether or not naturally occurring) linked via a peptide bond, and occurs when the carboxyl carbon atom of the carboxylic acid group bonded to the alpha-carbon of one amino acid (or amino acid residue) becomes covalently bound to the amino nitrogen atom of amino group bonded to the non alpha-carbon of an adjacent amino acid. The terms “protein” and “polypeptide” can be used interchangeably herein. Similarly, fragments of proteins and polypeptides are also within the scope of the disclosure and may be referred to herein as “proteins” or “polypeptides.” In one aspect of the disclosure, a polypeptide comprises a chimera of two or more parental peptide segments or proteins. The term “polypeptide” is also intended to refer to and encompass the products of post-translation modification (“PTM”) of the polypeptide, including without limitation disulfide bond formation, glycosylation, carbamylation, lipidation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, modification by non-naturally occurring amino acids, or any other manipulation or modification, such as conjugation with a labeling component. A polypeptide can be derived from a natural biological source or produced by recombinant technology, but is not necessarily translated from a designated nucleic acid sequence. It can be generated in any manner, including by chemical synthesis. An “isolated” polypeptide or a fragment, variant, or derivative thereof refers to a polypeptide that is not in its natural milieu. No particular level of purification is required. For example, an isolated polypeptide can simply be removed from its native or natural environment. Recombinantly produced polypeptides and proteins expressed in host cells are considered isolated for the purpose of the disclosure, as are native or recombinant polypeptides which have been separated, fractionated, or partially or substantially purified by any suitable technique.


Recombinant polypeptides (i.e., recombinant proteins) comprising two or more proteins as disclosed herein can be encoded by a single coding sequence that comprises polynucleotide sequences encoding each protein. Unless stated otherwise, the polynucleotide sequences encoding each protein are “in frame” such that translation of a single mRNA comprising the polynucleotide sequences results in a single polypeptide comprising each protein. Typically, the proteins in a recombinant polypeptide as described herein will be fused directly to one another or will be separated by a peptide linker. Various polynucleotide sequences encoding peptide linkers are known in the art and include, for example, self-cleaving peptides.


“Polynucleotide” or “nucleic acid” as used herein refers to a polymeric form of nucleotides. In some instances, a polynucleotide comprises a sequence that is either not immediately contiguous with the coding sequences or is immediately contiguous (on the 5′ end or on the 3′ end) with the coding sequences in the naturally occurring genome of the organism from which it is derived. The term therefore includes, for example, a recombinant DNA that is incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (e.g., a cDNA) independent of other sequences. The nucleotides of the disclosure can be ribonucleotides, deoxyribonucleotides, or modified forms of either nucleotide. A polynucleotide as used herein refers to, among others, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that can be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. The term polynucleotide encompasses genomic DNA or RNA (depending upon the organism, i.e., RNA genome of viruses), as well as mRNA encoded by the genomic DNA, and cDNA. In certain aspects, a polynucleotide comprises a conventional phosphodiester bond or a non-conventional bond (e.g., an amide bond, such as found in peptide nucleic acids (PNA)). By “isolated” nucleic acid or polynucleotide is intended a nucleic acid molecule, e.g., DNA or RNA, which has been removed from its native environment. For example, a nucleic acid molecule comprising a polynucleotide encoding a recombinant polypeptide contained in a vector is considered “isolated” for the purposes of the present disclosure. Further examples of an isolated polynucleotide include recombinant polynucleotides maintained in heterologous host cells or purified (partially or substantially) from other polynucleotides in a solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of polynucleotides of the present disclosure. Isolated polynucleotides or nucleic acids according to the present disclosure further include polynucleotides and nucleic acids (e.g., nucleic acid molecules) produced synthetically.


As used herein, a “coding region” or “coding sequence” is a portion of a polynucleotide, which consists of codons translatable into amino acids. Although a “stop codon” (TAG, TGA, or TAA) is typically not translated into an amino acid, it can be considered to be part of a coding region, but any flanking sequences, for example promoters, ribosome binding sites, transcriptional terminators, introns, and the like, are not part of a coding region. The boundaries of a coding region are typically determined by a start codon at the 5′ terminus, encoding the amino-terminus of the resultant polypeptide, and a translation stop codon at the 3′ terminus, encoding the carboxyl-terminus of the resulting polypeptide.


As used herein, an “expression cassette” comprises a nucleic acid sequence of interest (e.g., a nucleic acid sequence for expression of a polypeptide, DNA, or RNA) and an expression control region.


As used herein, a “transgene” can be used interchangeably with “gene of interest (GOI)” and refers to a portion of a polynucleotide that contains codons translatable into amino acids. Although a “stop codon” (TAG, TGA, or TAA) is typically not translated into an amino acid, it can be considered to be part of a transgene, but any flanking sequences, for example promoters, ribosome binding sites, transcriptional terminators, introns, and the like, are not part of the transgene. The boundaries of a transgene are typically determined by a start codon at the 5′ terminus, encoding the amino-terminus of the resultant polypeptide, and a translation stop codon at the 3′ terminus, encoding the carboxyl-terminus of the resulting polypeptide.


As used herein, the term “expression control region” refers to a transcription control element that is operably associated with a coding region to direct or control expression of the product encoded by the coding region, including, for example, cis-regulatory modules (CRMs), promoters (e.g., a tissue specific promoter and/or an inducible promoter), enhancers, operators, repressors, ribosome binding sites, translation leader sequences, introns, post-transcriptional elements, polyadenylation recognition sequences, RNA processing sites, effector binding sites, stem-loop structures, and transcription termination signals, miRNA binding sites, and combinations thereof. Expression control regions include nucleotide sequences located upstream (5′), within, or downstream (3′) of a nucleic acid sequence of interest, and which influence the transcription, RNA processing, stability, or translation of the associated nucleic acid sequence of interest. If a transgene is intended for expression in a eukaryotic cell, a polyadenylation signal and transcription termination sequence will usually be located 3′ to the transgene.


A coding region and a promoter are “operably associated” (i.e., “operably linked”) if induction of promoter function results in the transcription of mRNA comprising a coding region that encodes the product, and if the nature of the linkage between the promoter and the coding region does not interfere with the ability of the promoter to direct the expression of the product encoded by the coding region or interfere with the ability of the DNA template to be transcribed. Expression control regions include nucleotide sequences located upstream (5′ non-coding sequences), within, or downstream (3′ non-coding sequences) of a coding region, and which influence the transcription, RNA processing, stability, or translation of the associated coding region. If a coding region is intended for expression in a eukaryotic cell, a polyadenylation signal and transcription termination sequence will usually be located 3′ to the coding sequence.


As used herein, the terms “host cell” and “cell” can be used interchangeably and can refer to any type of cell or a population of cells, e.g., a primary cell, a cell in culture, or a cell from a cell line, that harbors or is capable of harboring a nucleic acid molecule (e.g., a recombinant nucleic acid molecule). Host cells can be a prokaryotic cell, or alternatively, the host cells can be eukaryotic, for example, fungal cells, such as yeast cells, and various animal cells, such as insect cells or mammalian cells.


“Culture,” “to culture” and “culturing,” as used herein, means to incubate cells under in vitro conditions that allow for cell growth or division or to maintain cells in a living state. “Cultured cells,” as used herein, means cells that are propagated in vitro.


A “subject” includes any human or nonhuman animal. The term “nonhuman animal” includes, but is not limited to, vertebrates such as mammals, avians, pets, farm animals, nonhuman primates, sheep, cows, goats, pigs, chickens, dogs, cats, and rodents such as mice, rats, and guinea pigs. In preferred aspects, the subject is a human. The terms, “subject” and “patient” are used interchangeably herein.


“Administering” refers to the physical introduction of a therapeutic agent to a subject, using any of the various methods and delivery systems known to those skilled in the art.


The terms “treat,” “treating,” “treatment,” or “therapy” of a subject as used herein, refer to any type of intervention or process performed on, or administering an active agent to, the subject with the objective of reversing, alleviating, ameliorating, inhibiting, or slowing down or preventing the progression, development, severity or recurrence of a symptom, complication, condition or biochemical indicia associated with a disease or enhancing overall survival. Treatment can be of a subject having a disease or a subject who does not have a disease (e.g., for prophylaxis, such as vaccination).


The term “effective dose” “effective dosage,” or “effective amount” is defined as an amount of an agent sufficient to achieve or at least partially achieve a desired effect. A “therapeutically effective amount” or “therapeutically effective dosage” of a drug or therapeutic agent is any amount of the drug that, when used alone or in combination with another therapeutic agent, promotes disease regression evidenced by a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, an increase in overall survival (the length of time from either the date of diagnosis or the start of treatment for a disease that patients diagnosed with the disease are still alive), or a prevention of impairment or disability due to the disease affliction. A therapeutically effective amount or dosage of a drug includes a “prophylactically effective amount” or a “prophylactically effective dosage”, which is any amount of the drug that, when administered alone or in combination with another therapeutic agent to a subject at risk of developing a disease or of suffering a recurrence of disease, inhibits the development or recurrence of the disease. The ability of a therapeutic agent to promote disease regression or inhibit the development or recurrence of the disease can be evaluated using a variety of methods known to the skilled practitioner, such as in human subjects during clinical trials, in animal model systems predictive of efficacy in humans, or by assaying the activity of the agent in in vitro assays.


Various aspects of the disclosure are described in further detail in the following subsections.


II. Expression Vectors and Vector Production Systems for Producing Bacterial Sequence-Free Vectors

Bacterial sequence-free vectors and their production are described in U.S. Pat. Nos. 9,290,778 and 9,862,954; Nafissi and Slavcev, Microbial Cell Factories 11:154 (2012); and Nafissi et al., Nucleic Acids 3(6):e165 (2014), incorporated by reference herein in their entireties. These bacterial sequence-free vectors are produced from an expression vector (e.g., a plasmid) that contains specialized “Super Sequence” (“SS” or, alternatively, “SSeq”) sites comprising target sequences for recombinases flanking each side (i.e., the 5′ and 3′ sides) of an expression cassette containing a nucleic acid sequence(s) of interest. Specifically, each SS contains a target sequence for a first recombinase, with an additional target sequence for one or more additional recombinases integrated within non-binding regions for the first recombinase. When the expression vector is present in a recombinant cell that expresses an appropriate recombinase, a bacterial sequence-free vector containing the expression cassette is separated from the backbone DNA of the expression vector. To produce a circular covalently closed (CCC) bacterial sequence-free vector, the expression vector is placed into a recombinant cell expressing a recombinase such as Cre or Flp, for example, that acts through its target sequences in the SS. To produce a linear covalently closed (LCC) bacterial sequence-free vector, also referred to herein as a ministring DNA (msDNA), the expression vector is placed into a recombinant cell expressing a recombinase such as TelN or Tel, for example, that acts through its target sequences in the SS. The bacterial sequence-free vector resulting from the recombination can then be purified from the cells and used directly as a delivery vector. See U.S. Pat. Nos. 9,290,778 and 9,862,954, Nafissi and Slavcev, and Nafissi et al.


msDNA vectors with LCC ends are torsion-free and not subject to gyrase-directed negative supercoiling during their production in E. coli. Furthermore, due to its double stranded LCC topology, integration of msDNA into a cell's chromosome causes a chromosomal break, thereby eliminating the cell from the population. Thus, msDNA eliminates any risk of insertional mutagenesis, protecting patients who are administered the msDNA from potential genotoxicity and cancer (Nafissi et. al.).


The present disclosure provides improved production of bacterial sequence-free vectors and improved bacterial sequence-free vectors. In some aspects, production of the bacterial sequence-free vectors is improved by removal of contaminating expression vector sequences. In some aspects, the bacterial sequence-free vectors is improved through its capacity for establishment in cells (i.e., transfection efficiencies), improved transgene expression (e.g., mediated by a combination of enhanced transcription and translation), and improved expansion in cells (e.g., replication and partition of the vector to daughter cells).


In some aspects, the improvements disclosed herein can be adapted to CCC or LCC vectors produced according to other methods known in the art.


A. Expression Vectors

Provided herein is an expression vector comprising: (a) a backbone sequence, (b) a sequence comprising: (i) an expression cassette comprising a nucleic acid sequence of interest, (ii) a first target sequence for a first recombinase flanking the 5′ side of the expression cassette, (iii) a second target sequence for the first recombinase flanking the 3′ side of the expression cassette, and (iv) one or more additional target sequences for one or more additional recombinases integrated within the first and second target sequences in non-binding regions for the first recombinase, and (c) one or more of: (i) an endonuclease target sequence integrated within the first and/or second target sequences for the first recombinase in non-binding regions for the first recombinase and the one or more additional recombinases, wherein the endonuclease target sequence is between the backbone sequence and cleavage sites for the first recombinase and the one or more additional recombinases, (ii) a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO: 12 integrated between the 3′ end of the first target sequence for the first recombinase and the 5′ end of another enhancer or a promoter in the expression cassette, (iii) a cytomegalovirus (CMV) enhancer integrated between the 3′ end of the first target sequence for the first recombinase and the 5′ end of a promoter in the expression cassette, (iv) a 5′ untranslated region (5′UTR) comprising an intron, wherein the 5′UTR is integrated in the expression cassette between a promoter and the nucleic acid sequence of interest, (v) a vertebrate chromatin insulator integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, (vi) a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, (vii) a scaffold/matrix attachment region (S/MAR) integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, or (viii) a DNA nuclear targeting sequence (DTS) integrated within the first and/or second target sequences for the first recombinase in non-binding regions for the first recombinase and the one or more additional recombinases, wherein the DTS is between the expression cassette and cleavage sites for the first recombinase and the one or more additional recombinases.


A “backbone” sequence as referred to herein is the sequence of the expression vector outside of the sequence of the expression cassette and the flanking SS sites comprising the first and second target sequences of the first recombinase. The backbone sequence can include, for example, sequences for amplification and antibiotic selection of the expression vector in a host cell (e.g., E. coli) as described herein.


“Non-binding” regions for a recombinase are regions within the target sequence for the first recombinase that are not acted upon by a recombinase as described herein (e.g., not bound and/or cleaved by the recombinase).


A “cleavage site” for a recombinase is the site at which a recombinase initiates a double-strand break or single-stranded nick in the DNA associated with recombination.


In some aspects, the expression vector comprises an endonuclease target sequence integrated within the first and/or second target sequences for the first recombinase in non-binding regions for the first recombinase and the one or more additional recombinases, wherein the endonuclease target sequence is between the backbone sequence and cleavage sites for the first recombinase and the one or more additional recombinases. In some aspects, the endonuclease target sequence is integrated within the first target sequence for the first recombinase. In some aspects, the endonuclease target sequence is integrated within the second target sequence for the first recombinase. In some aspects, the endonuclease target sequence is integrated within the first and second target sequences for the first recombinase. In some aspects, the same endonuclease target sequence is integrated within the first and second target sequences for the first recombinase. In some aspects, the endonuclease target sequences integrated within the first and second target sequences for the first recombinase are for the same endonuclease. In some aspects, the endonuclease target sequence integrated within the first target sequence for the first recombinase is different from the endonuclease target sequence integrated within the second target sequence for the first recombinase. In some aspects, the endonuclease target sequence integrated within the first target sequence for the first recombinase is for a different endonuclease than the endonuclease target sequence integrated within the second target sequence for the first recombinase.


The location of the endonuclease target sequence between the backbone sequence and cleavage sites for the recombinases in the expression vector ensures that the endonuclease target sequence remains associated with the backbone sequence, and not the bacterial sequence-free vector, following recombination as described herein. Thus, following recombination, sequences containing backbone sequence and the endonuclease target site can be removed from a preparation containing bacterial sequence-free vector by exposure to an endonuclease, reducing or avoiding the need for purification steps to remove backbone sequences in methods of producing the bacterial sequence-free vector. In some aspects, the endonuclease is expressed following recombination in a host cell of a vector production system as described herein, wherein the endonuclease cuts the DNA at the endonuclease target site, and the sequence containing the backbone sequence and the endonuclease target site is degraded by an exonuclease (e.g., exonuclease V).


In some aspects, the expression vector comprises an endonuclease target sequence for a homing endonuclease. In some aspects, the endonuclease target sequence is for I-AniI, I-CeuI, I-ChuI, I-CpaI, I-CpaII, I-CreI, I-DmoI, H-DreI, I-HmuI, I-HmuII, I-LlaI, I-MsoI, PI-PfuI, PI-PkoII, I-PorI, I-PpoI, PI-PspI, I-ScaI, I-SceI, PI-SceI, I-SceII, I-SecIII, I-SceIV, I-SceV, I-SceVI, I-SceVII, I-Ssp6803I, I-TevI, I-TevII, I-TevIII, PI-TliI, PI-TliII, I-Tsp061I, or I-Vdi141I. In some aspects, the endonuclease target sequence is for I-SceI. In some aspects, the endonuclease target sequence is for PI-SceI. Target sequences for homing endonucleases are well-known in the art.


In some aspects, the expression vector comprises an endonuclease target sequence for an endonuclease used in genome editing, including an endonuclease that is part of a nuclease genome editing system. In some aspects, the nuclease genome editing system is a Clustered Regularly Interspaced Short Palindromic Repeats-Cas (CRISPR-Cas) system, a Transcription Activator-Like Effector Nuclease (TALEN) system, a Zinc-Finger Nuclease (ZFN) system, or a meganuclease system.


In some aspects, the expression vector comprises an endonuclease target sequence for a Cas endonuclease. In some aspects, the Cas endonuclease is Cas9 (e.g., a Streptococcus pyogenes Cas 9 (SpCas9), a Staphylococcus aureus Cas9 (SaCas9), a Francisella novicida Cas9 (FnCas9), or a Neisseria meningitides Cas9 (NmCas9)), a Cas9 variant (e.g., Cas9β2, xCas9, SpCas9-NG, SpCas9-NRRH, SpCas9-NRCH, SpCas9-NRTH, SpG, SpRY), Cas3, Cas12 (e.g., Cas12a, Cas12b, Cas12c, Cas12d, or Cas12e), Cas13 (e.g., Cas13a, Cas13b, Cas13c, or Cas13d), or Cas14. In some aspects, an endonuclease target sequence for a Cas endonuclease as used herein is homologous to a guide RNA (gRNA) targeting sequence and includes a protospacer adjacent motif (PAM) recognized by a Cas endonuclease. Sequences homologous to gRNA targeting sequences with PAM sites can be routinely designed based on well-known CRISPR systems. The gRNA comprises a fusion of a targeting RNA (crRNA) sequence and a trans-activating RNA (tracrRNA) sequence, which interact and function to direct the Cas endonuclease to the endonuclease target site and catalyze cleavage.


In some aspects, the expression vector comprises a synthetic enhancer comprising a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO: 12 integrated between the 3′ end of the first target sequence for the first recombinase and the 5′ end of another enhancer or a promoter in the expression cassette. In some aspects, the expression vector comprises a synthetic enhancer comprising the nucleic acid sequence of SEQ ID NO:12 integrated between the 3′ end of the first target sequence for the first recombinase and the 5′ end of another enhancer or a promoter in the expression cassette. In some aspects, the synthetic enhancer comprises multiple contiguous copies of the nucleic acid sequence, such as, for example, 1, 2, 3, 4, 5, or more contiguous copies. In some aspects, the synthetic enhancer comprises 3 contiguous copies of the nucleic acid sequence. In some aspects, the synthetic enhancer comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:46. In some aspects, the synthetic enhancer comprises the nucleic acid sequence of SEQ ID NO:46. In some aspects, the synthetic enhancer is integrated at the 5′ end of a chicken β-actin promoter. In some aspects, a chimeric intron comprising a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:47 is integrated at the 3′ end of the chicken β-actin promoter and 5′ to the nucleic acid sequence of interest. In some aspects, a chimeric intron comprising the nucleic acid sequence of SEQ ID NO:47 is integrated at the 3′ end of the chicken β-actin promoter and 5′ to the nucleic acid sequence of interest.


In some aspects, the expression vector comprises a CMV enhancer integrated between the 3′ end of the first target sequence for the first recombinase and the 5′ end of a promoter in the expression cassette. In some aspects, the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:12. In some aspects, the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising the nucleic acid sequence of SEQ ID NO: 12. In some aspects, the CMV enhancer is integrated at the 3′ end of multiple contiguous copies of the synthetic enhancer, such as, for example, at the 3′ end of 1, 2, 3, 4, 5, or more contiguous copies of the synthetic enhancer. In some aspects, the CMV enhancer is integrated at the 3′ end of 3 contiguous copies of the synthetic enhancer. In some aspects, the CMV enhancer is integrated at the 3′ end of a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:46. In some aspects, the CMV enhancer is integrated at the 3′ end of the nucleic acid sequence of SEQ ID NO:46. In some aspects, a CMV promoter is integrated at the 3′ end of the CMV enhancer and 5′ to the nucleic acid sequence of interest.


In some aspects, the expression vector comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39 integrated between the first target sequence for the first recombinase and the nucleic acid sequence of interest. In some aspects, the expression vector comprises the nucleic acid sequence of SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39 integrated between the first target sequence for the first recombinase and the nucleic acid sequence of interest. In some aspects, a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39, or the nucleic acid sequence of SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39, comprises all regulatory elements in the expression cassette located 5′ to the nucleic acid sequence of interest.


In some aspects, the expression vector comprises a 5′UTR comprising an intron, wherein the 5′UTR (i.e., the 5′UTR comprising the intron) is integrated in the expression cassette between a promoter and the nucleic acid sequence of interest.


In some aspects, the 5′UTR is for improving transgene transcript splicing and translation from the expression vector or from a bacterial sequence-free vector produced from the expression vector as compared to the same expression vector or bacterial sequence-free vector, respectively, lacking the 5′UTR.


In some aspects, the intron comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:1. In some aspects, the intron comprises the nucleic acid sequence of SEQ ID NO:1.


In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:2, which is an optimized 5′UTR with an internal minimal intron, also referred to herein as “5′UTR1.” In some aspects, the 5′UTR comprises the nucleic acid sequence of SEQ ID NO:2.


In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:4. In some aspects, the 5′UTR comprises the nucleic acid sequence of SEQ ID NO:4.


In some aspects, the 5′UTR further comprises a non-coding sequence integrated within the intron.


In some aspects, the intron is at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:1, or comprises SEQ ID NO: 1, and the non-coding sequence is integrated between two of the nucleotides in the intron corresponding to any two nucleotides from positions 25 to 55 of SEQ ID NO:1.


In some aspects, the non-coding sequence is non-prokaryotic and non-viral. In some aspects, the non-coding sequence is a eukaryotic sequence. In some aspects, the non-coding sequence comprises an intron, a ubiquitous chromatin opening element (UCOE), an S/MAR, an SV40 enhancer sequence (e.g., one or more than one SV40 enhancer sequences, such as two, three, four, five or more SV40 enhancer sequences), a vertebrate chromatin insulator (e.g., cHS4), a WPRE, or any combination thereof.


In some aspects, the non-coding sequence comprises an S/MAR. In some aspects, the S/MAR is MAR-5, provided herein as SEQ ID NO:9.


In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:3. In some aspects, the 5′UTR comprises SEQ ID NO:3.


In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:5. In some aspects, the 5′UTR comprises SEQ ID NO:5.


In some aspects, the 5′UTR is integrated in the expression cassette between a chicken β-actin promoter and the nucleic acid sequence of interest.


In some aspects, the 5′UTR is integrated in the expression cassette between a CMV promoter and the nucleic acid sequence of interest.


In some aspects, the 5′UTR is integrated in the expression cassette between a promoter and the nucleic acid sequence of interest, wherein the promoter is integrated at the 3′ end of a CMV enhancer. In some aspects, the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:12. In some aspects, the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising the nucleic acid sequence of SEQ ID NO: 12. In some aspects, the CMV enhancer is integrated at the 3′ end of multiple contiguous copies of the synthetic enhancer, such as, for example, at the 3′ end of 1, 2, 3, 4, 5, or more contiguous copies of the synthetic enhancer. In some aspects, the CMV enhancer is integrated at the 3′ end of 3 contiguous copies of the synthetic enhancer. In some aspects, the CMV enhancer is integrated at the 3′ end of a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:46. In some aspects, the CMV enhancer is integrated at the 3′ end of a nucleic acid sequence of SEQ ID NO:46.


In some aspects, the expression vector comprises a polyadenylation signal integrated at the 3′ end of the nucleic acid sequence of interest. In some aspects, the polyadenylation signal comprises a Xenopus laevis beta-globin polyadenylation signal, a human beta-globin polyadenylation signal, or a hybrid Xenopus laevis and human beta-globin polyadenylation signal. In some aspects, the polyadenylation signal comprises multiple copies of a Xenopus laevis beta-globin polyadenylation signal, a human beta-globin polyadenylation signal, or a hybrid Xenopus laevis and human beta-globin polyadenylation signal, such as, for example, 1, 2, 3, 4, or 5 copies. In some aspects, the polyadenylation signal comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO: 13, SEQ ID NO: 14, or SEQ ID NO:15. In some aspects, the polyadenylation signal comprises the nucleic acid sequence of SEQ ID NO:13, SEQ ID NO:14, or SEQ ID NO:15. In some aspects, a polyadenylic acid tail (i.e., poly(A) tail is located at the 3′ end of the polyadenylation signal. In some aspects, the poly(A) tail is 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, or more residues in length. In some aspects, the sequence comprising the polyadenylation signal and the poly(A) tail is at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:16, SEQ ID NO:17, or SEQ ID NO:18. In some aspects, the sequence comprising the polyadenylation signal and the poly(A) tail comprises SEQ ID NO: 16, SEQ ID NO:17, or SEQ ID NO:18.


In some aspects, the expression vector comprises a vertebrate chromatin insulator in the expression cassette. In some aspects, the vertebrate chromatin insulator is 5′-HS4 chicken-β-globin insulator (cHS4). See, e.g., Benabdellah et al., PLOS ONE 9(1): e84268 (2014); Lu et al., FEBS Open Bio 10: 644-656 (2020); Hanawa et al., Mol. Ther. 17(4): 667-674 (2009); Walters et al., Mol. Cell. Biol. 19(5): 3714-3726 (1999). In some aspects, the vertebrate chromatin insulator is integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal as described herein. In some aspects, the vertebrate chromatin insulator is integrated within the intron of a 5′UTR as described herein.


In some aspects, the vertebrate chromatin insulator comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:8. In some aspects, the vertebrate chromatin insulator comprises SEQ ID NO:8.


In some aspects, the vertebrate chromatin insulator is for improving establishment (i.e., transfection efficiency) of the expression vector or a bacterial sequence-free vector produced from the expression vector as compared to the same expression vector or bacterial sequence-free vector, respectively, without the vertebrate chromatin insulator.


In some aspects, the expression vector comprises a WPRE in the expression cassette. See, e.g., Higashimoto et al., Gene Therapy 14: 1298-1304 (2007). In some aspects, the WPRE is integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal as described herein. In some aspects, the WPRE is integrated in the expression cassette at the 3′ end of a S/MAR as described herein and the 5′ end of a polyadenylation signal as described herein. In some aspects, the WPRE is integrated within the intron of a 5′UTR as described herein.


In some aspects, the WPRE comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:11. In some aspects, the WPRE comprises SEQ ID NO:11.


In some aspects, the WPRE improves expression of the transgene from the expression vector or the bacterial sequence-free vector produced from the expression vector as compared to the same expression vector or bacterial sequence-free vector, respectively, lacking the WPRE.


In some aspects, the expression vector comprises a S/MAR in the expression cassette. See, e.g., Martens et al., Mol. Cell. Biol. 22(8): 2598-2606 (2002); Narwade et al., Nucleic Acids Res. 47(14): 7247-7261 (2019). In some aspects, the S/MAR is integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal. In some aspects, the S/MAR is integrated in the expression cassette at the 3′ end of a nucleic acid sequence of interest and the 5′ end of a WPRE as described herein. In some aspects, the S/MAR is integrated within the intron of a 5′UTR as described herein.


In some aspects, the S/MAR is MAR-3, MAR-4, or MAR-5, which are fragments of human beta-interferon MAR. See, e.g., Wang et al., Mol. Biol. Cell 30: 2761-2770 (2019). In some aspects, the S/MAR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:9. In some aspects, the S/MAR comprises SEQ ID NO:9.


In some aspects, the S/MAR is human cytotoxic serine protease-B (CSP-B) MAR or CSP-C MAR. See, e.g., Hanson and Ley, Blood 79(3): 610-618 (1992); Klein et al., Tissue Antigens 35(5):220-228 (1990). In some aspects, the S/MAR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:10. In some aspects, the S/MAR comprises SEQ ID NO:10.


In some aspects, the S/MAR is for improving expression levels, stability, and/or durability (e.g., by episomal maintenance and replication, such as expansion and partition of the vector to daughter cells, and/or by preventing epigenetic silencing) of the expression vector or a bacterial sequence-free vector (produced from the expression vector as compared to the same expression vector or bacterial sequence-free vector, respectively, lacking the S/MAR.


In some aspects, the expression vector comprising any one of more of (c)(i)-(c)(vii) as described above (i.e., without a DTS) further comprises an enhancer sequence flanking each side of the first and second target sequences for the first recombinase. In some aspects, the enhancer sequence flanking each side of the first and second target sequences for the first recombinase is at least two enhancer sequences flanking each side of the first and second target sequences for the first recombinase. In some aspects, the enhancer sequence is a SV40 enhancer sequence.


In some aspects, the expression vector comprises a DTS. In some aspects, the DTS is integrated within the first and/or second target sequences for the first recombinase in non-binding regions for the first recombinase and the one or more additional recombinases, wherein the DTS is between the expression cassette and cleavage sites for the first recombinase and the one or more additional recombinases. In some aspects, the DTS is a SV40 enhancer sequence. In some aspects, the DTS is cell-specific. In some aspects, the DTS is specific for smooth muscle cells, embryonic stem cells, type II pneumonocytes, endothelial cells, or osteoblasts.


The location of the DTS between the expression cassette and cleavage sites for the recombinases in the expression vector ensures that the DTS remains associated with the bacterial sequence-free vector, and not the backbone sequence, following recombination as described herein.


In some aspects, the expression vector comprises a UCOE in the expression cassette. See, e.g., Müller-Kuller et al., Nucleic Acids Res. 43(3): 1577-1592 (2015); Skipper et al., BMC Biotechnol. 19:75 (2019); Rudina et al., bioRxiv, doi.org/10.1101/626713 (2019); Neville et al., Biotechnol. Adv. 35(5): 557-564 (2017). In some aspects, the UCOE is located between the 3′ end of the first target sequence for the first recombinase and the 5′ end of a promoter or any enhancer in the expression cassette. In some aspects, the UCOE is integrated within the intron of a 5′UTR as described herein.


In some aspects, the UCOE is A2UCOE. In some aspects, the UCOE comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:6. In some aspects, the UCOE is SEQ ID NO:6.


In some aspects, the UCOE is SRF-UCOE. See, e.g., International Publication No. WO2020223160. In some aspects, the UCOE comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:7. In some aspects, the UCOE is SEQ ID NO:7.


In some aspects, the UCOE improves expression of the transgene from the expression vector or a bacterial sequence-free vector produced from the expression vector as compared to the same expression vector or bacterial sequence-free vector, respectively, lacking the UCOE.


In some aspects, the expression vector comprises Enhancer-1 in the expression cassette. In some aspects, Enhancer-1 is integrated between the 3′ end of the first target sequence for the first recombinase and the 5′ end of a promoter or any other enhancer in the expression cassette. In some aspects, Enhancer-1 is integrated between the 3′ end of a UCOE and the 5′ end of a CMV enhancer. In some aspects, Enhancer-1 comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO: 12. In some aspects, Enhancer-1 is SEQ ID NO: 12.


In some aspects, the expression vector comprises a CMV, EF1, SV40, CAG, Rho, VDM2, HCR, or HLP promoter, or variant thereof, in the expression cassette. In some aspects, the expression vector comprises a CMV promoter variant in the expression cassette. See, e.g., International Publication No. WO2012099540; Xu et al., Bioengineered 10(1): 548-560, DOI: 10.1080/21655979.2019.1684863 (2019).


In some aspects, the expression vector comprises an EF1-alpha promoter in the expression cassette. In some aspects, the expression vector comprises a CMV enhancer and an EF1-alpha promoter in the expression cassette.


In some aspects, the expression vector comprises a 3′UTR in the expression cassette comprising two copies of a beta-globin polyadenylation signal. In some aspects, the 3′UTR is integrated between the nucleic acid sequence of interest and the 5′ end of the second target sequence for the first recombinase.


In some aspects, the 3′UTR comprises two copies of a Xenopus laevis beta-globin polyadenylation signal. In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:13. In some aspects, the 3′UTR is SEQ ID NO:13.


In some aspects, the 3′UTR comprises two copies of a human beta-globin polyadenylation signal. In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:14. In some aspects, the 3′UTR is SEQ ID NO:14.


In some aspects, the 3′UTR comprises one copy of a Xenopus laevis beta-globin polyadenylation signal and one copy of a human beta-globin polyadenylation signal. In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:15. In some aspects, the 3′UTR is SEQ ID NO:15.


In some aspects, the 3′UTR further comprises a poly(A) tail (i.e., at the 3′ end of the 3′UTR) comprising 100 to 120 adenine nucleotides, i.e., 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 adenine nucleotides.


In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:16. In some aspects, the 3′UTR is SEQ ID NO:16.


In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:17. In some aspects, the 3′UTR is SEQ ID NO:17.


In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:18. In some aspects, the 3′UTR is SEQ ID NO:18.


The expression vector can contain any combination of the above modifications to the first and/or second target sequences and/or the expression cassette as described herein. In some aspects, the combination provides a synergistic effect.


In some aspects, the first and second target sequences for the first recombinase and the one or more additional target sequences for the one or more additional recombinases are selected from the group consisting of the PY54 pal site, the N15 telRL site, the loxP site, φK02 telRL site, the FRT site, the phiC31 attP site, and the λ attP site. In some aspects, the expression vector comprises each of the target sequences. In some aspects, the expression vector comprises the pal site and the telRL, loxP, and FRT recombinase target binding sequences integrated within the pal site. In some aspects, the first and second target sequences for the first recombinase each comprise the nucleic acid sequence of SEQ ID NO:33.


In some aspects, the nucleic acid sequence of interest in any of the expression cassettes described herein comprises a sequence encoding: a polypeptide, an RNA (messenger RNA (mRNA), micro-RNA (miRNA), small interfering RNA (siRNA), small hairpin RNA (shRNA), ribozyme, or antisense RNA), or a non-coding DNA (e.g., an antisense oligonucleotide). In some aspects, the nucleic acid sequence of interest is a genomic DNA sequence comprising introns and/or exons. In some aspects, the nucleic acid sequence of interest comprises a sequence encoding: an anti-cancer agent, a tumor suppressor, an apoptotic agent, an anti-angiogenesis agent, an enzyme, a cytotoxic agent, a suicide gene, a cytokine, an interferon, an interleukin, an immunomodulatory agent, an immunostimulatory agent, an immunoinhibitory agent, a chemokine, an antigen for stimulating an antigen-presenting cell, an antibody (e.g., a heavy chain and/or a light chain of an antibody, such as a monoclonal, chimeric, humanized, or human antibody, or an antigen-binding fragment thereof), a genome editing system or a portion thereof (e.g., CRISPR-Cas, TALEN, ZFN, or meganuclease systems or portions thereof, such as a Cas endonuclease or a gRNA), or an immunogenic agent (e.g., as a VLP and/or vaccine). In some aspects, the nucleic acid sequence of interest comprises sequences encoding polypeptides that are capable of forming a VLP when the nucleic acid sequence is expressed intracellularly.


Exemplary therapeutic targets and indications include: a gene associated with a monogenic disorder, including, for example, a liver, blood, or eye disorder, galactosidase alpha (GLA, e.g., for treating Fabry disease), sodium voltage-gated channel alpha subunit 1 (SCNIA, e.g., for treating dravet syndrome), ATP binding cassette subfamily A member 4 (ABCA4, e.g., for treating Stargardt disease), surfactant protein B (SP-B, e.g., for treating surfactant dysfunction disorder), surfactant protein C (SP-C, e.g., for treating surfactant dysfunction disorder), ATP-binding cassette sub-family A member 3 (ABCA3, e.g., for treating surfactant dysfunction disorder), solute carrier family 34 member 2 (SLC34A2, e.g., for treating pulmonary alveolar microlithiasis and/or testicular microlithiasis), cystic fibrosis transmembrane conductance regulator (CFTR, e.g., for treating cystic fibrosis), glutamate decarboxylase (GAD, e.g., GAD65 or GAD67, e.g., for treating Parkinson's disease), aspartoacylase gene (ASPA, also known as aminoacylase (AAC), e.g., for treating Canavan disease), aromatic L-amino acid decarboxylase (AADC, e.g., for treating Parkinson's disease and/or for treating AADC deficiency), neurturin (NRTN, e.g., for treating Parkinson's disease), glial cell line-derived neurotrophic factor (GDNF, e.g., for treating Parkinson's disease), nerve growth factor (NGF, e.g., for treating Alzheimer's disease), tripeptidyl peptidase I (TPP1, also known as ceroid lipofuscinosis neuronal-2 (CLN2), e.g., for treating Batten disease, e.g., CLN2 disease), arylsulfatase A (ARSA, e.g., for treating metachromatic leukodystrophy), N-sulphoglucosamine sulphohydrolase (SGSH, e.g., for treating Sanfilippo syndrome, Type A), Sulfatase-modifying factor 1 (SUMF1, e.g., for treating Sanfilippo syndrome, Type A), N-acetyl-alpha-glucosaminidase (NAGLU, e.g., for treating Sanfilippo syndrome, Type B), survival of motor neuron 1 (SMN1, e.g., for treating spinal muscular atrophy 1), retinal pigment epithelium-specific 65 kDa protein (RPE65, also known as retinoid isomerohydrolase, e.g., for treating Leber's congenital amaurosis), Rab escort protein 1 (REP1, e.g., for treating choroideremia), retinoschisin 1 (RS1, e.g., for treating X-linked juvenile retinoschisis), alpha-1 antitrypsin (AAT, e.g., for treating hereditary emphysema or AAT deficiency), minidystrophin (e.g., for treating Duchenne's muscular dystrophy), α-sarcoglycan (αSG, e.g., for treating Duchenne's muscular dystrophy or limb girdle muscular dystrophy type 2), β-sarcoglycan (BSG), γ-sarcoglycan (γSG, e.g., for treating limb girdle muscular dystrophy type 2), δ-sarcoglycan (γSG), ipoprotein lipase (LPL, e.g., for treating familial LPL deficiency), acid alpha-glucosidase (GAA, e.g., for treating Pompe disease), tumor necrosis factor receptor:Fc (TNFR:Fc, e.g., for treating arthritis, e.g., inflammatory arthritis), sarcoplasmic/endoplasmic reticulum Ca(2+)ATPase 2a (SERCA2a, e.g., for treating congestive heart failure), Factor VIII or Factor IX (FVIII or FIX, e.g., for treating hemophilia B), porphobilinogen deaminase gene (PBGD, e.g., for treating acute intermittent porphyria), soluble fms-like tyrosine kinase-1 (sFLT1, e.g., for treating age-related macular degeneration or cancer, e.g., ovarian cancer), a soluble chimeric vascular endothelial growth factor (VEGF) receptor comprising domains of VEGFR-1 and VEGF-R2 (e.g., for treating cancer, e.g., melanoma or colon cancer), soluble VEGFR3 (e.g., for treating cancer, e.g., endometrial cancer), a soluble VEGF-C decoy receptor (sVEGFR3-Fc, e.g., for treating cancer, e.g., melanoma, renal cell carcinoma, or prostate cancer), pigment epithelium-derived growth factor (PEDF, e.g., for treating cancer, e.g., Lewis lung carcinoma), a neutralizing monoclonal antibody against VEGFR2 (e.g., DC101, e.g., for treating cancer, e.g., melanoma or glioblastoma), endostatin (e.g., for treating cancer, e.g., bladder or pancreatic cancer), angiostatin (e.g., for treating cancer, e.g., liver cancer), both endostatin and angiostatin (i.e., as a bicistronic sequence, e.g., for treating cancer, e.g., ovarian or prostate cancer), an endostatin mutant (i.e., P1254A-endostatin, e.g., for treating cancer, e.g., ovarian cancer), antiangiogenic domain of TSP-1 (3TSR, e.g., for treating cancer, e.g., pancreatic cancer), tissue factor pathway inhibitor-2 (TFPI-2, e.g., for treating cancer, e.g., glioblastoma), a fragment of plasminogen (e.g., kringle 5, e.g., for treating cancer, e.g., ovarian cancer), plasminogen kringle 1-5 (e.g., for treating cancer, e.g., melanoma or lung cancer), siRNA against an unfolded protein response protein (UPR; e.g., IRE1α, XBP-1, or ATF6, e.g., for treating cancer, e.g., breast cancer), vasostatin (e.g., for treating cancer, e.g., lung cancer), herpes simplex virus type 1 thymidine kinase (HSV-TK, e.g., for treating cancer, e.g., breast cancer), sc39TK (e.g., for treating cancer, e.g., cervical cancer), diphtheria toxin A (DTA, e.g., for treating cancer, e.g., cervical cancer or myeloma), p53 upregulated modulator of apoptosis (PUMA, e.g., for treating cancer, e.g., cervical cancer or myeloma), tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL, e.g., for treating cancer, e.g., lymphoma, hepatocellular carcinoma, head and neck squamous cell carcinoma (i.e., head and neck cancer), or glioblastoma), soluble TRAIL (e.g., for treating cancer, e.g., liver cancer or lung adenocarcinoma), IFN-β (e.g., for treating cancer, e.g., colorectal cancer, lung cancer, neuroblastoma, or glioblastoma multiforme), IFN-α (e.g., for treating cancer, e.g., metastatic melanoma), a CD-40 ligand (CD40L) or CD40L mutant (e.g., for treating cancer, e.g., lung cancer), melanoma differentiation-associated gene-7 and interleukin 24 (mda-7 and IL24, e.g., for treating cancer, e.g., Ehrlich ascites tumor), apoptotin and IL24 (e.g., for treating cancer, e.g., liver cancer), IL24 (e.g., for treating cancer, e.g., mixed-lineage leukemia (MLL)/AF4 positive acute lymphoblastic leukemia (ALL)), IL15 (e.g., for treating cancer, e.g., metastatic hepatocellular carcinoma), secondary lymphoid tissue chemokine (SLC, e.g., for treating cancer, e.g., liver cancer), Nk4 (the N-terminal hairpin and subsequent four kringle domains of hepatocyte growth factor (HGF), e.g., for treating cancer, e.g., metastatic Lewis lung carcinoma), tumor necrosis factor superfamily member 14 (TNFSF14, also known as LIGHT, e.g., for treating cancer, e.g., cervical cancer), Granulocyte-macrophage colony-stimulating factor (GM-CSF, e.g., for treating cancer), TNF-α (e.g., for treating cancer, e.g., glioma), a dominant negative mutant of survivin (e.g., C84A or T34A, e.g., for treating cancer, e.g., colon or gastric cancer), the C-terminal fragment of the human telomerase reverse transcriptase (hTERTC27, e.g., for treating cancer, e.g., glioblastoma multiforme), maspin (e.g., for treating cancer, e.g., prostate cancer), nm23H1 (e.g., for treating cancer, e.g., metastatic ovarian cancer), kringle 1 domain of human hepatocyte growth factor (HGFK1, e.g., for treating cancer, e.g., colorectal carcinoma), anti-calcitonin ribozyme (e.g., for treating cancer, e.g., prostate cancer), eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1, e.g., for treating cancer, e.g., lung cancer), C-X-C motif chemokine receptor 2 (CXCR2) C-tail sequence (e.g., for treating cancer, e.g., pancreatic cancer), alpha-tocopherol-associated protein (TAP, e.g., for treating cancer, e.g., prostate cancer), trichosanthin (e.g., for treating cancer, e.g., hepatocellular carcinoma), decorin (e.g., for treating cancer, e.g., glioblastoma multiforme), cathelicidin (e.g., for treating cancer, e.g., colon cancer), Niemann-Pcik type C2 (NPC2, e.g., for treating cancer, e.g., hepatocellular carcinoma), Mullerian inhibiting substance (MIS, e.g., for treating cancer, e.g., ovarian cancer), p53 (e.g., for treating cancer, e.g., bronchoalveolar cancer), shRNA against highly expressed in cancer 1 (Hec1, e.g., for treating cancer, e.g., glioma), shRNA against Epstein-Barr virus latent membrane protein-1 (EBV LMP-1, e.g., for treating cancer, e.g., nasopharyngeal cancer), anti-sense RNA against human papilloma virus 16 E7 oncogene (HPV16-E7, e.g., for treating cancer, e.g., cervical cancer), shRNA against androgen receptor (AR, e.g., for treating cancer, e.g., prostate cancer), siRNA against Snail (also known as SNA1, e.g., for treating cancer, e.g., pancreatic cancer), siRNA against Slug (i.e., the protein product of SNAI2, e.g., for treating cancer, e.g., cholangiocarcinoma (liver cancer)), shRNA against Four and a half LIM-only protein 2 (FHL2, e.g., for treating cancer, e.g., colon cancer), miR-26a (e.g., for treating cancer, e.g., hepatocellular carcinoma), HPV 16 structural protein L1 (HPV16-L1, e.g., for treating cancer, e.g., cervical cancer), HPV 16 E5, E6, and E7 oncogenes (HPV16 E5/E6/E7, e.g., for treating cancer, e.g., cervical cancer), B-cell leukemia/lymphoma 1 (BLC1) idiotype (e.g., for treating cancer, e.g., B cell leukemia/lymphoma 1), EBV LMP1 and LMP2 fused to heat shock protein (EBV LMP2/1-hsp, e.g., for treating cancer, e.g., nasopharyngeal carcinoma), carcinoembryonic antigen (CEA, e.g., for treating cancer, e.g., colon cancer), soluble form of B and T lymphocyte attenuator in combination with a heat shock protein (BTLA and HSP70, e.g., for treating cancer, e.g., melanoma pulmonary metastasis), HPV16-L1/E7 (e.g., for treating cancer, e.g., cervical cancer), HPV16-L1 (e.g., for treating cancer, e.g., cervical cancer), an anti-EGFR antibody (e.g., 14D1, e.g., for treating cancer, e.g., vulvar carcinoma), an anti-death receptor 5 (DR5) antibody (e.g., adximab, e.g., for treating cancer, e.g., liver or colon cancer), an anti-Enolase 1 (ENOI1) antibody (e.g., for treating cancer, e.g., pancreatic ductal adenocarcinoma), an anti-VEGFA antibody (e.g., bevacizumab, e.g., for treating cancer, e.g., metastatic lung cancer or ovarian cancer), the Mucin 1 (MUC1) antigen (e.g., for treating cancer, e.g., gastric cancer), or an aquaporin (e.g., hAQP1, e.g., for treating irradiation induced parotid salivary hypofunction, i.e., xerostomia).


In some aspects, the nucleic acid sequence of interest is for use in gene editing (e.g., gene therapy, including treatment of a genetic deficiency, disorder, or disease).


In some aspects, the nucleic acid sequence of interest is for insertion into a target site for gene editing (i.e., a site within a DNA or RNA sequence that is the target of gene editing). A target site for gene editing includes any genetic element, such as any cis element. In some aspects, the target site for gene editing is located within an exon of a gene, an intron of a gene, or a regulatory element of a gene.


In some aspects, the gene editing comprises an endonuclease. In some aspects, the endonuclease is associated with a genome editing system. In some aspects, the endonuclease is, for example, a homing endonuclease, a site-specific nuclease, a structure-guided nuclease, or an RNA-guided nuclease (e.g., a transposon-encoded RNA-guided nuclease).


In some aspects, the gene editing comprises a genome editing system that produces a double-strand break within the target site for gene editing. In some aspects, the genome editing system is a CRISPR-Cas, TALEN, ZFN, or meganuclease gene editing system.


In some aspects, the nucleic acid sequence of interest is inserted into the target site for gene editing by non-homologous end joining at the double-strand break. In some aspects, the double-strand break is produced by a CRISPR-Cas system. In some aspects, an expression vector as described herein comprises a Cas endonuclease target sequence (i.e., a sequence homologous to a gRNA targeting sequence) located between the first and second target sequences for the first recombinase and the nucleic acid sequence of interest (i.e., between the 5′ Super Sequence and the nucleic acid sequence of interest and between the 3′ Super Sequence and the nucleic acid sequence of interest), wherein the target site for gene editing (e.g., a target site in a chromosome) comprises the same Cas endonuclease target sequence. For example, processing of the Cas endonuclease target sequences flanking the nucleic acid sequence in a bacterial sequence-free vector (e.g., msDNA) produced from the expression vector results in removal of the Super Sequences, rendering a linear covalently closed bacterial sequence-free vector such as msDNA to instead be linear and open-ended, with reactive ends that are amenable to non-homologous end-joining events.


In some aspects, the nucleic acid sequence of interest is inserted into the target site for gene editing by homology-directed repair, which occurs through recombination between sequences flanking the double-strand break and homologous sequences associated with the nucleic acid sequence of interest.


In some aspects, the nucleic acid sequence of interest has sufficient homology with sequences flanking the double-strand break to support homology-directed repair.


In some aspects, the nucleic acid sequence of interest is flanked by 5′ and 3′ homology arms (i.e., sequences that have sufficient homology with sequences flanking the double-strand break to mediate homology-directed repair).


In some aspects, sufficient homology to mediate homology-directed repair comprises at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% homology between the nucleic acid sequence of interest and the sequences flanking the double-strand break or between homology arms flanking the nucleic acid sequence of interest and the sequences flanking the double-strand break. In some aspects, a sequence flanking the double-strand break is within about 100 bases, about 90 bases, about 80 bases, about 70 bases, about 60 bases, about 50 bases, about 45 bases, about 40 bases, about 35 bases, about 30 bases, about 25 bases, about 20 bases, about 15 bases, about 10 bases, or about 5 bases of the double-strand break, or immediately flanks the double-strand break.


In some aspects, the homology-directed repair is by a CRISPR-Cas system. In some aspects, an expression vector as described herein comprises the CRISPR-Cas system. In some aspects, the expression vector comprises a tRNA-gRNA polycistron flanking each side of a sequence encoding a Cas endonuclease (e.g., an immunosilenced Cas9-B2). An exemplary aspect is shown in FIG. 49. In some aspects, the expression vector comprises a 5′UTR (e.g., 5′UTR1) as described herein comprising the tRNA-gRNA polycistron in an intron. In some aspects, the expression vector comprises a chimeric intron as described herein comprising the tRNA-gRNA polycistron. In some aspects, an EF1-alpha promoter as described herein comprises the tRNA-gRNA polycistron in an inherent intron. In some aspects, a polyadenylation signal or 3′UTR as described herein comprises a tRNA-gRNA polycistron. For example, upon expression of a Cas endonuclease from the vector (i.e., from the expression vector or bacterial sequence-free vector (e.g., msDNA)) comprising the flanking tRNA-gRNA polycistrons, the gRNA is excised as free RNA and targets the Cas endonuclease to the target site for gene editing (e.g., a target site in a chromosome) as well as the flanking gRNA sites on the vector. This results in self-restriction of the Cas endonuclease from the vector, which limits further expression of the Cas endonuclease. A schematic of this process is shown in FIG. 50, which also shows mediation of homology-directed repair with a nucleic acid of interest (i.e., gene of interest, GOI) flanked by homology arms on a separate vector. In some aspects, an expression vector as described herein comprises the nucleic acid sequence of interest flanked by homology arms as shown, for example, in Scenario 1 of FIG. 51. In some aspects, a nucleic acid sequence of interest and a self-restricting CRISPR-Cas system as described herein are located on a single expression vector as described herein as shown in Scenario 2 of FIG. 51. In the latter aspects, the sequences comprising the self-restricting CRISPR-Cas system are located 5′ to the sequence comprising the nucleic acid sequence of interest flanked by homology arms.


In some aspects, the nucleic acid sequence of interest is homologous to the target site for gene editing and comprises one or more nucleotide insertions, deletions, inversions, or rearrangements as compared to the target site. In some aspects, the nucleic acid of interest is a genomic sequence, a coding region, an exon, an intron, or any portion thereof that replaces a homologous sequence at the target site.


In some aspects, the nucleic acid sequence of interest is non-homologous to the target site for gene editing.


In some aspects, the nucleic acid sequence of interest restores a missing function, corrects an abnormal function, or provides an additional function associated with the target site for gene editing.


In some aspects, the nucleic acid sequence of interest is for knockout of gene expression associated with a target site for gene editing (i.e., gene silencing).


In some aspects, the nucleic acid sequence of interest is for in vivo gene editing.


In some aspects, the nucleic acid sequence of interest is for in vitro gene editing.


In some aspects, the nucleic acid sequence of interest is for ex vivo gene editing (e.g., cell therapy, such as chimeric antigen receptor (CAR) T cell therapy).


In some aspects, the gene editing comprises an epigenetic modification, and an expression vector as described herein comprises an epigenetic effector molecule as the nucleic acid of interest. In some aspects, the epigenetic effector molecule mediates, for example, acetylation or deacetylation, methylation or demethylation, or phosphorylation or dephosphorylation. In some aspects, the epigenetic effector molecule inhibits acetylation or deacetylation, methylation or demethylation, or phosphorylation or dephosphorylation. In some aspects, the epigenetic modification is a histone modification. In some aspects, the histone modification is histone acetylation and the nucleic acid of interest is a histone acetyltransferase. In some aspects, the histone modification is histone deacetylation and the nucleic acid of interest is a histone deacetylase. In some aspects, the epigenetic modification is a DNA modification. In some aspects, the DNA modification is DNA methylation and the nucleic acid of interest is a DNA methylase. In some aspects, the DNA modification is DNA demethylation and the nucleic acid of interest is a DNA demethylase. In some aspects, the epigenetic effector molecule is fused to a targeting molecule, such as a DNA-binding molecule to target the effector to a location on the chromosome.


In some aspects, the expression cassette is polygenic, i.e., the expression cassette comprises two or more nucleic acid sequences of interest encoding two or more polypeptides, respectively.


In some aspects, the expression cassette comprises a single open reading frame comprising a nucleic acid sequence encoding a self-cleaving peptide between each nucleic acid sequence encoding a polypeptide, such that the translation product of the expression cassette is cleaved intracellularly into two or more polypeptides. In some aspects, the self-cleaving peptide is a 2A self-cleaving peptide. In some aspects, the 2A self-cleaving peptide is P2A from porcine teschovirus-1. In some aspects, the 2A self-cleaving peptide is T2A from thosea asigna virus 2A. In some aspects, the self-cleaving peptide comprises any one or more of 2A, P2A, and T2A. In some aspects, the self-cleaving peptide comprises P2A and T2A.


In some aspects, the expression cassette further comprises a nucleic acid sequence encoding a marker for gene expression. In some aspects, the marker for gene expression is a fluorescent reporter gene, such as green fluorescent protein (GFP, e.g., enhanced GFP (eGFP)), red fluorescent protein (RFP), yellow fluorescent protein (YFP), or near-infrared fluorescent protein (iRFP); a bioluminescent reporter genes such as luciferase (e.g., nanoluciferase, i.e., NanoLuc® (NLuc), England et al., Bioconjug. Chem. 27(5):1175-1187 (2016), Promega Corporation); a selectable antibiotic marker; or LacZ. In some aspects, the expression cassette comprises a nucleic acid sequence encoding a self-cleaving peptide between the nucleic acid sequence encoding a marker for gene expression and any other nucleic acid sequence encoding a polypeptide.


The expression cassette can contain any expression control region known to those of skill in the art operably linked to the nucleic acid sequence(s) of interest. In some aspects, the expression control region is a promoter, enhancer, operator, repressor, ribosome binding site, translation leader sequence, intron, polyadenylation recognition sequence, RNA processing site, effector binding site, stem-loop structure, transcription termination signal, or a combination thereof.


In some aspects, the expression vector is for producing a bacterial sequence-free vector. In some aspects, the bacterial sequence-free vector is a circular covalently closed vector. In some aspects, the bacterial sequence-free vector is a linear covalently closed vector.


B. Vector Production Systems

Provided herein is a vector production system comprising recombinant cells encoding a recombinase under the control of an inducible promoter, wherein the recombinant cells comprise an expression vector as described herein that contains first and second target sequences for a first recombinase and one or more additional target sequences for one or more additional recombinases, and wherein the recombinase targets the first and second target sequences for the first recombinase or one of the one or more additional target sequences for the one or more additional recombinases.


Suitable host cells for use in the vector production system include microbial cells, for example, bacterial cells such as E. coli cells, and yeast cells such as S. cerevisiae. Mammalian host cells can also be used, including Chinese hamster ovary (CHO) cells (e.g., the K1 lineage (ATCC CCL 61) or the Pro5 variant (ATCC CRL 1281)); fibroblast-like cells derived from SV40-transformed African Green monkey kidney of the CV-1 lineage (ATCC CCL 70), of the COS-1 lineage (ATCC CRL 1650), or of the COS-7 lineage (ATCC CRL 1651; murine L-cells; murine 3T3 cells (ATCC CRL 1658); murine C127 cells; human embryonic kidney cells of the 293 lineage (ATCC CRL 1573); human carcinoma cells including those of the HeLa lineage (ATCC CCL 2); and neuroblastoma cells of the lines IMR-32 (ATCC CCL 127), SK-N-MC (ATCC HTB 10), or SK-N-SH (ATCC HTB 11).


Suitable recombinases catalyze DNA exchange at a target sequence for a recombinase as described herein including, but not limited to, TelN, Tel, Tel (gp26 K02 phage), Cre, Flp, phiC31, Int, and other lambdoid phage integrases, e.g. phi 80, HK022 and HP1 recombinases. In some aspects, the recombinase is TelN, Tel, Cre, or Flp.


In some aspects, the recombinant cells further encode an endonuclease under the control of an inducible promoter, wherein the endonuclease targets an endonuclease target sequence in the expression vector.


Suitable endonucleases cleave polynucleotides at the endonuclease target sequence. In some aspects, the endonuclease is a homing endonuclease. In some aspects, the homing endonuclease is I-AniI, I-CeuI, I-ChuI, I-CpaI, I-CpaII, I-CreI, I-DmoI, H-DreI, I-HmuI, I-HmuII, I-LlaI, I-MsoI, PI-PfuI, PI-PkoII, I-PorI, I-PpoI, PI-PspI, I-ScaI, I-SceI, PI-SceI, I-SceII, I-SecIII, I-SceIV, I-SceV, I-SceVI, I-SceVII, I-Ssp6803I, I-TevI, I-TevII, I-TevIII, PI-TliI, PI-TliII, I-Tsp061I, or I-Vdi141I. In some aspects, the endonuclease is I-SceI. In some aspects, the endonuclease is PI-SceI. In some aspects, the recombinant cells encode a nuclease genome editing system comprising the endonuclease. In some aspects, the genome editing system is a CRISPR-Cas, a TALEN, a ZFN, or a meganuclease system. In some aspects, the nuclease genome editing system is a Class 1 or a Class 2 CRISPR-Cas system. In some aspects, the nuclease genome editing system is Type I, II, III, IV, V, or VI CRISPR-Cas system. In some aspects, the Cas endonuclease in the CRISPR-Cas system is Cas9 (e.g., a SpCas9, a SaCas9, a FnCas9, or a NmCas9), a Cas9 variant (e.g., CasB9, xCas9, SpCas9-NG, SpCas9-NRRH, SpCas9-NRCH, SpCas9-NRTH, SpG, SpRY), Cas3, Cas12 (e.g., Cas12a, Cas12b, Cas12c, Cas12d, or Cas12e), Cas13 (e.g., Cas13a, Cas13b, Cas13c, or Cas13d), or Cas14.


Recombinant host cells encoding a recombinase, or a recombinase and an endonuclease, are prepared using well-known techniques. For example, a nucleic acid sequence encoding a selected recombinase or endonuclease is introduced into the cell using a suitable vector under appropriate conditions for cell transformation. The recombinant host cells can be transformed via an expression vector, or by integration of a recombinase-encoding and/or endonuclease-encoding nucleic acid sequence into the host cell genome. In aspects where the endonuclease is associated with a nuclease genome editing system, the host cell can be designed to encode all of the components of the nuclease genome editing system, either by transformation of the host cell with one or more expression vectors comprising all of the components, by integration of all of the components into the host cell genome, or by a mixture of transformation and integration of the components. In some aspects, the host cell encodes a Cas or Cas-like endonuclease and a gRNA.


Expression of the recombinase or endonuclease, including an endonuclease of a nuclease genome editing system, is under the control of an inducible promoter, i.e., a promoter which is activated under a particular physical or chemical condition or stimulus. In some aspects, the inducible promoter is thermally-regulated, chemically-regulated, IPTG regulated, glucose-regulated, arabinose inducible, T7 polymerase regulated, cold-shock inducible, pH inducible, or combinations thereof.


Provided herein is a recombinant cell comprising an expression vector as described herein that contains first and second target sequences for a first recombinase and one or more additional target sequences for one or more additional recombinases. In some aspects, the recombinant cell encodes the first recombinase and/or one or more of the one or more recombinases as described herein. In some aspects, the recombinant cell encodes one or more endonucleases as described herein. In some aspects, the recombinant cell encodes a nuclease genome editing system as described herein.


Provided herein is a method of producing a bacterial sequence-free vector comprising incubating a vector production system as described herein under suitable conditions for expression of the recombinase. In some aspects, the method further comprises incubating the vector production system under suitable conditions for expression of an endonuclease encoded by the recombinant cells. In some aspects, the method further comprises incubating the vector production system under suitable conditions for expression of a nuclease genome editing system encoded by the recombinant cells. In some aspects, the method further comprises harvesting the bacterial sequence-free vector.


Provided herein is a bacterial sequence-free vector produced by a method of producing a bacterial sequence-free vector as described herein.


III. Bacterial Sequence-Free Vectors

Provided herein is a bacterial sequence-free vector comprising: (a) an expression cassette comprising a nucleic acid sequence of interest, and (b) one or more of: (i) a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:12 located 5′ to another enhancer or a promoter in the expression cassette, (ii) a CMV enhancer located 5′ to a promoter in the expression cassette, (iii) a 5′UTR comprising an intron, wherein the 5′UTR is integrated in the expression cassette between a promoter and the nucleic acid sequence of interest, (iv) a vertebrate chromatin insulator integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, (v) a WPRE integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, (vi) a S/MAR integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, or (vii) a DTS located 5′ to the expression cassette.


In some aspects, the bacterial sequence-free vector comprises a synthetic enhancer comprising a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:12 located 5′ to another enhancer or a promoter in the expression cassette. In some aspects, the bacterial sequence-free vector comprises a synthetic enhancer comprising the nucleic acid sequence of SEQ ID NO: 12 located 5′ to another enhancer or a promoter in the expression cassette. In some aspects, the synthetic enhancer comprises multiple contiguous copies of the nucleic acid sequence, such as, for example, 1, 2, 3, 4, 5, or more contiguous copies. In some aspects, the synthetic enhancer comprises 3 contiguous copies of the nucleic acid sequence. In some aspects, the synthetic enhancer comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:46. In some aspects, the synthetic enhancer comprises the nucleic acid sequence of SEQ ID NO:46. In some aspects, the synthetic enhancer is integrated at the 5′ end of a chicken β-actin promoter. In some aspects, a chimeric intron comprising a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:47 is integrated at the 3′ end of the chicken β-actin promoter and 5′ to the nucleic acid sequence of interest. In some aspects, a chimeric intron comprising the nucleic acid sequence of SEQ ID NO:47 is integrated at the 3′ end of the chicken β-actin promoter and 5′ to the nucleic acid sequence of interest.


In some aspects, the bacterial sequence-free vector comprises a CMV enhancer located 5′ to a promoter in the expression cassette. In some aspects, the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:12. In some aspects, the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising the nucleic acid sequence of SEQ ID NO:12. In some aspects, the CMV enhancer is integrated at the 3′ end of multiple contiguous copies of the synthetic enhancer, such as, for example, at the 3′ end of 1, 2, 3, 4, 5, or more contiguous copies of the synthetic enhancer. In some aspects, the CMV enhancer is integrated at the 3′ end of 3 contiguous copies of the synthetic enhancer. In some aspects, the CMV enhancer is integrated at the 3′ end of a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:46. In some aspects, the CMV enhancer is integrated at the 3′ end of the nucleic acid sequence of SEQ ID NO:46. In some aspects, a CMV promoter is integrated at the 3′ end of the CMV enhancer and 5′ to the nucleic acid sequence of interest.


In some aspects, the bacterial sequence-free vector comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39 located 5′ to the nucleic acid sequence of interest. In some aspects, the bacterial sequence-free vector comprises the nucleic acid sequence of SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39 located 5′ to the nucleic acid sequence of interest. In some aspects, a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39, or the nucleic acid sequence of SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39, comprises all regulatory elements in the expression cassette located 5′ to the nucleic acid sequence of interest.


In some aspects, the bacterial sequence-free vector comprises a 5′UTR comprising an intron, wherein the 5′UTR (i.e., the 5′UTR comprising the intron) is integrated in the expression cassette between a promoter and the nucleic acid sequence of interest.


In some aspects, the 5′UTR is for improving transgene transcript splicing and translation from the bacterial sequence-free vector as compared to the same bacterial sequence-free vector lacking the 5′UTR.


In some aspects, the intron comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:1. In some aspects, the intron comprises the nucleic acid sequence of SEQ ID NO:1.


In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:2. In some aspects, the 5′UTR comprises the nucleic acid sequence of SEQ ID NO:2.


In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:4. In some aspects, the 5′UTR comprises the nucleic acid sequence of SEQ ID NO:4.


In some aspects, the 5′UTR further comprises a non-coding sequence integrated within the intron.


In some aspects, the intron is at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:1, or comprises SEQ ID NO: 1, and the non-coding sequence is integrated between two of the nucleotides in the intron corresponding to any two nucleotides from positions 25 to 55 of SEQ ID NO:1.


In some aspects, the non-coding sequence is non-prokaryotic and non-viral. In some aspects, the non-coding sequence is eukaryotic. In some aspects, the non-coding sequence comprises an intron, a UCOE, a S/MAR, a SV40 enhancer sequence (e.g., one or more than one SV40 enhancer sequences, such as two, three, four, five or more SV40 enhancer sequences), a vertebrate chromatin insulator (e.g., cHS4), a WPRE, or any combination thereof.


In some aspects, the non-coding sequence comprises an S/MAR. In some aspects, the S/MAR is MAR-5, provided herein as SEQ ID NO:9.


In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:3. In some aspects, the 5′UTR comprises SEQ ID NO:3.


In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:5. In some aspects, the 5′UTR comprises SEQ ID NO:5.


In some aspects, the 5′UTR is integrated in the expression cassette between a chicken β-actin promoter and the nucleic acid sequence of interest.


In some aspects, the 5′UTR is integrated in the expression cassette between a CMV promoter and the nucleic acid sequence of interest.


In some aspects, the 5′UTR is integrated in the expression cassette between a promoter and the nucleic acid sequence of interest, wherein the promoter is integrated at the 3′ end of a CMV enhancer. In some aspects, the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:12. In some aspects, the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising the nucleic acid sequence of SEQ ID NO: 12. In some aspects, the CMV enhancer is integrated at the 3′ end of multiple contiguous copies of the synthetic enhancer, such as, for example, at the 3′ end of 1, 2, 3, 4, 5, or more contiguous copies of the synthetic enhancer. In some aspects, the CMV enhancer is integrated at the 3′ end of 3 contiguous copies of the synthetic enhancer. In some aspects, the CMV enhancer is integrated at the 3′ end of a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:46. In some aspects, the CMV enhancer is integrated at the 3′ end of a nucleic acid sequence of SEQ ID NO:46.


In some aspects, the bacterial sequence-free vector comprises a polyadenylation signal integrated at the 3′ end of the nucleic acid sequence of interest. In some aspects, the polyadenylation signal comprises a Xenopus laevis beta-globin polyadenylation signal, a human beta-globin polyadenylation signal, or a hybrid Xenopus laevis and human beta-globin polyadenylation signal. In some aspects, the polyadenylation signal comprises multiple copies of a Xenopus laevis beta-globin polyadenylation signal, a human beta-globin polyadenylation signal, or a hybrid Xenopus laevis and human beta-globin polyadenylation signal, such as, for example, 1, 2, 3, 4, or 5 copies. In some aspects, the polyadenylation signal comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:13, SEQ ID NO: 14, or SEQ ID NO:15. In some aspects, the polyadenylation signal comprises the nucleic acid sequence of SEQ ID NO: 13, SEQ ID NO:14, or SEQ ID NO:15. In some aspects, a polyadenylic acid tail (i.e., poly(A) tail is located at the 3′ end of the polyadenylation signal. In some aspects, the poly(A) tail is 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, or more residues in length. In some aspects, the sequence comprising the polyadenylation signal and the poly(A) tail is at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:16, SEQ ID NO:17, or SEQ ID NO:18. In some aspects, the sequence comprising the polyadenylation signal and the poly(A) tail comprises SEQ ID NO:16, SEQ ID NO:17, or SEQ ID NO:18.


In some aspects, the bacterial sequence-free vector comprises a vertebrate chromatin insulator in the expression cassette. In some aspects, the vertebrate chromatin insulator is cHS4. In some aspects, the vertebrate chromatin insulator is integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal as described herein. In some aspects, the vertebrate chromatin insulator is integrated within the intron of a 5′UTR as described herein.


In some aspects, the vertebrate chromatin insulator comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:8. In some aspects, the vertebrate chromatin insulator comprises SEQ ID NO:8.


In some aspects, the vertebrate chromatin insulator is for improving establishment (i.e., transfection efficiency) of a bacterial sequence-free vector as compared to the same bacterial sequence-free vector without the vertebrate chromatin insulator.


In some aspects, the bacterial sequence-free vector comprises a WPRE in the expression cassette. In some aspects, the WPRE is integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal as described herein. In some aspects, the WPRE is integrated in the expression cassette at the 3′ end of a S/MAR as described herein and the 5′ end of a polyadenylation signal as described herein. In some aspects, the WPRE is integrated within the intron of a 5′UTR as described herein.


In some aspects, the WPRE comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:11. In some aspects, the WPRE comprises SEQ ID NO:11.


In some aspects, the WPRE improves expression of the transgene from the bacterial sequence-free vector as compared to the same bacterial sequence-free vector lacking the WPRE.


In some aspects, the bacterial sequence-free vector comprises an S/MAR in the expression cassette. In some aspects, the S/MAR is integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal. In some aspects, the S/MAR is integrated in the expression cassette at the 3′ end of a nucleic acid sequence of interest and the 5′ end of a WPRE as described herein. In some aspects, the S/MAR is integrated within the intron of a 5′UTR as described herein.


In some aspects, the S/MAR is MAR-3, MAR-4, or MAR-5. In some aspects, the S/MAR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:9. In some aspects, the S/MAR comprises SEQ ID NO:9.


In some aspects, the S/MAR is human CSP-B MAR or CSP-C MAR. In some aspects, the S/MAR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:10. In some aspects, the S/MAR comprises SEQ ID NO:10.


In some aspects, the S/MAR is for improving expression levels, stability, and/or durability of the bacterial sequence-free vector (e.g., by episomal maintenance and replication, such as expansion and partition of the vector to daughter cells, and/or by preventing epigenetic silencing) as compared to the same bacterial sequence-free vector lacking the S/MAR.


In some aspects, the bacterial sequence-free vector comprising any one of more of (b)(i)-(b)(v) as described above (i.e., without a DTS) further comprises an enhancer sequence flanking each side of the expression cassette. In some aspects, the enhancer sequence flanking each side of the expression cassette is at least two enhancer sequences flanking each side of the expression cassette. In some aspects, the enhancer sequence is a SV40 enhancer sequence.


In some aspects, the bacterial sequence-free vector comprises a DTS. In some aspects, the DTS is located 5′ to the expression cassette. In some aspects, the DTS is a SV40 enhancer sequence. In some aspects, the DTS is cell-specific. In some aspects, the DTS is specific for smooth muscle cells, embryonic stem cells, type II pneumonocytes, endothelial cells, or osteoblasts.


In some aspects, a bacterial sequence-free vector as described herein further comprises a UCOE in the expression cassette. In some aspects, the UCOE is located 5′ to the promoter or any enhancer in the expression cassette. In some aspects, the UCOE is integrated within the intron of a 5′UTR as described herein.


In some aspects, the UCOE is A2UCOE. In some aspects, the UCOE comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:6. In some aspects, the UCOE is SEQ ID NO:6.


In some aspects, the UCOE is SRF-UCOE. In some aspects, the UCOE comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:7. In some aspects, the UCOE is SEQ ID NO:7.


In some aspects, the UCOE improves expression of the transgene from the bacterial sequence-free vector as compared to the same bacterial sequence-free vector lacking the UCOE.


In some aspects, the bacterial sequence-free vector comprises Enhancer-1 in the expression cassette. In some aspects, Enhancer-1 is integrated 5′ to the promoter or any other enhancer in the expression cassette. In some aspects, Enhancer-1 is integrated between the 3′ end of a UCOE and the 5′ end of a CMV enhancer. In some aspects, Enhancer-1 comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:12. In some aspects, Enhancer-1 is SEQ ID NO: 12.


In some aspects, the bacterial sequence-free vector comprises a CMV, EF1, SV40, CAG, Rho, VDM2, HCR, or HLP promoter, or variant thereof, in the expression cassette. In some aspects, the bacterial sequence-free vector comprises a CMV promoter variant in the expression cassette.


In some aspects, the bacterial sequence-free vector comprises an EF1-alpha promoter in the expression cassette. In some aspects, the bacterial sequence-free vector comprises a CMV enhancer and an EF1-alpha promoter in the expression cassette.


In some aspects, the bacterial sequence-free vector comprises a 3′UTR in the expression cassette comprising two copies of a beta-globin polyadenylation signal. In some aspects, the 3′UTR is integrated 3′ to the nucleic acid sequence of interest.


In some aspects, the 3′UTR comprises two copies of a Xenopus laevis beta-globin polyadenylation signal. In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO: 13. In some aspects, the 3′UTR is SEQ ID NO:13.


In some aspects, the 3′UTR comprises two copies of a human beta-globin polyadenylation signal. In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO: 14. In some aspects, the 3′UTR is SEQ ID NO:14.


In some aspects, the 3′UTR comprises one copy of a Xenopus laevis beta-globin polyadenylation signal and one copy of a human beta-globin polyadenylation signal. In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:15. In some aspects, the 3′UTR is SEQ ID NO:15.


In some aspects, the 3′UTR further comprises a poly(A) tail comprising 100 to 120 adenine nucleotides, i.e., 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 adenine nucleotides.


In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:16. In some aspects, the 3′UTR is SEQ ID NO:16.


In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:17. In some aspects, the 3′UTR is SEQ ID NO:17.


In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:18. In some aspects, the 3′UTR is SEQ ID NO:18.


The nucleic acid sequence of interest of a bacterial sequence-free vector as described herein includes any of the nucleic acid sequences described herein with respect to the expression vectors for producing the bacterial sequence-free vectors.


In some aspects, a bacterial sequence-free vector as described herein comprises a Cas endonuclease target sequence (i.e., a sequence homologous to a gRNA targeting sequence) located 5′ and 3′ to the nucleic acid sequence of interest, wherein a target site for gene editing (e.g., a target site in a chromosome) comprises the same Cas endonuclease target sequence.


In some aspects, a bacterial sequence-free vector as described herein comprises a CRISPR-Cas system. In some aspects, the bacterial sequence-free vector comprises a tRNA-gRNA polycistron flanking each side of a sequence encoding a Cas endonuclease (e.g., an immunosilenced Cas9-B2). In some aspects, the bacterial sequence-free vector comprises a 5′UTR (e.g., 5′UTR1) as described herein comprising the tRNA-gRNA polycistron in an intron. In some aspects, the bacterial sequence-free vector comprises a chimeric intron as described herein comprising the tRNA-gRNA polycistron. In some aspects, an EF1-alpha promoter as described herein comprises the tRNA-gRNA polycistron in an inherent intron. In some aspects, a polyadenylation signal or 3′UTR as described herein comprises a tRNA-gRNA polycistron. In some aspects, a nucleic acid sequence of interest and a self-restricting CRISPR-Cas system as described herein are located on a single bacterial sequence-free vector as described herein. In the latter aspects, the sequences comprising the self-restricting CRISPR-Cas system are located 5′ to the sequence comprising the nucleic acid sequence of interest flanked by homology arms.


A bacterial sequence-free vector as described herein can contain any combination of the above modifications. In some aspects, the combination provides a synergistic effect.


In some aspects, the bacterial sequence-free vector is a circular covalently closed vector.


In some aspects, the bacterial sequence-free vector is a linear covalently closed vector.


Provided herein is a recombinant cell comprising a bacterial sequence-free vector as disclosed herein.


IV. Other Expression Vectors

Improvements and modifications described above can also be applied to other expression vectors such as, but not limited to, expression vectors that are utilized for direct gene expression rather than production of bacterial sequence-free vectors. In some aspects, the nucleic acid sequences described herein are provided as DNA sequences, and the expression vectors are DNA expression vectors. In some aspects, the nucleic acid sequences described herein are provided as RNA sequences, and the expression vectors are RNA expression vectors. RNA sequences can correspond to the DNA sequence provided as any SEQ ID NO herein or can correspond to the DNA sequence that is complementary to the DNA sequence provided as any SEQ ID NO herein.


Provided herein is a polynucleotide comprising any combination of nucleic acid sequences as described herein.


Provided herein is a polynucleotide comprising a nucleic acid sequence of: an intron, a 5′UTR comprising an intron, and/or a 3′UTR as described herein.


Provided herein is a polynucleotide comprising a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any one of SEQ ID NOs: 1, 2, 3, 5, 13, 14, 15, 16, 17, or 18. In some aspects, the polynucleotide comprises 100 to 120 adenine nucleotides at the 3′ end of the nucleic acid sequence. In some aspects, the polynucleotide comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any one of SEQ ID NOs:13, 14, or 15, and 100 to 120 adenine nucleotides at the 3′ end of the nucleic acid sequence. In some aspects, the polynucleotide comprises the nucleic acid sequence of any one of SEQ ID NOs: 1, 2, 3, 5, 13, 14, 15, 16, 17, or 18.


Provided herein is an expression vector comprising one or more of the polynucleotides described herein. In some aspects, the expression vector comprises a polynucleotide comprising a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any one of SEQ ID NOs: 1, 2, 3, 5, 13, 14, 15, 16, 17, or 18. In some aspects, the polynucleotide comprises 100 to 120 adenine nucleotides at the 3′ end of the nucleic acid sequence. In some aspects, the polynucleotide comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any one of SEQ ID NOs: 13, 14, or 15, and 100 to 120 adenine nucleotides at the 3′ end of the nucleic acid sequence. In some aspects, the expression vector comprises a polynucleotide comprising the nucleic acid sequence of any one of SEQ ID NOs: 1, 2, 3, 5, 13, 14, 15, 16, 17, or 18. In some aspects, the expression vector comprises a polynucleotide comprising the nucleic acid sequence of any one of SEQ ID NOs: 2, 3, or 5, and (a) a polynucleotide comprising the nucleic acid sequence of any one of SEQ ID NOs: 13, 14, 15, 16, 17, or 18, or (b) a polynucleotide comprising the nucleic acid sequence of any one of SEQ ID NOs: 13, 14, or 15 and 100 to 120 adenine nucleotides at the 3′ end of the nucleic acid sequence.


Provided herein is an expression vector comprising: a 5′UTR comprising an intron, wherein the 5′UTR is integrated in the expression cassette between a promoter and a nucleic acid sequence of interest, and/or a 3′UTR comprising two copies of a beta-globin polyadenylation signal integrated in the expression cassette 3′ to the nucleic acid sequence of interest.


In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:2. In some aspects, the 5′UTR comprises the nucleic acid sequence of SEQ ID NO:2.


In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:4. In some aspects, the 5′UTR comprises the nucleic acid sequence of SEQ ID NO:4.


In some aspects, the 5′UTR further comprises a non-coding sequence integrated within the intron.


In some aspects, the intron is at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:1, or comprises SEQ ID NO:1, and the non-coding sequence is integrated between two of the nucleotides in the intron corresponding to any two nucleotides from positions 25 to 55 of SEQ ID NO:1.


In some aspects, the non-coding sequence is non-prokaryotic and non-viral. In some aspects, the non-coding sequence is a eukaryotic sequence. In some aspects, the non-coding sequence comprises an intron, a UCOE, an S/MAR, an SV40 enhancer sequence (e.g., one or more than one SV40 enhancer sequences, such as two, three, four, five or more SV40 enhancer sequences), a vertebrate chromatin insulator (e.g., cHS4), a WPRE, or any combination thereof.


In some aspects, the non-coding sequence is an S/MAR. In some aspects, the S/MAR is MAR-5, provided herein as SEQ ID NO:9.


In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:3. In some aspects, the 5′UTR comprises SEQ ID NO:3.


In some aspects, the 5′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:5. In some aspects, the 5′UTR comprises SEQ ID NO:5.


In some aspects, the 3′UTR comprises two copies of a Xenopus laevis beta-globin polyadenylation signal. In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:13. In some aspects, the 3′UTR is SEQ ID NO:13.


In some aspects, the 3′UTR comprises two copies of a human beta-globin polyadenylation signal. In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:14. In some aspects, the 3′UTR is SEQ ID NO:14.


In some aspects, the 3′UTR comprises one copy of a Xenopus laevis beta-globin polyadenylation signal and one copy of a human beta-globin polyadenylation signal. In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO: 15. In some aspects, the 3′UTR is SEQ ID NO:15.


In some aspects, the 3′UTR further comprises a poly(A) tail comprising 100 to 120 adenine nucleotides, i.e., 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 adenine nucleotides.


In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:16. In some aspects, the 3′UTR is SEQ ID NO:16.


In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:17. In some aspects, the 3′UTR is SEQ ID NO:17.


In some aspects, the 3′UTR comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:18. In some aspects, the 3′UTR is SEQ ID NO:18.


Provided herein is an expression vector comprising a synthetic enhancer comprising a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:12. In some aspects, the expression vector comprises a synthetic enhancer comprising the nucleic acid sequence of SEQ ID NO: 12. In some aspects, the synthetic enhancer comprises multiple contiguous copies of the nucleic acid sequence, such as, for example, 1, 2, 3, 4, 5, or more contiguous copies. In some aspects, the synthetic enhancer comprises 3 contiguous copies of the nucleic acid sequence. In some aspects, the synthetic enhancer comprises a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:46. In some aspects, the synthetic enhancer comprises the nucleic acid sequence of SEQ ID NO:46.


Provided herein is an expression vector comprising a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39. In some aspects, the expression vector comprises the nucleic acid sequence of SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39. In some aspects, a nucleic acid sequence at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39, or the nucleic acid sequence of SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39, comprises all regulatory elements in an expression cassette located 5′ to a nucleic acid sequence of interest in the expression vector.


V. Compositions

Provided herein is a composition comprising an expression vector or bacterial sequence-free vector as described herein.


A variety of methods are known in the art and are suitable for introduction of nucleic acids into a cell. Examples include, but are not limited to, electroporation, calcium phosphate mediated transfer, nucleofection, sonoporation, heat shock, magnetofection, liposome mediated transfer, microinjection, microprojectile mediated transfer (nanoparticles), cationic polymer mediated transfer (DEAE-dextran, polyethylenimine, polyethylene glycol (PEG), and the like), or cell fusion.


Nanoparticle carriers such as liposomes, micelles, and polymeric nanoparticles have been investigated for improving bioavailability and pharmacokinetic properties of therapeutics via various mechanisms, for example, the enhanced permeability and retention (EPR) effect.


Further improvement can be achieved by conjugation of targeting ligands onto nanoparticles to achieve selective delivery to a target cell. For example, receptor-targeted nanoparticle delivery has been shown to improve therapeutic responses both in vitro and in vivo. Targeting ligands that have been investigated include folate, transferrin, antibodies, peptides, and aptamers. Additionally, multiple functionalities can be incorporated into the design of nanoparticles, e.g., to enable imaging and to trigger intracellular drug release.


In some aspects, the composition further comprises a delivery agent. In some aspects, the delivery agent is a nanoparticle. In some aspects, the delivery agent is selected from the group consisting of liposomes, non-lipid polymeric molecules, endosomes, and any combination thereof.


In some aspects, the delivery agent (e.g., a nanoparticle) comprises a targeting ligand.


In some aspects, the composition further comprises a physiologically acceptable carrier, excipient, or stabilizer. See, e.g., Remington: The Science and Practice of Pharmacy, 22nd ed. (2013). Acceptable carriers, excipients, or stabilizers can include those that are nontoxic to a subject. In some aspects, the composition or one or more components of the composition are sterile. A sterile component can be prepared, for example, by filtration (e.g., by a sterile filtration membrane) or by irradiation (e.g., by gamma irradiation).


In some aspects, the composition comprising an expression vector or bacterial sequence-free vector as described herein is a pharmaceutical composition further comprising a pharmaceutically acceptable carrier.


An excipient of the present invention can be described as a “pharmaceutically acceptable” excipient when added to a pharmaceutical composition, meaning that the excipient is a compound, material, composition, salt, and/or dosage form which is, within the scope of sound medical judgment, suitable for contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problematic complications over the desired duration of contact commensurate with a reasonable benefit/risk ratio. In some aspects, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized international pharmacopeia for use in animals, and more particularly in humans. Various excipients can be used. In some aspects, the excipient can be, but is not limited to, an alkaline agent, a stabilizer, an antioxidant, an adhesion agent, a separating agent, a coating agent, an exterior phase component, a controlled-release component, a solvent, a surfactant, a humectant, a buffering agent, a filler, an emollient, or combinations thereof. Excipients in addition to those discussed herein can include excipients listed in, though not limited to, Remington: The Science and Practice of Pharmacy, 22nd ed. (2013). Inclusion of an excipient in a particular classification herein (e.g., “solvent”) is intended to illustrate rather than limit the role of the excipient. A particular excipient can fall within multiple classifications.


A pharmaceutical composition of the disclosure is formulated to be compatible with its intended route of administration. Exemplary routes of administration include enteral, topical, parenteral, oral, pulmonary, intranasal, intravenous, epidermal, transdermal, subcutaneous, intramuscular, or intraperitoneal administration, or inhalation. “Parenteral administration” as used herein means modes of administration other than enteral and topical administration, usually by injection or infusion, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intralymphatic, intralesional, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural, intrapleural, and intrasternal injection and infusion, as well as in vivo electroporation. In some aspects, the formulation is administered via a non-parenteral route, in some aspects, orally. Other non-parenteral routes include a topical, epidermal, or mucosal route of administration, for example, intranasally, vaginally, rectally, sublingually or topically.


In some aspects, the pharmaceutical composition is lyophilized.


VI. Therapeutic Uses and Methods

Provided herein is a method of treating a disease or disorder in a subject in need thereof, comprising administering an expression vector, bacterial sequence-free vector, or pharmaceutical composition as described herein to the subject.


The expression vector, bacterial sequence-free vector, or composition can be administered to a subject by any route of administration that is effective for treating the disease or disorder.


In some aspects, the administering is by enteral, topical, parenteral, oral, pulmonary, intranasal, intravenous, epidermal, transdermal, subcutaneous, intramuscular, intrathecal, or intraperitoneal administration, inhalation, or cerebrospinal fluid (CSF)-based delivery via intracerebroventricular (ICV) injection, cisterna magna administration (ICM), or lumbar intrathecal puncture (LIT).


In some aspects, the administering is by parenteral or non-parenteral administration.


In some aspects, the parenteral administration is by injection or infusion.


In some aspects, the parenteral administration is by intravenous, intramuscular, intraarterial, intrathecal, intralymphatic, intralesional, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, retroorbital, intracerebroventricular, subarachnoid, intraspinal, epidural, intrapleural, or intrasternal injection or infusion, or by in vivo electroporation, nucleofection, microbubble, or ultrasound.


In some aspects, the non-parenteral administration is oral, topical, epidermal, mucosal, intranasal, vaginal, rectal, or sublingual.


In some aspects, the administering is by oral, pulmonary, intranasal, intravenous, epidermal, transdermal, subcutaneous, intramuscular, or intraperitoneal administration, or by inhalation.


In some aspects, the administering is by oral, nasal, or pulmonary administration. In some aspects, the administering is by nasal administration.


Administering can be performed, for example, once, a plurality of times, and/or over one or more extended periods. In some aspects, the administering is one time, two times (e.g., a first administration followed by a second administration about 1, about 2, about 3, about 4 or more weeks later), once about every week, once about every month, once about every 2 months, once about every 3 months, once about every 4 months, once about every 6 months, once about every year, or once about every decade.


Provided herein is a method of gene editing comprising inserting a nucleic acid sequence of interest from an expression vector, bacterial sequence-free vector, or pharmaceutical composition as described herein into a target site for gene editing.


In some aspects, the inserting is by non-homologous end joining.


In some aspects, the inserting is by homology directed repair. In some aspects, the nucleic acid sequence of interest is flanked by 5′ and 3′ homology arms as described herein.


In some aspects, the nucleic acid sequence of interest is homologous to the target site for gene editing and comprises one or more nucleotide insertions, deletions, inversions, or rearrangements as compared to the target site.


In some aspects, the nucleic acid sequence of interest is non-homologous to the target site for gene editing.


In some aspects, the nucleic acid sequence of interest restores a missing function, corrects an abnormal function, or provides an additional function associated with the target site for gene editing.


In some aspects, the nucleic acid sequence of interest is for knockout of gene expression associated with the target site for gene editing.


In some aspects, the method of gene editing is a method of treating a disease or disorder in a subject in need thereof.


In some aspects, the nucleic acid sequence of interest is for in vivo gene editing.


In some aspects, the nucleic acid sequence of interest is for in vitro gene editing.


In some aspects, the nucleic acid sequence of interest is for ex vivo gene editing (e.g., cell therapy, such as CAR T cell therapy).


In some aspects, the method is an in vitro method. In some aspects, the in vitro method further comprises administering the expression vector, bacterial sequence-free vector, or pharmaceutical composition to cells (e.g., for in vitro or ex vivo gene editing). In some aspects, the in vitro method further comprises administering an endonuclease for gene editing, or a genome editing system or components thereof (e.g., Cas endonuclease and gRNA for a CRISPR-Cas system) to the cells. In some aspects, the genome editing system is a CRISPR-Cas, TALEN, ZFN, or meganuclease gene editing system.


In some aspects, the method is an in vivo method. In some aspects, the in vivo method further comprises administering the expression vector, bacterial sequence-free vector, or pharmaceutical composition to a subject. In some aspects, the in vivo method further comprises administering an endonuclease for gene editing, or a genome editing system or components thereof (e.g., Cas endonuclease and gRNA for a CRISPR-Cas system) to the subject. In some aspects, the genome editing system is a CRISPR-Cas, TALEN, ZFN, or meganuclease gene editing system.


The endonuclease for gene editing, or the genome editing system or components thereof, can be administered by any methods described herein or as known in the art for administering nucleic acid sequences and/or polypeptides to cells or subjects, including through electroporation or vectors as applicable to the administration. For example, in aspects comprising a CRISPR-Cas system, RNA encoding Cas and/or gRNA can be administered, Cas and/or gRNA can be directly administered, bacterial sequence-free vectors or expression vectors as described herein can be administered that encode Cas and/or gRNA, or any other suitable vector known in the art can be administered that encode Cas and/or gRNA.


In some aspects, the nucleic acid of interest is provided in a linear covalently closed bacterial sequence-free vector (i.e., msDNA) as described herein. In some aspects, use of the linear covalently closed bacterial sequence-free vector in gene editing avoids any undesired non-homologous end joining because the ends of the bacterial sequence-free vector are closed and non-reactive with double strand breaks. In some aspects, use of the linear covalently closed bacterial sequence-free vector in gene editing enhances homology-directed repair. In some aspects, the recombination rate for homology-directed repair is higher when the nucleic acid sequence of interest is provided by a linear covalently closed bacterial sequence-free vector as described herein than when the nucleic acid sequence of interest is provided by a circular supercoiled vector.


The following examples are offered by way of illustration and not by way of limitation.


EXAMPLES
Example 1—Expression Vectors Containing a Chimeric Intron or a 5′UTR
A. Expression Vectors

A polygenic expression vector was prepared by replacing the eGFP coding sequence of a parent ministring expression vector (Mediphage Bioceuticals, Inc., Toronto, CA, U.S. Pat. Nos. 9,290,778 and 9,862,954), pGL2-SS*-CAG-eGFP-BGpA-SS*, with an expression cassette encoding enhanced green fluorescent protein (eGFP) and the NanoLuc® luciferase reporter modified with a secretion sequence for extracellular expression (NLuc, Promega Corporation) between the two specialized Super Sequence (SS*) sites of the parent vector.


The expression cassette of the parent vector and the polygenic vector contained a CAG promoter, which is a synthetic promoter that includes a cytomegalovirus (CMV) enhancer, a promoter from chicken β-actin, and a chimeric intron.


A map of the polygenic expression vector is shown in FIG. 1 (pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS*), which contains a specialized Super Sequence site (SS*) having recombinase target sequences (telL, FRT (minimal), and loxP) flanking a polygenic expression cassette containing the CAG promoter, sequences encoding enhanced green fluorescent protein (eGFP) and secreted nano-luciferase (SecNLuc) connected by P2A and T2A self-cleaving peptides (SecNLuc-2A-eGFP), and a rabbit beta-globin polyadenylation signal (BGpA). The nucleic acid sequence for the vector is provided as SEQ ID NO: 19.


A second polygenic expression vector was prepared by cloning the same eGFP and Nluc sequences along with a 5′UTR into the pcDNA3.1 vector (Thermo Fisher Scientific). A map of the expression vector is shown in FIG. 2 (vector pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA), which contains a polygenic expression cassette containing the CMV enhancer/promoter, sequences encoding eGFP and SecNLuc connected by a P2A self-cleaving peptide (SecNLuc-P2A-eGFP), and a bovine growth hormone polyadenylation signal (bGHpA). The nucleic acid sequence for the vector is provided as SEQ ID NO:20.


B. Transfection of HEK293 Cells

Adherent human embryonic kidney 293 (HEK293) cells were seeded in a 24-well plate at 1×105 cells/well.


A complex of expression vector (1 μg) and lipofectamine (3 μL) was prepared and incubated using standard operating procedures for each of (1) pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS*, (2) pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA, and (3) pGL2-SS*-CAG-eGFP-BGpA-SS*.


The three complexes were used to separately transfect HEK293 cells via electroporation in individual wells, which were then incubated for 48 hours. HEK293 cells in other wells were treated with 3 μL lipofectamine containing no plasmid as a negative control.


Cells were evaluated for cytoplasmic GFP expression and luciferase expression 48 hours after transfection.


C. Cytoplasmic GFP Expression

Cytoplasmic GFP expression was used as a measure of transfection efficiency and gene expression levels by the polygenic expression vectors. Expression was evaluated by fluorescent microscopy, and mean GFP expression/intensity of the experimental expression vectors (pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS* and pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA) was measured relative to the negative control (cells treated with lipofectamine and no plasmid) and the positive control (pGL2-SS*-CAG-eGFP-BGpA-SS*), also referred to herein as parental plasmid CAG-GFP, i.e., PP-CAG-GFP).


Live imaging of fluorescent cells under auto exposure mode showed that the experimental expression vectors produced GFP, with the chimeric intron of pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS*and the 5′UTR of pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA having similar expression. See FIGS. 3 and 4. Polygenic expression by the experimental expression vectors did not impact GFP expression based on mean relative fluorescence intensities as compared to the positive control. Id. The mean fluorescence intensity in cells transfected with the experimental expression vectors was at least 3-fold higher than negative control cells. See FIG. 4.


D. Luciferase Expression

Luciferase expression was evaluated by measuring the intensity of secreted luciferase in the media of transfected cells and negative control cells using the Nano-Glo® Luciferase Assay System (Promega) according to manufacturer protocols. Both experimental expression vectors expressed luciferase. See FIG. 5. The mean relative luciferase intensity in the media of cells transfected with the experimental expression vectors was at least 300-fold higher than in the media of negative control cells. Id.


Example 2—Expression Vectors Containing WPRE and Engineered 5′UTRs
A. Expression Vectors

A polygenic expression vector was prepared by cloning a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) between the sequence encoding eGFP and BGpA in the expression vector of FIG. 1. The map of the resultant expression vector is shown in FIG. 6 (pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS*). The nucleic acid sequence for the vector is provided as SEQ ID NO:21.


Another polygenic expression vector was prepared that contains a CMV enhancer/promoter and an engineered 5′UTR containing an internal minimal intron sequence (i.e., 5′UTR1, SEQ ID NO:2) in place of the CAG promoter in FIG. 6. The map of the resultant expression vector is shown in FIG. 7 (pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS*). The nucleic acid sequence for the vector is provided as SEQ ID NO:22.


A further polygenic expression vector was prepared that contains a CMV enhancer/promoter and an engineered 5′UTR containing an intron with an integrated MAR-5 (i.e., 5′UTR2, SEQ ID NO:5) in place of the CAG promoter in FIG. 6. The map of the resultant expression vector is shown in FIG. 8 (pGL2-SS*-CMV-UTR2-SecNLuc-2A-eGFP-WPRE-BGpA-SS*). The nucleic acid sequence for the vector is provided as SEQ ID NO:23.


B. Luciferase Expression Levels and Durability

Adherent HEK293 cells were detached, resolved in electroporation media, and counted at 1×106 cells/tube.


The expression vector (1 μg) was prepared and incubated with cells using standard operating procedures for each of (1) pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS* (see Example 1), (2) pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS*, (3) pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS*, and (4) pGL2-SS*-CMV-UTR2-SecNLuc-2A-eGFP-WPRE-BGpA-SS*.


HEK293 cells electroporated with puc57 plasmid lacking a mammalian expression cassette served as a negative control.


After electroporation, HEK293 cells were seeded and adhered to wells at 3×105 cells/well.


On days 2, 6, 10, 14, 17, 20, 27, and 34 after electroporation, luciferase expression was evaluated by measuring the intensity of secreted luciferase in 20 μL of cell culture media in triplicate for each of the four transfections and the negative control using the Nano-Glo® Luciferase Assay System (Promega) according to manufacturer protocols. Luciferase activity was measured using a BioTek® plate reader and displayed in Relative Luminometer Units (RLU). Statistical analysis of luciferase activity was performed by Student's T-test. See FIG. 9, showing expression levels in media from cells transfected with pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS* (pGL2-SecNLuc-eGFP), pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (WPRE), pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (5′UTR1+WPRE), or pGL2-SS*-CMV-UTR2-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (5′UTR2+WPRE) as compared to the negative control (Neg. Ctl. (no plasmid)). *=p<0.05, **=p<0.01, ***=p<0.001 and ****=p<0.0001.


Luciferase expression was detected throughout the duration of the experiment from cells transfected with any of the four expression vectors. pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS*, pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS*, and pGL2-SS*-CMV-UTR2-SecNLuc-2A-eGFP-WPRE-BGpA-SS* all showed significantly higher luciferase expression as compared to pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS*, with pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS* showing the highest enhancement of expression.


C. Vector Expansion to Daughter Cells and Luciferase Expression

HEK293 cells were transfected with the four expression vectors or the puc57 plasmid as a negative control, as described in part B of this example. Cells were passaged weekly for five passages. At the time of cell passaging, cells were re-seeded at ⅙ of the original cell density for passage numbers 1-3, and 1/10 of the original cell density for passage numbers 4-5. For each cell passage, secreted luciferase expression was measured 6-8 days after cell re-seeding as described in part B of this example. See FIG. 10, showing expression levels in media from cells transfected with the vectors as compared to the negative control at each passage number. Statistical analysis and p values were as noted in part B of this example.


Luciferase expression was detected from cells transfected with any of the four expression vectors at each passage number, showing that the vectors were passed down to daughter cells with durable expression of luciferase. pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS*, pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS*, and pGL2-SS*-CMV-UTR2-SecNLuc-2A-eGFP-WPRE-BGpA-SS* all showed significantly higher luciferase expression at each passage number as compared to pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS*, with pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS* showing the highest enhancement of expression.


In a subsequent study, msDNA expansion to daughter cells with durable expression of luciferase was also observed.


Briefly, msDNA was produced from pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS* in an inducible E. coli vector production system using methods described herein and in U.S. Pat. Nos. 9,290,778 and 9,862,954. Separate complexes with lipofectamine were prepared with (1) the msDNA (i.e., msDNA-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA) (2) the parental plasmid (i.e., pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS*), and (3) a conventional plasmid with a luciferase expression cassette (i.e., pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA). HEK293 cells were separately transfected with the vectors via electroporation in individual wells for a total of 0.25 pmol vector/well. Cells were passaged 7 times, with a 10-fold cell dilution at each passage. Relative luciferase intensity was determined on days 8, 15, 24, 31, 38, 45, and 52 for passage numbers 1, 2, 3, 4, 5, 6, and 7, respectively.


As shown in FIG. 11, pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (i.e., pDNA (CMV+U1+W)) and msDNA-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA (i.e., msDNA (CMV+U1+W) demonstrated durable transgene expression at much higher levels across all passage numbers than pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA (i.e., conventional plasmid containing no supersequence (conventional pcDNA)). **=p<0.01, ***=p<0.001 and ****=p<0.0001 as compared to the conventional plasmid dataset.


D. Vector Expansion to Daughter Cells and eGFP Expression


Cells transfected with pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS* (pGL2-SecNLuc-eGFP) or pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (5′UTR1+WPRE) and passaged according to part C of this example were analyzed for eGFP expression.


Imaging was performed 6 to 8 days after cell passaging for each passage number. Live cell imaging was performed using a BioTek® Cytation™ 5 plate reader. See FIG. 12A, showing representative photomicrographs of fluorescence in HEK-293 cells at passage numbers 1, 2, 3, and 5. eGFP expression was detected from cells transfected with either of the expression vectors at each passage number, showing that the vectors were passed down to daughter cells with durable expression of eGFP. pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS* showed a stronger fluorescent signal at each passage number as compared to pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS*, indicating a higher transfection efficiency.


One representative image was taken from each triplicate well for each expression vector, and eGFP expressing cells (GFP) were quantified by manual cell counting using ImageJ computer software. Statistical analysis of GFP′ cells was performed using a Student's t-test. See FIG. 12B, showing a line graph of GFP′ cells observed in the field of view from the triplicate live fluorescent images at each passage number (non-significant (ns)=p>0.05 due to variance in the triplicate images).


ImageJ software was used to manually select each GFP′ cell and measure the Mean Fluorescence Intensity (MFI) for each cell based on pixel intensity. To calculate the final MFI value for each cell, the following formula was used (Final MFI=Cell MFI−Background MFI). MFI measurements were obtained for at least 50 cells from each of the 3 images taken for each treatment group. All MFI measurements were then pooled and used to generate a dot plot. Statistical analysis was performed using a Student's t-test. See FIG. 12C, showing a dot plot of MFI at passage number 5, n=257 cells for pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS* and n=414 cells for pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS*, ****=p<0.0001. The underlying bar graph in FIG. 12C shows the average MFI value for all measured GFP′ cells. The MFI of pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS* was measured to be roughly 3-fold higher than pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS*.


Example 4—Nonviral Delivery with msDNA in Animal Models

Studies were conducted to assess targeted delivery of msDNA to the liver, retina, and brain. For each target tissue, different routes of administration (ROAs), doses, dosing regimens, and delivery techniques were evaluated. Secreted luciferase expression kinetics, cytoplasmic eGFP expression levels, and transfection efficiency (TE) were evaluated. In addition, tolerability to the msDNA was evaluated after single or multiple injections by physiological assessment, tissue morphology analysis, plasma cytokine assay, and liver toxicity analysis.


Across all delivery techniques, msDNA showed strong efficacy and tolerability profiles in the brain and liver tissues via multiple intracerebroventricular (ICV) or hydrodynamic injections (HDI) and intravenous (IV) injections, respectively. Adult mice treated with msDNA showed sustained secreted luciferase levels (>108 RLU/mg protein) after a single IV injection. The msDNA showed durable (>100 days) expression in the liver tissue after a single IV injection. Significant biodistribution to deep tissue regions was also demonstrated, with 80% to 97% TE in brainstem, cerebellum, cortex, and thalamus. The triple ICV injections with the nanocarrier-msDNA complex did not show any side effects.


A. Liver

1. Expression of Luciferase from a Single High Dose, 2 mg/kg (50 μg), Hydrodynamic Injection of Carrier-Free Naked Plasmid


C57BL/6J male wild-type adult 8-12 weeks old mice were administered a single high dose of 2 mg/kg (50 μg) of carrier-free pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA (positive control with no supersequence), pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS*, pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS*, or pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* by hydrodynamic injection (HDI) via the tail vein. The plasma of the treated mice was collected on days 1, 3, 7, 10, 15, 22, 28, 42, and 56 after HDI to examine luciferase gene expression. On day 1 post-vector administration, all mice exhibited high levels of luciferase expression (108-109 RLU per mg of plasma protein). On day-7, the pCAGLuc and the pCAGLuc-WPRE treated mice produced 107-108 RLU/mg of plasma protein, but the pGSNLuc-WPRE treated mice yielded lower luciferase levels (˜106 RLU/mg protein). After 8-weeks post-vector administration, all mice exhibited low levels of luciferase expression (around 105 RLU/mg protein). The rapid drop of luciferase levels may have resulted from humoral or cell-mediated immune responses induced in the plasmid treated mice. See FIGS. 13-14.


2. Expression of Luciferase from a Single Low Dose, 0.2 mg/kg (5 μg), Hydrodynamic Injection of Carrier-Free Naked Plasmid


To test dose response of plasmid DNA following nonviral gene delivery in animal models, C57BL/6J male wild-type adult 8-12 weeks old mice were administered a single low dose of 0.2 mg/kg (5 μg) of carrier-free pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA (positive control with no supersequence, 2 mice), pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS* (2 mice), or pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* (2 mice) by HDI via the tail vein. An additional 2 mice were not injected and served as a negative control. The plasma of the mice was collected on days 1, 3, 7, 10, 15, 22, 28, 42, and 56 after HDI to examine luciferase gene expression. The mice treated with pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS* and pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* showed sustained high levels of luciferase expression (107-108 RLU/mg protein) more than 8 weeks post-vector administration and more than 100-fold higher expression than the conventional control plasmid having an isogenic expression cassette but with no supersequence (SS). See FIG. 15.


In vivo whole body bioluminescence imaging (BLI) with IVIS was conducted by injecting a 1:5 dilution of fluorofurimazine (FFz) intraperitoneally 24 hours after HDI of the vectors. The BLI was shown to correlate with the level of luciferase in the plasma samples (data not shown).


3. Expression of Luciferase from a Single Low Dose, 0.2 mg/kg (5 μg), Hydrodynamic Injection of Carrier-Free Naked msDNA


msDNAs were produced from pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* and pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS* in an inducible E. coli vector production system using methods described herein and in U.S. Pat. Nos. 9,290,778 and 9,862,954.


C57BL/6J male wild-type adult 8-12 weeks old mice were administered a single low dose of 0.2 mg/kg (5 μg) of carrier-free pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA (positive control, 5 mice), msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA (5 mice), or msDNA-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA (5 mice) by hydrodynamic injection (HDI) via the tail vein. An additional 2 mice were not injected and served as a negative control. The plasma of the treated mice was collected on days 1, 3, 7, 10, 15, 22, 28, 42, and 56 after HDI to examine luciferase gene expression.


Similarly to plasmid treated mice, the msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA treated mice produced sustained high levels of luciferase expression (107-108 RLU/mg protein) more than 8 weeks post-vector administration, whereas the luciferase expression in msDNA-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA treated mice dropped to low levels (˜106 RLU/mg protein) in less than one month. The rapid drop of luciferase expression in msDNA-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA treated mice was likely due to silencing of the CMV promoter in hepatocytes.


Luciferase gene expression was confirmed via whole body live imaging with IVIS.


Table 1, below, provides data from individual mice on days 1, 7, and 28 for luciferase expression in plasma samples (RLU/mg protein) and as detected by BLI (photons/see).












TABLE 1






Day 1
Day 7
Day 28



RLU/mg
RLU/mg
RLU/mg


Vector
photons/sec
photons/sec
photons/sec







pcDNA-CMV-
3.92 × 108
4.38 × 106
2.18 × 106


5′UTR-SecNLuc-
670
7.9
11.6


P2A-eGFP-


bGHpA


msDNA-CMV-
2.49 × 108
5.54 × 106
8.30 × 105


UTR1-SecNLuc-
505
18
4.81


2A-eGFP-WPRE-


BGpA


msDNA-CAG-
1.53 × 108
3.76 × 107
2.55 × 107


SecNLuc-2A-
325
188
178


eGFP-WPRE-


BGpA









As shown in FIG. 16, mice treated with msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA demonstrated a 10-fold increase in luciferase expression as compared to the parental plasmid, pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* at day 56 after HDI.


The data show that nonviral delivery with msDNA in mice was highly efficient and the resulting gene expression was stable for more than two months.


4. Expression of eGFP from a Single Low Dose, 0.2 mg/kg (5 μg), Hydrodynamic Injection of Carrier-Free Naked msDNA


Intracellular cytoplasmic eGFP expression levels were evaluated by ELISA. Briefly, liver samples were collected from mice at 56 days after HDI with the single low dose of 0.2 mg/kg (5 μg) of the vectors as described in part 3 and homogenized for protein extraction. Total protein concentrations were determined from the liver lysates. GFP protein levels were then analyzed by ELISA.


As evident by comparing the data in FIG. 17 to the data for luciferase, cytoplasmic GFP expression levels directly correlated to secretion levels of luciferase from the same constructs.


As shown in FIG. 18, single HDI tail-vein injection of 5 μg of carrier-free msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BgpA showed strong and durable cytoplasmic eGFP expression in the liver tissue for a minimum of 56 days after HDI.


5. Expression of msDNA in Liver after Low Dose Single Intravenous Injection and Tolerability Profile


C57BL/6J male wild-type adult 8-12 weeks old mice were administered 0.3 mg/kg pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA (positive control with no supersequence), msDNA-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA, pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS*, msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA, or pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* lipoplexed with a lipid nanoparticle carrier through a single intravenous tail vein injection. The carrier also served as a negative vehicle control.


In vivo whole body bioluminescence imaging (BLI) with IVIS was conducted as described above on days 1, 3, 10, 30, 58, 92, 119, and 174 after the single IV injection of the vectors. As shown in FIG. 19, the msDNA constructs outperform the precursor and conventional plasmids and show high and sustained luciferase secretion.


Serum alanine aminotransferase (ALT) level, liver cytotoxicity, and cytokine responses also were evaluated following injection of the vectors. Precursor plasmid and msDNA containing the CAG promoter showed a higher tolerability profile compared to constructs containing the CMV promoter. However, msDNA containing the CMV promoter showed dramatically lower cytokine and liver toxicity responses compared to the CMV precursor parent and the conventional plasmid. See Table 2, below, showing cytokine concentrations (pg/mL) and enzyme concentrations (U/L) of liver function markers at 4 hours and 14 days after injection.












TABLE 2









DNA Dose
Group Average - Concentration (pg/ml)

















(mg/kg)
IFN-α
IFN-γ
IL-1β
IL-6
L-12 p70
IP-10





4 h
Vehicle (Control)

40.89
1.39
5.55
29.5
97.68
112.77



LNP-2G ppDNA-
0.3
27506.75
22697.04
491.49
329619.3
610.06
195642.5



CMV-



SecretedNanoLuc



LNP-2G msDNA-
0.3
11175.01
1195.49
27.66
74947.2
308.78
101806.5



CMV-



SecretedNanoLuc



LNP-2G msDNA-
0.3
10946.45
1025.52
30.9
64315.92
271.29
120918.1



CAG-



SecretedNanoLuc


DAY
Vehicle(control)

35.79
1.25
4.63
22.38
106.9
53.45


14
LNP-2G ppDNA-
0.3
26.71
1.53
4.44
24.38
89.53
98.53



CMV-



SecretedNanoLuc



LNP-2G msDNA-
0.3
34.58
2.18
4.7
24.19
98.62
84.34



CMV-



SecretedNanoLuc



LNP-2G msDNA-
0.3
46.42
1.46
4.98
26.34
105.96
95.04



CAG-



SecretedNanoLuc


















Group Average -





Group Average - Concentration (pg/ml)
Concentration (U/L)



















MCP-1
MIP-1α
MIP-1β
TNF-α
AST
ALT
GLDH







4 h
Vehicle (Control)
7.38
1.47
53.28
9
54.8
32.3
14.9




LNP-2G ppDNA-
41208.92
1529.52
40716.23
10770.27
617
276.3
165.9




CMV-




SecretedNanoLuc




LNP-2G msDNA-
25085.67
734.63
19778.17
1864.67
149.3
54.1
31.3




CMV-




SecretedNanoLuc




LNP-2G msDNA-
18144.14
568.99
19377.7
1296.14
158.3
46.1
37.4




CAG-




SecretedNanoLuc



DAY
Vehicle(control)
4.85
0.74
35.82
9.14
49.6
22.5
8.5



14
LNP-2G ppDNA-
6.2
0.98
37.21
14.05
65.9
24.6
10.4




CMV-




SecretedNanoLuc




LNP-2G msDNA-
6.46
1.28
50.41
11.1
73.9
35.5
19.3




CMV-




SecretedNanoLuc




LNP-2G msDNA-
6.34
1.84
46.84
13.63
67.4
26.
10.3




CAG-




SecretedNanoLuc










B. Brain

msDNAs were produced from pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* and pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS* in an inducible E. coli vector production system using methods described herein and in U.S. Pat. Nos. 9,290,778 and 9,862,954.


Adult wild type mice were administered msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA formulated with a nanocarrier (3 mice) or msDNA-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA formulated with a nanocarrier (3 mice) by three intracerebroventricular (ICV) injections of 1 μg DNA each via implanted cannula on days 0, 14, and 28 after implantation. Animals were euthanized on day 42 after implantation, and sagittal brain sections were collected from the cortex, thalamus, brainstem, and cerebellum.



FIG. 20 shows cortex, thalamus, brainstem and cerebellum sections from Mouse #1 of the treatment group injected with msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA. Transfection efficiencies for msDNA in the sections were determined to be 81.9%, 73.0%, 69.2%, and 96.0% in the cortex, thalamus, brainstem, and cerebellum (Purkinje cells), respectively. Transfection efficiencies were calculated as the percentage of cells positive for both GFP and DAPI among all DAPI-positive cells.


Comparisons between GFP expression in the cortex, thalamus, and brainstem sections from Mouse #1 of the treatment group injected with msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA and a mouse injected with control plasmid, pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA, showed that transfection efficiencies and resultant GFP expression were higher with msDNA versus the conventional plasmid (data not shown).



FIG. 21 shows sections from the cortex and thalamus and FIG. 22 shows sections from the brainstem and cerebellum from Mouse #2 of the treatment group injected with msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA. Neurons were marked with the neuronal marker NeuN and transfected cells were shown to express GFP. Transfection efficiencies were determined to be 99.6%, 98.8%, 98.5%, and 80.8% in the cortex, thalamus, brainstem, and the cerebellum (Purkinje cells), respectively. Transfection efficiencies were calculated as the percentage of cells positive for both GFP and NeuN among all NeuN-positive cells.



FIG. 23 shows sections from the cortex and thalamus and FIG. 24 shows sections from the brainstem and cerebellum from Mouse #1 of the treatment group injected with msDNA-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA. Neurons were marked with the neuronal marker NeuN and transfected cells were shown to express GFP. Transfection efficiencies were determined to be 91.1%, 88.8%, 73.7%, and 92.1% in the cortex, thalamus, brainstem, and the cerebellum (Purkinje cells), respectively. Transfection efficiencies were calculated as the percentage of cells positive for both GFP and NeuN among all NeuN-positive cells.


Table 3 below summarizes the transfection efficiencies discussed above for mice injected with msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA (“CAG-WPRE”) or msDNA-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA (“CMV-WPRE”).











TABLE 3









Brain Region Transfection Efficiency (%)

















Cerebellum


Treatment




(Purkinje


Group
Animal
Cortex
Thalamus
Brainstem
cells)















CAG-WPRE
Mouse #1
81.9
73.0
69.2
96.0


CAG-WPRE
Mouse #2
99.6
98.8
98.5
80.8


CMV-WPRE
Mouse #1
99.1
88.8
73.7
92.1









Repeated ICV injections via implanted cannula resulted in good overall tissue integrity with no signs of cytotoxicity or neurodegeneration.


The data show that msDNA was redosable and resulted in high transfection efficiencies, biodistribution, and transgene expression in multiple brain regions with no morphological adverse effects.


Example 5—Efficacy and Safety in Human Cells

pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA (positive control), msDNA-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA, pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS*, msDNA-CAG-SecNLuc-2A-eGFP-WPRE-BGpA, or pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS* were each lipoplexed with a lipid nanoparticle carrier.


Human T cells (Pan-T(TA+)) and hepatocytes (Huh7) were transfected by 0.3 μg/mL or 1 μg/mL doses of the lipoplexed vectors.


The lipoplexed msDNA vectors showed high expression in both cell types on days 3 and 5 after transfection as compared to the parental and conventional plasmids. See FIGS. 25-26.


Lipoplexed msDNA was also well-tolerated in human peripheral blood mononuclear cells (PBMCs) ex vivo. In particular, msDNA showed significantly lower cytokine profile levels in human PBMCs compared to conventional plasmid (data not shown).


Example 6—Homology Directed Repair with msDNA

Studies were conducted to assess homology directed repair mediated by msDNA as compared to conventional plasmid DNA.


A conventional plasmid was produced with an expression cassette containing a gene of interest (GOI) flanked by 5′ and 3′ homology arms (Plasmid DNA HDR-GOI-HDR).


An msDNA expression vector was produced with the same HDR-GOI-HDR sequence as used in the conventional plasmid flanked by two Super Sequence sites. msDNA containing the HDR-GOI-HDR (msDNA HDR-GOI-HDR) was then produced in an inducible E. coli vector production system using methods described herein and in U.S. Pat. Nos. 9,290,778 and 9,862,954.


Induced pluripotent stem cells (iPSCs) were transfected with equal molarities of either Plasmid DNA HDR-GOI-HDR or msDNA HDR-GOI-HDR along with a CRISPR gene editing system to mediate homology directed repair knock-in (HDR KI) of the GOI.


Homology directed repair knock-in (HDR KI) efficiencies of the GOI was evaluated with fluorescence activated cell sorting (FACS) by counting the total number of integrated healthy iPSCs that expressed the GOI on their surface relative to the total number of transfected cells on days 3, 7, and 15 after transfection. As shown in Q3 of FIGS. 27B, 28B, and 29A, the HDR KI efficiencies were 8.60%, 7.76%, and 8.05%, respectively, for the conventional plasmid at 3, 7, and 15 days after transfection, respectively. As shown in Q3 of FIGS. 27C, 28C, and 29B, higher HDR KI efficiencies of 15.4%, 15.4%, and 15.7%, respectively, were observed for msDNA at 3, 7, and 15 days after transfection, respectively.


Example 7—Expression Vectors Containing Regulatory Sequence Modifications
A. Expression Vectors

Expression vectors containing two Super Sequence sites, a CMV enhancer/promoter, an engineered 5′UTR containing an internal minimal intron sequence, and a polygenic expression cassette encoding eGFP and Nluc as described in Examples 1 and 2 were also designed to contain a 3′UTR containing two copies of a human beta-globin polyadenylation signal and 120 adenine nucleotides (i.e., 2huBGpA-A120, SEQ ID NO: 17) and one or more of: (1) a synthetic enhancer (i.e., Enhancer-1 (E1), SEQ ID NO: 12) located at the 5′ end of the CMV enhancer, (2) a WPRE located at the 5′ end of the 3′UTR, (3) a SRF-UCOE located at the 3′ end of the 5′ Super Sequence; and (4) a human CSP-B MAR (huMAR) located at the 3′ end of eGFP. Maps of the designed vectors are shown in FIGS. 30-38. FIG. 30 shows a map of the expression vector containing the 3′UTR (SS*-CMV-UTR1-SecNLuc-2A-eGFP-3′UTR[2hBGpA-A120]-SS*, SEQ ID NO: 24). FIG. 31 shows a map of the expression vector containing the E1 and 3′UTR (SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-3′UTR[2hBGpA-A120]-SS*, SEQ ID NO: 25). FIG. 32 shows a map of the expression vector containing the E1, WPRE, and 3′UTR (SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR[2hBGpA-A120]-SS*, SEQ ID NO: 26). FIG. 33 shows a map of the expression vector containing the UCOE, E1, WPRE, and 3′UTR (SS*-UCOE-E1-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR[2hBGpA-A120]-SS*, SEQ ID NO: 27). FIG. 34 shows a map of the expression vector containing the E1, huMAR, and 3′UTR (SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-huMAR-3′UTR[2hBGpA-A120]-SS*, SEQ ID NO: 28). FIG. 35 shows a map of the expression vector containing the UCOE, E1, huMAR, and 3′UTR (SS*-UCOE-E1-CMV-UTR1-SecNLuc-2A-eGFP-huMAR-3′UTR[2hBGpA-A120]-SS*, SEQ ID NO: 29). FIG. 36 shows a map of the expression vector containing the UCOE, E1, WPRE, and 3′UTR (SS*-UCOE-E1-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR[2hBGpA-A120]-SS*, SEQ ID NO: 30). FIG. 37 shows a map of the expression vector containing the E1, huMAR, WPRE, and 3′UTR (SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-huMAR-WPRE-3′UTR[2hBGpA-A120]-SS*, SEQ ID NO: 31). FIG. 38 shows a map of the expression vector containing the UCOE, E1, huMAR, WPRE, and 3′UTR (SS*-UCOE-E1-CMV-UTR1-SecNLuc-2A-eGFP-huMAR-WPRE-3′UTR[2hBGpA-A120]-SS*, SEQ ID NO: 32).


B. Luciferase Expression Levels

HEK293 cells were separately transfected with (1) a conventional plasmid, pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA as shown in FIG. 2, (2) SS*-CMV-UTR1-SecNLuc-2A-eGFP-3′UTR[2hBGpA-A120]-SS*, (3) S*-E1-CMV-UTR1-SecNLuc-2A-eGFP-3′UTR[2hBGpA-A120]-SS*, and (4) SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR[2hBGpA-A120]-SS* using standard operating procedures.


On days 2, 3, 7, 10, 14, 21, and 28 after electroporation, luciferase expression was evaluated by measuring the intensity of secreted luciferase from the media of cultured cells as described in Example 2B. See FIG. 39, showing expression levels in media from cells transfected with pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA (Conventional pDNA CMV-U), SS*-CMV-UTR1-SecNLuc-2A-eGFP-3′UTR[2hBGpA-A120]-SS* (A: CMV-U1-3′UTR), SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-3′UTR[2hBGpA-A120]-SS* (B: E1-CMV-U1-3′UTR), and SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR[2hBGpA-A120]-SS* (C: E1-CMV-U1-WPRE-3′UTR).


As shown in FIG. 39, luciferase expression was increased and durable in msDNA expression vectors containing the 3′UTR as compared to the conventional plasmid having an identical promoter and polygenic expression cassette. Expression was further increased with addition of E1 (A vs B) and WPRE (B vs C) genetic elements to the msDNA expression vectors, and the additive effects of the E1 and WPRE genetic elements resulted in the highest luciferase expression associated with construct C. Statistical analysis was performed using a t-test. *=p<0.05 and **=p<0.01.


C. Vector Expansion to Daughter Cells and Luciferase Expression

HEK293 cells were transfected with the four expression vectors described in part B of this example. Cells were passaged every 7 days for five passages. At the time of cell passaging, cells were re-seeded at 1/10 of the original cell density. For each cell passage, secreted luciferase expression was measured as described in Example 2B. See FIG. 40, showing expression levels in media from cells transfected with the msDNA expression vectors as compared to the conventional plasmid. Statistical analysis and p values were as noted in part B of this example.


Luciferase expression was detected from cells transfected with any of the msDNA expression vectors at each passage number, showing that the vectors were passed down to daughter cells with durable expression of luciferase.


As shown in FIG. 40, the additive effects of the E1 and WPRE genetic elements resulted in the highest luciferase expression associated with construct C at each passage number, and the most durable expression following multiple passages.


Example 8—Expression Vectors Containing Synthetic Promoter Sequences
A. Expression Vectors

Five synthetic promoter sequences were produced: (1) CAG [E1×3+CBA promoter+intron] (SEQ ID NO: 35), containing three copies of the synthetic enhancer E1 (i.e., 3 copies of SEQ ID NO: 12), a chicken β-actin promoter, and chimeric intron, (2) CAG [E2+CBA promoter+intron] (SEQ ID NO: 36), containing E2 (U100), a chicken β-actin promoter, and chimeric intron, (3) CAG [E1×3+CBA promoter+UTR1] (SEQ ID NO: 37), containing three copies of the synthetic enhancer E1, a chicken β-actin promoter, and 5′UTR1 (i.e., SEQ ID NO: 2), (4) CAG [E2 (U100)+CBA promoter+UTR1] (SEQ ID NO: 38), containing E2 (U100), a chicken β-actin promoter, and 5′UTR1, and (5) CMV enhancer-EF1-UTR1 (SEQ ID NO: 39), containing a CMV enhancer, an EF1a short promoter, and 5′UTR1.


A conventional plasmid was produced containing a CMV enhancer, a chicken β-actin promoter, and chimeric intron and a polygenic expression cassette encoding eGFP and Nluc as described in Examples 1 and 2. A map of the conventional plasmid is shown in FIG. 41 (pGL2-CAG-SecNLuc-2A-eGFP-WPRE-bGlobin polyA, SEQ ID NO: 34).


An msDNA expression vector was produced containing two Super Sequences sites, a CMV enhancer, a chicken β-actin promoter, chimeric intron, a polygenic expression cassette encoding eGFP and Nluc, WPRE, and 3′UTR. A map of the vector is shown in FIG. 42 (4-1 pGL2-SS*-CAG [CMV enhancer+CBA Promoter+intron]-SecNLuc-2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*, SEQ ID NO: 40).


Five msDNA expression vectors were produced containing two Super Sequences sites, a polygenic expression cassette encoding eGFP and Nluc, WPRE, and 3′UTR along with one of synthetic promoters (1)-(5) as described above, with respective vector maps shown in FIG. 43 (4-2 pGL2-SS*-CAG [E1 X3+CBA promoter+intron]-SecNLuc-2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*, SEQ ID NO: 41), FIG. 44 (4-3 pGL2-SS*-CAG [E2(U100)+CBA promoter+intron]-SecNLuc-2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*, SEQ ID NO: 42), FIG. 45 (4-4 pGL2-SS*-CAG [E1 X3+CBA promoter+UTR1]-SecNLuc-2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*, SEQ ID NO: 43), FIG. 46 (4-5-pGL2-SS*-CAG [E2 (U100)+CBA promoter+UTR1]-SecNLuc-2A-eGFP-WPRE-3′UTR (108 to 120 polyA)-SS*, SEQ ID NO: 44), and FIG. 47 (4-6-pGL2-SS*-CMV enhancer-EF1-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*, SEQ ID NO: 45).


B. Luciferase Expression Levels

HEK293 cells were seeded in a 24-well plate at 1×105 cells/well and separately transfected with a complex of lipofectamine and the vectors described in part A of this example at 0.25 pmol DNA/well. Secreted luciferase expression was measured as described in Example 2B at 3 and 6 days after transfection. See FIG. 48, showing expression levels in media from cells transfected with the msDNA expression vectors as compared to the conventional plasmid. Statistical analysis was performed using two-way Anova analysis relative to the conventional plasmid. *=p<0.05, **=p<0.01, and **** p<0.0001.


Luciferase expression levels were higher for all msDNA expression vectors as compared to the conventional plasmid. The highest expression was observed with 4-6-pGL2-SS*-CMV enhancer-EF1-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR(108 to 120 polyA (4-6: CMV-EF1-UTR1-W-3′UTR), which contains the EF-1 promoter element in combination with the CMV enhancer and 5′UTR1.


Example 9—SS and Expression Cassette Modifications

The impact of modifications to the Super Sequence (SS) and the expression cassettes of the expression vectors as described in the present disclosure will be evaluated in terms of transfection efficiencies, expression of nucleic acid sequences of interest (including reporter genes, such as polygenic GFP and luciferase expression cassettes as described in Examples 1 and 2), and durability/expansion of the vectors in dividing cells (including rapid and slow dividing cells). Modifications to the SS also will be evaluated for restriction enzyme activity on these sites.


Modifications will include individual modifications and combinations such as, but not limited to, an endonuclease target sequence integrated in non-binding regions for the recombinases in the SS between the vector backbone and the cleavage sites for the recombinases, a CAG promoter integrated between the 3′ end of the first target sequence for the first recombinase (i.e., the 3′ end of the 5′ SS) and 5′ to the promoter in the expression cassette, a CMV enhancer integrated between the 3′ end of the first target sequence for the first recombinase (i.e., the 3′ end of the 5′ SS) and 5′ to the promoter in the expression cassette, an Enhancer-1 sequence located 5′ to a CMV enhancer and/or 3′ to a UCOE, a CMV, EF1, SV40, CAG, Rho, VDM2, HCR, or HLP promoter or variant thereof, a CMV promoter variant, an EF1-alpha promoter, a synthetic promoter, a 5′UTR comprising an intron integrated in the expression cassette between a promoter and nucleic acid sequence of interest with or without non-coding sequences integrated within the intron (e.g., a 5′UTR comprising the nucleic acid sequence of any one of SEQ ID NOs:2-5), a vertebrate chromatin insulator integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, a woodchuck hepatitis virus post-transcriptional regulatory element integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, a scaffold/matrix attachment region integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, an ubiquitous chromatin opening element located 5′ to the promoter in the expression cassette (e.g., at the 3′ of the 5′ SS and prior to other sequences in the expression cassette), a 3′UTR integrated in the expression cassette between the nucleic acid of interest and the 3′ SS, such as directly following a stop codon (e.g., a 3′UTR comprising the nucleic acid sequence of any one of SEQ ID NOs: 13-16), and/or a poly(A) tail (e.g., as the 3′ end of a 3′UTR) comprising 100 to 120 adenine nucleotides.


Sequences










artificial intron



SEQ ID NO: 1



gtaagtcgacgggccgggcctgggccgggtccgggccgggtcgttggatccccactacagcccga






tactcaagcttgacgaattcgagtatccaaggtagtggactagtgtgacgctgctgacccctttc





tttcccttctgcag





5′UTR1


SEQ ID NO: 2



ctgccttctccctcctgtgagtttggtaagtcgacgggccgggcctgggccgggtccgggccggg






tcgttggatccccactacagcccgatactcaagcttgacgaattcgagtatccaaggtagtggac





tagtgtgacgctgctgacccctttctttcccttctgcaggttggtgtacagtagcttcca





5′UTR1 with MAR-5 insertion


SEQ ID NO: 3



ctgccttctccctcctgtgagtttggtaagtcgacgggccgggcctgggccgggtccgggccggg






tatccatagctgattggtctaaaatgagatacatcaacgctcctccatgttttttgttttctttt





taaatgaaaaactttattttttaagaggagtttcaggttcatagcaaaattgagaggaaggtaca





ttcaagctgaggaagttttcctctattcctagtttactgagagattgcatcatgaatgggtgtta





aattttgtcaaatgctttttctgtgtctatcaatatgaccatgtgattttcttctttaacctgtt





gatgggacaaattacgttaattgattttcaaacgttgaaccacccttacatatctggaataaatt





ctacttggttgtggtgtatattttttgatacattcttggattctttttgctaatattttgttgaa





aatgtttgtatctttgttcatgagagatattggtctgttgttttcttttcttgtaatgtcatttt





ctagttccggtattaaggtaatgctggcctagttgaatgatttaggaagtattccctctgcttct





gtcttctgaaagagattgtagaaagttgatacaatttttttttctttaaatatcttgatagtcgt





tggatccccactacagcccgatactcaagcttgacgaattcgagtatccaaggtagtggactagt





gtgacgctgctgacccctttctttcccttctgcaggttggtgtacagtagcttcca





5′UTR


SEQ ID NO: 4



attgggatcttcacacagcaggtaaggttgcgggccgggcctgggccgggtccgggccgggccgc






actgacccctggtgttgctttttttttttaggccgcaagctgaagcgtgtcc





5′UTR2 (5′UTR of SEQ ID NO: 4 with MAR-5 insertion)


SEQ ID NO: 5



attgggatcttcacacagcaggtaaggttgcgggccgggcctgggccgggtccgggccgggtatc






catagctgattggtctaaaatgagatacatcaacgctcctccatgttttttgttttctttttaaa





tgaaaaactttattttttaagaggagtttcaggttcatagcaaaattgagaggaaggtacattca





agctgaggaagttttcctctattcctagtttactgagagattgcatcatgaatgggtgttaaatt





ttgtcaaatgctttttctgtgtctatcaatatgaccatgtgattttcttctttaacctgttgatg





ggacaaattacgttaattgattttcaaacgttgaaccacccttacatatctggaataaattctac





ttggttgtggtgtatattttttgatacattcttggattctttttgctaatattttgttgaaaatg





tttgtatctttgttcatgagagatattggtctgttgttttcttttcttgtaatgtcattttctag





ttccggtattaaggtaatgctggcctagttgaatgatttaggaagtattccctctgcttctgtct





tctgaaagagattgtagaaagttgatacaatttttttttctttaaatatcttgatagccgcactg





acccctggtgttgctttttttttttaggccgcaagctgaagcgtgtcc





A2UCOE element


SEQ ID NO: 6



gcggccgcacgcgtggccctccgcgcctacagctcaagccacatccgaagggggagggagccggg






agctgcgcgcggggccgccggggggaggggtggcaccgcccacgccgggcggccacgaagggcgg





ggcagcgggcgcgcgcgcggcggggggaggggccggcgccgcgcccgctgggaattggggcccta





gggggagggcggaggcgccgacgaccgcggcacttaccgttcgcggcgtggcgcccggtggtccc





caaggggagggaagggggaggcggggcgaggacagtgaccggagtctcctcagcggtggcttttc





tgcttggcagcctcagcggctggcgccaaaaccggactccgcccacttcctcgcccgccggtgcg





agggtgtggaatcctccagacgctgggggagggggagttgggagcttaaaaactagtaccccttt





gggaccactttcagcagcgaactctcctgtacaccaggggtcagttccacagacgcgggccaggg





gtgggtcattgcggcgtgaacaataatttgactagaagttgattcgggtgtttccggaaggggcc





gagtcaatccgccgagttggggcacggaaaacaaaaagggaaggctactaagatttttctggcgg





gggttatcattggcgtaactgcagggaccacctcccgggttgagggggctggatctccaggctgc





ggattaagcccctcccgtcggcgttaatttcaaactgcgcgacgtttctcacctgccttcgccaa





ggcaggggccgggaccctattccaagaggtagtaactagcaggactctagccttccgcaattcat





tgagcgcatttacggaagtaacgtcgggtactgtctctggccgcaagggtgggaggagtacgcat





ttggcgtaaggtggggcgtagagccttcccgccattggcggcggatagggcgtttacgcgacggc





ctgacgtagcggaagacgccttagtgggggggaaggttctagaaaagcggcggcagcggctctag





cggcagtagcagcagcgccgggtcccgtgcggaggtgctcctcgcagagttgtttctccagcagc





ggcagttctcactacagcgccaggacgagtccggttcgtgttcgtccgcggagatctctctcatc





tcgctcggctgcgggaaatcgggctgaagcgactgagtccgcgatggaggtaacgggtttgaaat





caatgagttattgaaaagggcatggcgaggccgttggcgcctcagtggaagtcggccagccgcct





ccgtgggagagaggcaggaaatcggaccaattcagtagcagtggggcttaaggtttatgaacggg





gtcttgagcggaggcctgagcgtacaaacagcttccccaccctcagcctcccggcgccatttccc





ttcactgggggtgggggatggggagctttcacatggcggacgctgccccgctggggtgaaagtgg





ggcgcggaggcgggacttcttattccctttctaaagcacgctgcttcgggggccacggcgtctcc





tcggacggccgggcgcgcc





SRF-UCOE


SEQ ID NO: 7



gcacacgaccacaattccactgaaagcattttaatacggaacttgtcactcccagggagcctccg






ctcagccggcagttggttcatttcaatccccacgacaacccttcaaagtgcagggcagacagcag





gtggctctgcccaggcgcctggatcacagcccggcctgcagccctcacctgggcgcggggagacc





ctgaggacgctcctccaggcggcgctggccggggcctgcggacacggacgggcgggctgagctcc





gggacccctccccgcgccccgcaccccgcaccccgcaccccgcaccccgcacccggcgctcaccc





gtcccagccccgccgcccgcagccccagctgcaacgcagccaccgccgccatcgcacccggcccc





gcgggcgcttccgggacgcaggaggcatctgcatccggggcgccgctgagtcccgcccagagccc





cgcccccggctccaggttctgcgagcggcttccgccgggctgctccgcgggcgcgtcggccatga





gcgagttgccgggcgacgtgcgggcgtttctgcgggagcacccgagcctgcggctccagacggac





gcccgcaaggttcgcagcgcgggaggggaacggagtggcggagaagggcgcagttgggatgaggg





gctgaggggagggcagggga





gaggagagggcaggggagaggggagaggggagagcaggagagaggggaaggcaggggagagggcg





cggcgggatcaggggaggagagggaa





cHS4 insulator


SEQ ID NO: 8



ggggagctcacggggacagcccccccccaaagcccccagggatgtaattacgtccctcccccgct






agggggcagcagcgaccgcccggggctccgctccggtccggcgctccccccgcatcccgagccgg





cagcgtgcggggacagcccgggcacggggaaggtggcacgggatcgctttcctctgaacgcttct





cgctgctctttgagcctgcagacacctgggggatacggggaaaaggggagctcacggggacagcc





cccccccaaagcccccagggatgtaattacgtccctcccccgctagggggcagcagcgaccgccc





ggggctccgctccggtccggcgctccccccgcatcccgagccggcagcgtgcggggacagcccgg





gcacggggaaggtggcacgggatcgctttcctctgaacgcttctcgctgctctttgagcctgcag





acacctgggggatacggggaaaa





MAR-5


SEQ ID NO: 9



tatccatagctgattggtctaaaatgagatacatcaacgctcctccatgttttttgttttctttt






taaatgaaaaactttattttttaagaggagtttcaggttcatagcaaaattgagaggaaggtaca





ttcaagctgaggaagttttcctctattcctagtttactgagagattgcatcatgaatgggtgtta





aattttgtcaaatgctttttctgtgtctatcaatatgaccatgtgattttcttctttaacctgtt





gatgggacaaattacgttaattgattttcaaacgttgaaccacccttacatatctggaataaatt





ctacttggttgtggtgtatattttttgatacattcttggattctttttgctaatattttgttgaa





aatgtttgtatctttgttcatgagagatattggtctgttgttttcttttcttgtaatgtcatttt





ctagttccggtattaaggtaatgctggcctagttgaatgatttaggaagtattccctctgcttct





gtcttctgaaagagattgtagaaagttgatacaatttttttttctttaaatatcttgatag





human CSP-B MAR (huMAR)


SEQ ID NO: 10



ggatcccattctccttgatgtactaatttttctttaaaagtgataataatagctcccatttagaa






tttttaaataacacaacaaatgtaaagtaactaatgtgtcctctggatcatggtaagtaatgaat





aaatttaactccctttaccttctccctttgctattttttccatgctaggatttatacatttttaa





aaaactaaatctgctatcaaatgacagctttaaatttactttttaaaatttgttattgtatatat





ttatggggtataaagtgatgttatgatatatatatacacaatgtacactgattaaatcaagccaa





ttaacattttatcatctcaaatacttaacattttttgtagtgagaacatttgaaatttactttta





gcaatttcaaaacatacattattattattaactatagtcaccatgatgtaccatagatctttaaa





aacttattcttcctgcctaactgaaactttgtactctttgactaacatcttttcattcccccact





tcccagcctctggtaatcaccattacacactctgcttctatgagttcaattgctttagactccac





gtaataaatgagatcatgcagcatttggctttctgtgcctggcttatccttgcttagcatggtgt





cttacaggttcatccatgttgcaacaaataacagaatctcattctttgttaaggctgaatactat





tccattgggtatatataccacattttccttatccattaatccactgatggacccttaggttgttg





attccatatattggctattgtaaatagtgcagcaatgaacatgagagtgcaactatctcttcaat





gtactgatttcgaatccttcggatctatctcagaagtgagattgcaggatcatataattctactt





ttagtcttttgaggagctccatacagctttccatatggccatactaattacattctcatcaacag





tgtacaatggtttccttttctccacatcctcaccaacatttataattttttgtctttttgataat





agccatctgacaggtgtaaagtgatagctcattgcagttttaatttgcattttttgatgattagt





aatgttgagaattttttcatatatctcttggccagttgcatgtcttctttggaaaaatgtctatt





cagttcctttgcccattttttaattgggatttttggtttcttgctattgagttgtttgaattc





WPRE


SEQ ID NO: 11



Tcgacaatcaacctctggattacaaaatttgtgaaagattgactggtattcttaactatgttgct






ccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggc





tttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttg





tcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgcc





accacctgtcagctcctttccgggactttcgctttccccctccctattgccacggcggaactcat





cgccgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgt





tgtcggggaagctgacgtcctttccatggctgctcgcctgtgttgccacctggattctgcgcggg





acgtccttctgctacgtcccttcggccctcaatccagcggaccttccttcccgcggcctgctgcc





ggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccg





cctccccgcctg





Enhancer-1


SEQ ID NO: 12



gggactttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttccgg






gactttccgggactttccgtgcaccacgtggggactttccgtgcac





2 copies of Xenopus leavis beta-globin polyadenylation signal 


(2xlBGpA)


SEQ ID NO: 13



aaccagcctcaagaacacccgaatggagtctctaagctacataataccaacttacactttacaaa






atgttgtcccccaaaatgtagccattcgtatctgctcctaataaaaagaaagtttcttcacaacc





agcctcaagaacacccgaatggagtctctaagctacataataccaacttacactttacaaaatgt





tgtcccccaaaatgtagccattcgtatctgctcctaataaaaagaaagtttcttcac





2 copies of human beta-globin polyadenylation signal (2huBGpA)


SEQ ID NO: 14



gctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaactactaaac






tgggggatattatgaagggccttgagcatctggattctgcctaataaaaaacatttattttcatt





gcaagctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaactact





aaactgggggatattatgaagggccttgagcatctggattctgcctaataaaaaacatttatttt





cattgcaa





hybrid Xenopus leavis and human beta-globin polyadenylation 


signal (xlhuBGpA)


SEQ ID NO: 15



aaccagcctcaagaacacccgaatggagtctctaagctacataataccaacttacactttacaaa






atgttgtcccccaaaatgtagccattcgtatctgctcctaataaaaagaaagtttcttcacgctc





gctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaactactaaactggg





ggatattatgaagggccttgagcatctggattctgcctaataaaaaacatttattttcattgcaa





2xlBGpA-A120


SEQ ID NO: 16



aaccagcctcaagaacacccgaatggagtctctaagctacataataccaacttacactttacaaa






atgttgtcccccaaaatgtagccattcgtatctgctcctaataaaaagaaagtttcttcacaacc





agcctcaagaacacccgaatggagtctctaagctacataataccaacttacactttacaaaatgt





tgtcccccaaaatgtagccattcgtatctgctcctaataaaaagaaagtttcttcacaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





2huBGpA-A120


SEQ ID NO: 17



gctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaactactaaac






tgggggatattatgaagggccttgagcatctggattctgcctaataaaaaacatttattttcatt





gcaagctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaactact





aaactgggggatattatgaagggccttgagcatctggattctgcctaataaaaaacatttatttt





cattgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





xlhuBGpA-A120


SEQ ID NO: 18



aaccagcctcaagaacacccgaatggagtctctaagctacataataccaacttacactttacaaa






atgttgtcccccaaaatgtagccattcgtatctgctcctaataaaaagaaagtttcttcacgctc





gctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaactactaaactggg





ggatattatgaagggccttgagcatctggattctgcctaataaaaaacatttattttcattgcaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





pGL2-SS*-CAG-SecNLuc-2A-eGFP-BGpA-SS*


SEQ ID NO: 19



ccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgccat






tatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgtagta





tgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcgtata





atgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcatgcttt





gcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattgagatgc





atgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcgacattga





ttattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagtt





ccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattga





cgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtg





gagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccc





tattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggact





ttcctacttggcagtacatctacgtattagtcatcgctattaccatggtcgaggtgagccccacg





ttctgcttcactctccccatctcccccccctccccacccccaattttgtatttatttatttttta





attattttgtgcagcgatgggggcggggggggggggggcgcgcgccaggcggggcggggcggggc





gaggggcggggcggggcgaggcggaaaggtgcggcggcagccaatcagagcggcgcgctccgaaa





gtttccttttatggcgaggcggcggcggcggcggccctataaaaagcgaagcgcgcggcgggcgg





gagtcgctgcgttgccttcgccccgtgccccgctccgcgccgcctcgcgccgcccgccccggctc





tgactgaccgcgttactcccacaggtgagcgggcgggacggcccttctcctccgggctgtaatta





gcgcttggtttaatgacggctcgtttcttttctgtggctgcgtgaaagccttaaagggctccggg





agggccctttgtgcgggggggagcggctcggggggtgcgtgcgtgtgtgtgtgcgtggggagcgc





cgcgtgcggctccgcgctgcccggcggctgtgagcgctgcgggcgcggcgcggggctttgtgcgc





tccgcagtgtgcgcgaggggagcgcggccgggggcggtgccccgcggtgcggggggggctgcgag





gggaacaaaggctgcgtgcggggtgtgtgcgtgggggggtgagcagggggtgtgggcgcggcggt





cgggctgtaacccccccctgcacccccctccccgagttgctgagcacggcccggcttcgggtgcg





gggctccgtacggggcgtggcgcggggctcgccgtgccgggcggggggtggcggcaggtgggggt





gccgggcggggcggggccgcctcgggccggggagggctcgggggaggggcgcggcggcccccgga





gcgccggcggctgtcgaggcgcggcgagccgcagccattgccttttatggtaatcgtgcgagagg





gcgcagggacttcctttgtcccaaatctgtgcggagccgaaatctgggaggcgccgccgcacccc





ctctagcgggcgcggggcgaagcggtgcggcgccggcaggaaggaaatgggcggggagggccttc





gtgcgtcgccgcgccgccgtccccttctccctctccagcctcggggctgtccgcggggggacggc





tgccttcgggggggacggggcagggcggggttcggcttctggcgtgtgaccggcggctctagagc





ctctgctaaccatgttcatgccttcttctttttcctacagctcctgggcaacgtgctggttattg





tgctgtctcatcattttggcaaagaattgattaattcgagcgaacgcgtcgccaccatgaactcc





ttctccacaagcgccttcggtccagttgccttctccctgggcctgctcctggtgttgcctgctgc





cttccctgccccagtcttcacactcgaagatttcgttggggactggcgacagacagccggctaca





acctggaccaagtccttgaacagggaggtgtgtccagtttgtttcagaatctcggggtgtccgta





actccgatccaaaggattgtcctgagcggtgaaaatgggctgaagatcgacatccatgtcatcat





cccgtatgaaggtctgagcggcgaccaaatgggccagatcgaaaaaatttttaaggtggtgtacc





ctgtggatgatcatcactttaaggtgatcctgcactatggcacactggtaatcgacggggttacg





ccgaacatgatcgactatttcggacggccgtatgaaggcatcgccgtgttcgacggcaaaaagat





cactgtaacagggaccctgtggaacggcaacaaaattatcgacgagcgcctgatcaaccccgacg





gctccctgctgttccgagtaaccatcaacggagtgaccggctggcggctgtgcgaacgcattctg





gcggctagcgctactaacttcagcctgctgaagcaggctggagacgtggaggagaaccctggacc





tggaagcggagagggcagaggaagtctgctaacatgcggtgacgtcgaggagaatcctggacctg





gatccggaatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctg





gacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacgg





caagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtga





ccaccctgacctacggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttc





ttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaa





ctacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagg





gcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccac





aacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaa





catcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggcc





ccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgag





aagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacga





gctgtacaagtaagcggccgcactcctcaggtgcaggctgcctatcagaaggtggtggctggtgt





ggccaatgccctggctcacaaataccactgagatctttttccctctgccaaaaattatggggaca





tcatgaagccccttgagcatctgacttctggctaataaaggaaatttattttcattgcaatagtg





tgttggaattttttgtgtctctcactcggaaggacatggtgtggaaagtccccaggctccccagc





aggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaaattaaagtaacccataactt





cgtatagcatacattatacgaagttatgaagttcctattctctagaaagtataggaacttctagt





cacctatttcagcatactacgcgcgtagtatgctgaaataggtttatcagcacacaatagtccat





tatacgcgcgtataatggcaattgtgtgctgattgggttactttaattggtgtggaaagtcccca





ggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccatggatccgtc





gaccgatgcccttgagagccttcaacccagtcagctccttccggtgggcgcggggcatgactatc





gtcgccgcacttatgactgtcttctttatcatgcaactcgtaggacaggtgccggcagcgctctt





ccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcac





tcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaa





aggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcc





cccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataa





agataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttac





cggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggt





atctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagccc





gaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgcc





actggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttct





tgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaag





ccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcgg





tggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttga





tcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgaga





ttatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaag





tatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcga





tctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggag





ggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagattt





atcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcct





ccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgc





aacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcag





ctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagct





ccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggca





gcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactc





aaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacggg





ataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcga





aaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactg





atcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccg





caaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattat





tgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataa





acaaataggggttccgcgcacatttccccgaaaagtgccacctgacgcgccctgtagcggcgcat





taagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgccc





gctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaa





tcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgatt





agggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggag





tccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtcta





ttcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaac





aaaaatttaacgcgaattttaacaaaatattaacgcttacaatttgccattcgccattcaggctg





cgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagcccaagctaccatg





ataagtaagtaatattaaggtacgtggaggttttacttgctttaaaaaacctcccacacctcccc





ctgaacctgaaacataaaatgaatgcaattgttgttgttaacttgtttattgcagcttataatgg





ttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagtt





gtggtttgtccaaactcatcaatgtatcttatggtactgtaactgagctaacataa





pcDNA-CMV-5′UTR-SecNLuc-P2A-eGFP-bGHpA


SEQ ID NO: 20



gacggatcgggagatctcccgatcccctatggtgcactctcagtacaatctgctctgatgccgc






atagttaagccagtatctgctccctgcttgtgtgttggaggtcgctgagtagtgcgcgagcaaa





atttaagctacaacaaggcaaggcttgaccgacaattgcatgaagaatctgcttagggttaggc





gttttgcgctgcttcgcgatgtacgggccagatatacgcgttgacattgattattgactagtta





ttaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataa





cttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatga





cgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacg





gtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtc





aatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctactt





ggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaa





tgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatggg





agtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattga





cgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctctggctaactag





agaacccactgcttactggcttatcgaaattaatacgactcactatagggagacccaagctggc





tagcgtttaaacttaagcttggtaccgagctcggatccctgccttctccctcctgtgagtttgg





taagtcactgactgtctatgcctgggaaagggtgggcaggagatggggcagtgcaggaaaagtg





gcactatgaaccctgcagccctaggaatgcatctagacaattgtactaaccttcttctctttcc





tctcctgacaggttggtgtacagtagcttccactcctgccaccatgaactccttctccacaagc





gccttcggtccagttgccttctccctgggcctgctcctggtgttgcctgctgccttccctgccc





cagtcttcacactcgaagatttcgttggggactggcgacagacagccggctacaacctggacca





agtccttgaacagggaggtgtgtccagtttgtttcagaatctcggggtgtccgtaactccgatc





caaaggattgtcctgagcggtgaaaatgggctgaagatcgacatccatgtcatcatcccgtatg





aaggtctgagcggcgaccaaatgggccagatcgaaaaaatttttaaggtggtgtaccctgtgga





tgatcatcactttaaggtgatcctgcactatggcacactggtaatcgacggggttacgccgaac





atgatcgactatttcggacggccgtatgaaggcatcgccgtgttcgacggcaaaaagatcactg





taacagggaccctgtggaacggcaacaaaattatcgacgagcgcctgatcaaccccgacggctc





cctgctgttccgagtaaccatcaacggagtgaccggctggcggctgtgcgaacgcattctggcg





gaattctgcagatatccagcacagtggcggccgctcgagtctagaggaagcggagctactaact





tcagcctgctgaagcaggctggagacgtggaggagaaccctggacctatgagcaagggcgagga





gctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttc





agcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgca





ccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtg





cttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggc





tacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtga





agttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacgg





caacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgac





aagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgc





agctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaa





ccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtc





ctgctggagttcgtgaccgccgccgggatcactcacggcatggacgagctgtacaagtaagggc





ccgtttaaacccgctgatcagcctcgactgtgccttctagttgccagccatctgttgtttgccc





ctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgag





gaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggtggggcaggaca





gcaagggggaggattgggaagacaatagcaggcatgctggggatgcggtgggctctatggcttc





tgaggcggaaagaaccagctggggctctagggggtatccccacgcgccctgtagcggcgcatta





agcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccg





ctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaa





tcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgat





tagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttgg





agtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggt





ctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatt





taacaaaaatttaacgcgaattaattctgtggaatgtgtgtcagttagggtgtggaaagtcccc





aggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtgga





aagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaacca





tagtcccgcccctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgcc





ccatggctgactaattttttttatttatgcagaggccgaggccgcctctgcctctgagctattc





cagaagtagtgaggaggcttttttggaggcctaggcttttgcaaaaagctcccgggagcttgta





tatccattttcggatctgatcaagagacaggatgaggatcgtttcgcatgattgaacaagatgg





attgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggcacaacag





acaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttctttttg





tcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggcagcgcggctatcgtggct





ggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgggaagggactgg





ctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaag





tatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcga





ccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcag





gatgatctggacgaagagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgc





gcatgcccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggt





ggaaaatggccgcttttctggattcatcgactgtggccggctgggtgtggcggaccgctatcag





gacatagcgttggctacccgtgatattgctgaagagcttggcggcgaatgggctgaccgcttcc





tcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacga





gttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacctgccatcac





gagatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacgc





cggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccaccccaacttgttt





attgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttt





tttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctgtatacc





gtcgacctctagctagagcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgttat





ccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaat





gagtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtc





gtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctct





tccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctc





actcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagc





aaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctc





cgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggac





tataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgcc





gcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgc





tgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccg





ttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacga





cttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgct





acagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcg





ctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccac





cgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaa





gaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaaggga





ttttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttt





taaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgag





gcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtaga





taactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacg





ctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggt





cctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagtt





cgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtc





gtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatg





ttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcag





tgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatg





cttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagt





tgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctca





tcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttc





gatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctggg





tgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaa





tactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcgg





atacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaa





gtgccacctgacgtc





pGL2-SS*-CAG-SecNLuc-2A-eGFP-WPRE-BGpA-SS*


SEQ ID NO: 21



taaagtaacccaatcagcacacaattgccattatacgcgcgtataatggactattgtgtgctga






taaacctatttcagcatactacgcgcgtagtatgctgaaataggtgactagaagttcctatact





ttctagagaataggaacttcataacttcgtataatgtatgctatacgaagttatgggttacttt





aatttggttgctgactaattgagatgcatgctttgcatacttctgcctgctggggagcctgggg





actttccacacctggttgctgactaattgagatgcatgctttgcatacttctgcctgctgggga





gcctggggactttccacacccctgggtcgacattgattattgactagttattaatagtaatcaa





ttacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatgg





cccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccata





gtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccact





tggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatg





gcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctac





gtattagtcatcgctattaccatggtcgaggtgagccccacgttctgcttcactctccccatct





cccccccctccccacccccaattttgtatttatttattttttaattattttgtgcagcgatggg





ggcggggggggggggggcgcgcgccaggcggggcggggcggggcgaggggcggggcggggcgag





gcggaaaggtgcggcggcagccaatcagagcggcgcgctccgaaagtttccttttatggcgagg





cggcggcggcggcggccctataaaaagcgaagcgcgcggcgggcgggagtcgctgcgttgcctt





cgccccgtgccccgctccgcgccgcctcgcgccgcccgccccggctctgactgaccgcgttact





cccacaggtgagcgggcgggacggcccttctcctccgggctgtaattagcgcttggtttaatga





cggctcgtttcttttctgtggctgcgtgaaagccttaaagggctccgggagggccctttgtgcg





ggggggagcggctcggggggtgcgtgcgtgtgtgtgtgcgtggggagcgccgcgtgcggctccg





cgctgcccggcggctgtgagcgctgcgggcgcggcgcggggctttgtgcgctccgcagtgtgcg





cgaggggagcgcggccgggggcggtgccccgcggtgcggggggggctgcgaggggaacaaaggc





tgcgtgcggggtgtgtgcgtgggggggtgagcagggggtgtgggcgcggcggtcgggctgtaac





ccccccctgcacccccctccccgagttgctgagcacggcccggcttcgggtgcggggctccgta





cggggcgtggcgcggggctcgccgtgccgggcggggggtggcggcaggtgggggtgccgggcgg





ggcggggccgcctcgggccggggagggctcgggggaggggcgcggcggcccccggagcgccggc





ggctgtcgaggcgcggcgagccgcagccattgccttttatggtaatcgtgcgagagggcgcagg





gacttcctttgtcccaaatctgtgcggagccgaaatctgggaggcgccgccgcaccccctctag





cgggcgcggggcgaagcggtgcggcgccggcaggaaggaaatgggcggggagggccttcgtgcg





tcgccgcgccgccgtccccttctccctctccagcctcggggctgtccgcggggggacggctgcc





ttcgggggggacggggcagggcggggttcggcttctggcgtgtgaccggcggctctagagcctc





tgctaaccatgttcatgccttcttctttttcctacagctcctgggcaacgtgctggttattgtg





ctgtctcatcattttggcaaagaattgattaattcgagcgaacgcgtcgccaccatgaactcct





tctccacaagcgccttcggtccagttgccttctccctgggcctgctcctggtgttgcctgctgc





cttccctgccccagtcttcacactcgaagatttcgttggggactggcgacagacagccggctac





aacctggaccaagtccttgaacagggaggtgtgtccagtttgtttcagaatctcggggtgtccg





taactccgatccaaaggattgtcctgagcggtgaaaatgggctgaagatcgacatccatgtcat





catcccgtatgaaggtctgagcggcgaccaaatgggccagatcgaaaaaatttttaaggtggtg





taccctgtggatgatcatcactttaaggtgatcctgcactatggcacactggtaatcgacgggg





ttacgccgaacatgatcgactatttcggacggccgtatgaaggcatcgccgtgttcgacggcaa





aaagatcactgtaacagggaccctgtggaacggcaacaaaattatcgacgagcgcctgatcaac





cccgacggctccctgctgttccgagtaaccatcaacggagtgaccggctggcggctgtgcgaac





gcattctggcggctagcgctactaacttcagcctgctgaagcaggctggagacgtggaggagaa





ccctggacctggaagcggagagggcagaggaagtctgctaacatgcggtgacgtcgaggagaat





cctggacctggatccggaatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcc





tggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcga





tgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctgg





cccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgctaccccgaccacatga





agcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttctt





caaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaac





cgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagt





acaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaa





cttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaac





acccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccc





tgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgg





gatcactctcggcatggacgagctgtacaagtaaaatcaacctctggattacaaaatttgtgaa





agattgactggtattcttaactatgttgctccttttacgctatgtggatacgctgctttaatgc





ctttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaatcctggtt





gctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgttt





gctgacgcaacccccactggttggggcattgccaccacctgtcagctcctttccgggactttcg





ctttccccctccctattgccacggcggaactcatcgccgcctgccttgcccgctgctggacagg





ggctcggctgttgggcactgacaattccgtggtgttgtcggggaaatcatcgtcctttccttgg





ctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccc





tcaatccagcggaccttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcg





ccttcgccctcagacgagtcggatctccctttgggccgcctccccgcaataaaggaaatttatt





ttcattgcaatagtgtgttggaattttttgtgtctctcactcggaaggacatggtgtggaaagt





ccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaaatt





aaagtaacccataacttcgtatagcatacattatacgaagttatgaagttcctattctctagaa





agtataggaacttctagtcacctatttcagcatactacgcgcgtagtatgctgaaataggttta





tcagcacacaatagtccattatacgcgcgtataatggcaattgtgtgctgattgggttacttta





attggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaatta





gtcagcaacca





pGL2-SS*-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-BGpA-SS*


SEQ ID NO: 22



taaagtaacccaatcagcacacaattgccattatacgcgcgtataatggactattgtgtgctga






taaacctatttcagcatactacgcgcgtagtatgctgaaataggtgactagaagttcctatact





ttctagagaataggaacttcataacttcgtataatgtatgctatacgaagttatgggttacttt





aatttggttgctgactaattgagatgcatgctttgcatacttctgcctgctggggagcctgggg





actttccacacctggttgctgactaattgagatgcatgctttgcatacttctgcctgctgggga





gcctggggactttccacacccctgggtcgacgacattgattattgactagttattaatagtaat





caattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaa





tggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttccc





atagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgccc





acttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaa





atggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatc





tacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggat





agcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttg





gcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggc





ggtaggcgtgtacggtgggaggtctatataagcagagctctgccttctccctcctgtgagtttg





gtaagtcgacgggccgggcctgggccgggtccgggccgggtcgttggatccccactacagcccg





atactcaagcttgacgaattcgagtatccaaggtagtggactagtgtgacgctgctgacccctt





tctttcccttctgcaggttggtgtacagtagcttccaaattgattaattcgagcgaacgcgtcg





ccaccatgaactccttctccacaagcgccttcggtccagttgccttctccctgggcctgctcct





ggtgttgcctgctgccttccctgccccagtcttcacactcgaagatttcgttggggactggcga





cagacagccggctacaacctggaccaagtccttgaacagggaggtgtgtccagtttgtttcaga





atctcggggtgtccgtaactccgatccaaaggattgtcctgagcggtgaaaatgggctgaagat





cgacatccatgtcatcatcccgtatgaaggtctgagcggcgaccaaatgggccagatcgaaaaa





atttttaaggtggtgtaccctgtggatgatcatcactttaaggtgatcctgcactatggcacac





tggtaatcgacggggttacgccgaacatgatcgactatttcggacggccgtatgaaggcatcgc





cgtgttcgacggcaaaaagatcactgtaacagggaccctgtggaacggcaacaaaattatcgac





gagcgcctgatcaaccccgacggctccctgctgttccgagtaaccatcaacggagtgaccggct





ggcggctgtgcgaacgcattctggcggctagcgctactaacttcagcctgctgaagcaggctgg





agacgtggaggagaaccctggacctggaagcggagagggcagaggaagtctgctaacatgcggt





gacgtcgaggagaatcctggacctggatccggaatggtgagcaagggcgaggagctgttcaccg





gggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccgg





cgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaag





ctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgct





accccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccagga





gcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggc





gacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctgg





ggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaagcagaagaa





cggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgac





cactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctga





gcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagtt





cgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaaaatcaacctctggat





tacaaaatttgtgaaagattgactggtattcttaactatgttgctccttttacgctatgtggat





acgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctcctt





gtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtg





gtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagctcc





tttccgggactttcgctttccccctccctattgccacggcggaactcatcgccgcctgccttgc





ccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaaatca





tcgtcctttccttggctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgct





acgtcccttcggccctcaatccagcggaccttccttcccgcggcctgctgccggctctgcggcc





tcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccgcaa





taaaggaaatttattttcattgcaatagtgtgttggaattttttgtgtctctcactcggaagga





catggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaatta





gtcagcaaccaaattaaagtaacccataacttcgtatagcatacattatacgaagttatgaagt





tcctattctctagaaagtataggaacttctagtcacctatttcagcatactacgcgcgtagtat





gctgaaataggtttatcagcacacaatagtccattatacgcgcgtataatggcaattgtgtgct





gattgggttactttaattggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaag





catgcatctcaattagtcagcaacca





pGL2-SS*-CMV-UTR2-SecNLuc-2A-eGFP-WPRE-BGpA-SS*


SEQ ID NO: 23



aattaaagtaacccaatcagcacacaattgccattatacgcgcgtataatggactattgtgtgc






tgataaacctatttcagcatactacgcgcgtagtatgctgaaataggtgactagaagttcctat





actttctagagaataggaacttcataacttcgtataatgtatgctatacgaagttatgggttac





tttaatttggttgctgactaattgagatgcatgctttgcatacttctgcctgctggggagcctg





gggactttccacacctggttgctgactaattgagatgcatgctttgcatacttctgcctgctgg





ggagcctggggactttccacacccctgggtcgacattgattattgactagttattaatagtaat





caattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaa





tggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttccc





atagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgccc





acttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaa





atggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatc





tacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggat





agcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttg





gcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggc





ggtaggcgtgtacggtgggaggtctatataagcagagctattgggatcttcacacagcaggtaa





ggttgcgggccgggcctgggccgggtccgggccgggtatccatagctgattggtctaaaatgag





atacatcaacgctcctccatgttttttgttttctttttaaatgaaaaactttattttttaagag





gagtttcaggttcatagcaaaattgagaggaaggtacattcaagctgaggaagttttcctctat





tcctagtttactgagagattgcatcatgaatgggtgttaaattttgtcaaatgctttttctgtg





tctatcaatatgaccatgtgattttcttctttaacctgttgatgggacaaattacgttaattga





ttttcaaacgttgaaccacccttacatatctggaataaattctacttggttgtggtgtatattt





tttgatacattcttggattctttttgctaatattttgttgaaaatgtttgtatctttgttcatg





agagatattggtctgttgttttcttttcttgtaatgtcattttctagttccggtattaaggtaa





tgctggcctagttgaatgatttaggaagtattccctctgcttctgtcttctgaaagagattgta





gaaagttgatacaatttttttttctttaaatatcttgatagccgcactgacccctggtgttgct





ttttttttttaggccgcaagctgaagcgtgtccgccaccatgaactccttctccacaagcgcct





tcggtccagttgccttctccctgggcctgctcctggtgttgcctgctgccttccctgccccagt





cttcacactcgaagatttcgttggggactggcgacagacagccggctacaacctggaccaagtc





cttgaacagggaggtgtgtccagtttgtttcagaatctcggggtgtccgtaactccgatccaaa





ggattgtcctgagcggtgaaaatgggctgaagatcgacatccatgtcatcatcccgtatgaagg





tctgagcggcgaccaaatgggccagatcgaaaaaatttttaaggtggtgtaccctgtggatgat





catcactttaaggtgatcctgcactatggcacactggtaatcgacggggttacgccgaacatga





tcgactatttcggacggccgtatgaaggcatcgccgtgttcgacggcaaaaagatcactgtaac





agggaccctgtggaacggcaacaaaattatcgacgagcgcctgatcaaccccgacggctccctg





ctgttccgagtaaccatcaacggagtgaccggctggcggctgtgcgaacgcattctggcggcta





gcgctactaacttcagcctgctgaagcaggctggagacgtggaggagaaccctggacctggaag





cggagagggcagaggaagtctgctaacatgcggtgacgtcgaggagaatcctggacctggatcc





ggaatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacg





gcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaa





gctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgacc





accctgacctacggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttct





tcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaa





ctacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaag





ggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagcc





acaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgcca





caacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgac





ggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagacccca





acgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcat





ggacgagctgtacaagtaaaatcaacctctggattacaaaatttgtgaaagattgactggtatt





cttaactatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgcta





ttgcttcccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatga





ggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaaccccc





actggttggggcattgccaccacctgtcagctcctttccgggactttcgctttccccctcccta





ttgccacggcggaactcatcgccgcctgccttgcccgctgctggacaggggctcggctgttggg





cactgacaattccgtggtgttgtcggggaaatcatcgtcctttccttggctgctcgcctgtgtt





gccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggacc





ttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagac





gagtcggatctccctttgggccgcctccccgcaataaaggaaatttattttcattgcaatagtg





tgttggaattttttgtgtctctcactcggaaggacatggtgtggaaagtccccaggctccccag





caggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaaattaaagtaacccataac





ttcgtatagcatacattatacgaagttatgaagttcctattctctagaaagtataggaacttct





agtcacctatttcagcatactacgcgcgtagtatgctgaaataggtttatcagcacacaatagt





ccattatacgcgcgtataatggcaattgtgtgctgattgggttactttaattggtgtggaaagt





ccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaacca





SS*-CMV-UTR1-SecNLuc-2A-eGFP-3′UTR[2huBGpA-A120]-SS*


SEQ ID NO: 24 



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcc






attatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgta





gtatgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcg





tataatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcat





gctttgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattg





agatgcatgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcg





acgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagccca





tatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacc





cccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattg





acgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatg





ccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtaca





tgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggt





gatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagt





ctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaat





gtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatat





aagcagagctctgccttctccctcctgtgagtttggtaagtcgacgggccgggcctgggccggg





tccgggccgggtcgttggatccccactacagcccgatactcaagcttgacgaattcgagtatcc





aaggtagtggactagtgtgacgctgctgacccctttctttcccttctgcaggttggtgtacagt





agcttccaaattgattaattcgagcgaacgcgtcgccaccatgaactccttctccacaagcgcc





ttcggtccagttgccttctccctgggcctgctcctggtgttgcctgctgccttccctgccccag





tcttcacactcgaagatttcgttggggactggcgacagacagccggctacaacctggaccaagt





ccttgaacagggaggtgtgtccagtttgtttcagaatctcggggtgtccgtaactccgatccaa





aggattgtcctgagcggtgaaaatgggctgaagatcgacatccatgtcatcatcccgtatgaag





gtctgagcggcgaccaaatgggccagatcgaaaaaatttttaaggtggtgtaccctgtggatga





tcatcactttaaggtgatcctgcactatggcacactggtaatcgacggggttacgccgaacatg





atcgactatttcggacggccgtatgaaggcatcgccgtgttcgacggcaaaaagatcactgtaa





cagggaccctgtggaacggcaacaaaattatcgacgagcgcctgatcaaccccgacggctccct





gctgttccgagtaaccatcaacggagtgaccggctggcggctgtgcgaacgcattctggcggct





agcgctactaacttcagcctgctgaagcaggctggagacgtggaggagaaccctggacctggaa





gcggagagggcagaggaagtctgctaacatgcggtgacgtcgaggagaatcctggacctggatc





cggaatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggac





ggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggca





agctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgac





caccctgacctacggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttc





ttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggca





actacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaa





gggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagc





cacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgcc





acaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcga





cggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagacccc





aacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggca





tggacgagctgtacaagtaagctcgctttcttgctgtccaatttctattaaaggttcctttgtt





ccctaagtccaactactaaactgggggatattatgaagggccttgagcatctggattctgccta





ataaaaaacatttattttcattgcaagctcgctttcttgctgtccaatttctattaaaggttcc





tttgttccctaagtccaactactaaactgggggatattatgaagggccttgagcatctggattc





tgcctaataaaaaacatttattttcattgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaactcggaaggacatggtgtggaaagtccccaggctccccag





caggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtccccagg





ctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaaattaaagtaa





cccataacttcgtatagcatacattatacgaagttatgaagttcctattctctagaaagtatag





gaacttctagtcacctatttcagcatactacgcgcgtagtatgctgaaataggtttatcagcac





acaatagtccattatacgcgcgtataatggcaattgtgtgctgattgggttactttaatttgga





tccgtcgaccgatgcccttgagagccttcaacccagtcagctccttccggtgggcgcggggcat





gactatcgtcgccgcacttatgactgtcttctttatcatgcaactcgtaggacaggtgccggca





gcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggta





tcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaaca





tgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttcca





taggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccg





acaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccga





ccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatag





ctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaa





ccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaa





gacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtagg





cggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggt





atctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaac





aaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaagg





atctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgt





taagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaat





gaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaat





cagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtc





gtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgag





acccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcag





aagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagta





agtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcac





gctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatc





ccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttg





gccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccg





taagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcg





accgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaa





gtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagat





ccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgt





ttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaa





tgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctca





tgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttcc





ccgaaaagtgccacctgacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacg





cgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcct





ttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccg





atttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtggg





ccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggac





tcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggat





tttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaatttt





aacaaaatattaacgcttacaatttgccattcgccattcaggctgcgcaactgttgggaagggc





gatcggtgcgggcctcttcgctattacgccagcccaagctaccatgataagtaagtaatattaa





ggtacgtggaggttttacttgctttaaaaaacctcccacacctccccctgaacctgaaacataa





aatgaatgcaattgttgttgttaacttgtttattgcagcttataatggttacaaataaagcaat





agcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaac





tcatcaatgtatcttatggtactgtaactgagctaacataa





SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-3′UTR[2huBGpA-A120]-SS*


SEQ ID NO: 25



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcc






attatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgta





gtatgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcg





tataatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcat





gctttgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattg





agatgcatgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcg





acgggactttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttc





cgggactttccgggactttccgtgcaccacgtggggactttccgtgcacgacattgattattga





ctagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgt





tacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtca





ataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagt





atttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctat





tgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggacttt





cctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagt





acatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgt





caatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgcc





ccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctgcctt





ctccctcctgtgagtttggtaagtcgacgggccgggcctgggccgggtccgggccgggtcgttg





gatccccactacagcccgatactcaagcttgacgaattcgagtatccaaggtagtggactagtg





tgacgctgctgacccctttctttcccttctgcaggttggtgtacagtagcttccaaattgatta





attcgagcgaacgcgtcgccaccatgaactccttctccacaagcgccttcggtccagttgcctt





ctccctgggcctgctcctggtgttgcctgctgccttccctgccccagtcttcacactcgaagat





ttcgttggggactggcgacagacagccggctacaacctggaccaagtccttgaacagggaggtg





tgtccagtttgtttcagaatctcggggtgtccgtaactccgatccaaaggattgtcctgagcgg





tgaaaatgggctgaagatcgacatccatgtcatcatcccgtatgaaggtctgagcggcgaccaa





atgggccagatcgaaaaaatttttaaggtggtgtaccctgtggatgatcatcactttaaggtga





tcctgcactatggcacactggtaatcgacggggttacgccgaacatgatcgactatttcggacg





gccgtatgaaggcatcgccgtgttcgacggcaaaaagatcactgtaacagggaccctgtggaac





ggcaacaaaattatcgacgagcgcctgatcaaccccgacggctccctgctgttccgagtaacca





tcaacggagtgaccggctggcggctgtgcgaacgcattctggcggctagcgctactaacttcag





cctgctgaagcaggctggagacgtggaggagaaccctggacctggaagcggagagggcagagga





agtctgctaacatgcggtgacgtcgaggagaatcctggacctggatccggaatggtgagcaagg





gcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggcca





caagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttc





atctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcg





tgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcc





cgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgcc





gaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaagg





aggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcat





ggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggc





agcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgc





ccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatca





catggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaag





taagctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaactact





aaactgggggatattatgaagggccttgagcatctggattctgcctaataaaaaacatttattt





tcattgcaagctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagtcca





actactaaactgggggatattatgaagggccttgagcatctggattctgcctaataaaaaacat





ttattttcattgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaactcggaaggacatggtgtggaaagtccccaggctccccagcaggcagaagtatgcaa





agcatgcatctcaattagtcagcaaccaggtgtggaaagtccccaggctccccagcaggcagaa





gtatgcaaagcatgcatctcaattagtcagcaaccaaattaaagtaacccataacttcgtatag





catacattatacgaagttatgaagttcctattctctagaaagtataggaacttctagtcaccta





tttcagcatactacgcgcgtagtatgctgaaataggtttatcagcacacaatagtccattatac





gcgcgtataatggcaattgtgtgctgattgggttactttaatttggatccgtcgaccgatgccc





ttgagagccttcaacccagtcagctccttccggtgggcgcggggcatgactatcgtcgccgcac





ttatgactgtcttctttatcatgcaactcgtaggacaggtgccggcagcgctcttccgcttcct





cgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggc





ggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccag





caaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctg





acgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagata





ccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccgga





tacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatc





tcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccga





ccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgcca





ctggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttct





tgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaa





gccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagc





ggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctt





tgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcat





gagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatc





taaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatct





cagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgat





acgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggct





ccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactt





tatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaa





tagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatg





gcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaa





aagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcact





catggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtg





actggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcc





cggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaa





acgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaaccc





actcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaa





caggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatact





cttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatattt





gaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctg





acgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctac





acttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgcc





ggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggc





acctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagac





ggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactgga





acaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcct





attggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgct





tacaatttgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctct





tcgctattacgccagcccaagctaccatgataagtaagtaatattaaggtacgtggaggtttta





cttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattgttg





ttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcac





aaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttat





ggtactgtaactgagctaacataa





SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR[2huBGpA-A120]-SS*


SEQ ID NO: 26



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcc






attatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgta





gtatgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcg





tataatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcat





gctttgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattg





agatgcatgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcg





acgggactttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttc





cgggactttccgggactttccgtgcaccacgtggggactttccgtgcacgacattgattattga





ctagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgt





tacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtca





ataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagt





atttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctat





tgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggacttt





cctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagt





acatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgt





caatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgcc





ccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctgcctt





ctccctcctgtgagtttggtaagtcgacgggccgggcctgggccgggtccgggccgggtcgttg





gatccccactacagcccgatactcaagcttgacgaattcgagtatccaaggtagtggactagtg





tgacgctgctgacccctttctttcccttctgcaggttggtgtacagtagcttccaaattgatta





attcgagcgaacgcgtcgccaccatgaactccttctccacaagcgccttcggtccagttgcctt





ctccctgggcctgctcctggtgttgcctgctgccttccctgccccagtcttcacactcgaagat





ttcgttggggactggcgacagacagccggctacaacctggaccaagtccttgaacagggaggtg





tgtccagtttgtttcagaatctcggggtgtccgtaactccgatccaaaggattgtcctgagcgg





tgaaaatgggctgaagatcgacatccatgtcatcatcccgtatgaaggtctgagcggcgaccaa





atgggccagatcgaaaaaatttttaaggtggtgtaccctgtggatgatcatcactttaaggtga





tcctgcactatggcacactggtaatcgacggggttacgccgaacatgatcgactatttcggacg





gccgtatgaaggcatcgccgtgttcgacggcaaaaagatcactgtaacagggaccctgtggaac





ggcaacaaaattatcgacgagcgcctgatcaaccccgacggctccctgctgttccgagtaacca





tcaacggagtgaccggctggcggctgtgcgaacgcattctggcggctagcgctactaacttcag





cctgctgaagcaggctggagacgtggaggagaaccctggacctggaagcggagagggcagagga





agtctgctaacatgcggtgacgtcgaggagaatcctggacctggatccggaatggtgagcaagg





gcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggcca





caagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttc





atctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcg





tgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcc





cgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgcc





gaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaagg





aggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcat





ggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggc





agcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgc





ccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatca





catggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaag





taaaatcaacctctggattacaaaatttgtgaaagattgactggtattcttaactatgttgctc





cttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggc





tttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgtt





gtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattg





ccaccacctgtcagctcctttccgggactttcgctttccccctccctattgccacggcggaact





catcgccgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgtg





gtgttgtcggggaaatcatcgtcctttccttggctgctcgcctgtgttgccacctggattctgc





gcgggacgtccttctgctacgtcccttcggccctcaatccagcggaccttccttcccgcggcct





gctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctt





tgggccgcctccccgcgctcgctttcttgctgtccaatttctattaaaggttcctttgttccct





aagtccaactactaaactgggggatattatgaagggccttgagcatctggattctgcctaataa





aaaacatttattttcattgcaagctcgctttcttgctgtccaatttctattaaaggttcctttg





ttccctaagtccaactactaaactgggggatattatgaagggccttgagcatctggattctgcc





taataaaaaacatttattttcattgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaactcggaaggacatggtgtggaaagtccccaggctccccagcagg





cagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtccccaggctcc





ccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaaattaaagtaaccca





taacttcgtatagcatacattatacgaagttatgaagttcctattctctagaaagtataggaac





ttctagtcacctatttcagcatactacgcgcgtagtatgctgaaataggtttatcagcacacaa





tagtccattatacgcgcgtataatggcaattgtgtgctgattgggttactttaatttggatccg





tcgaccgatgcccttgagagccttcaacccagtcagctccttccggtgggcgcggggcatgact





atcgtcgccgcacttatgactgtcttctttatcatgcaactcgtaggacaggtgccggcagcgc





tcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcag





ctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtg





agcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccatagg





ctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacag





gactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccct





gccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctca





cgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaacccc





ccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagaca





cgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggt





gctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatct





gcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaac





caccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatct





caagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaag





ggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaag





ttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagt





gaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgt





agataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagaccc





acgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagt





ggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagta





gttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctc





gtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatccccc





atgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccg





cagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaag





atgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccg





agttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgc





tcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccag





ttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttct





gggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgtt





gaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgag





cggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccga





aaagtgccacctgacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgca





gcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttct





cgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgattt





agtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccat





cgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactctt





gttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttg





ccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaaca





aaatattaacgcttacaatttgccattcgccattcaggctgcgcaactgttgggaagggcgatc





ggtgcgggcctcttcgctattacgccagcccaagctaccatgataagtaagtaatattaaggta





cgtggaggttttacttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaatg





aatgcaattgttgttgttaacttgtttattgcagcttataatggttacaaataaagcaatagca





tcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcat





caatgtatcttatggtactgtaactgagctaacataa





SS*-UCOE-E1-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR[2huBGpA-


A120]-SS*


SEQ ID NO: 27



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcc






attatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgta





gtatgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcg





tataatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcat





gctttgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattg





agatgcatgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcg





acgcacacgaccacaattccactgaaagcattttaatacggaacttgtcactcccagggagcct





ccgctcagccggcagttggttcatttcaatccccacgacaacccttcaaagtgcagggcagaca





gcaggtggctctgcccaggcgcctggatcacagcccggcctgcagccctcacctgggcgcgggg





agaccctgaggacgctcctccaggcggcgctggccggggcctgcggacacggacgggcgggctg





agctccgggacccctccccgcgccccgcaccccgcaccccgcaccccgcaccccgcacccggcg





ctcacccgtcccagccccgccgcccgcagccccagctgcaacgcagccaccgccgccatcgcac





ccggccccgcgggcgcttccgggacgcaggaggcatctgcatccggggcgccgctgagtcccgc





ccagagccccgcccccggctccaggttctgcgagcggcttccgccgggctgctccgcgggcgcg





tcggccatgagcgagttgccgggcgacgtgcgggcgtttctgcgggagcacccgagcctgcggc





tccagacggacgcccgcaaggttcgcagcgcgggaggggaacggagtggcggagaagggcgcag





ttgggatgaggggctgaggggagggcaggggagaggagagggcaggggagaggggagaggggag





agcaggagagaggggaaggcaggggagagggcgcggcgggatcaggggaggagagggaagggac





tttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttccgggact





ttccgggactttccgtgcaccacgtggggactttccgtgcacgacattgattattgactagtta





ttaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataa





cttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatga





cgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacg





gtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtc





aatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctactt





ggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaa





tgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatggg





agtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattga





cgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctgccttctccctc





ctgtgagtttggtaagtcgacgggccgggcctgggccgggtccgggccgggtcgttggatcccc





actacagcccgatactcaagcttgacgaattcgagtatccaaggtagtggactagtgtgacgct





gctgacccctttctttcccttctgcaggttggtgtacagtagcttccaaattgattaattcgag





cgaacgcgtcgccaccatgaactccttctccacaagcgccttcggtccagttgccttctccctg





ggcctgctcctggtgttgcctgctgccttccctgccccagtcttcacactcgaagatttcgttg





gggactggcgacagacagccggctacaacctggaccaagtccttgaacagggaggtgtgtccag





tttgtttcagaatctcggggtgtccgtaactccgatccaaaggattgtcctgagcggtgaaaat





gggctgaagatcgacatccatgtcatcatcccgtatgaaggtctgagcggcgaccaaatgggcc





agatcgaaaaaatttttaaggtggtgtaccctgtggatgatcatcactttaaggtgatcctgca





ctatggcacactggtaatcgacggggttacgccgaacatgatcgactatttcggacggccgtat





gaaggcatcgccgtgttcgacggcaaaaagatcactgtaacagggaccctgtggaacggcaaca





aaattatcgacgagcgcctgatcaaccccgacggctccctgctgttccgagtaaccatcaacgg





agtgaccggctggcggctgtgcgaacgcattctggcggctagcgctactaacttcagcctgctg





aagcaggctggagacgtggaggagaaccctggacctggaagcggagagggcagaggaagtctgc





taacatgcggtgacgtcgaggagaatcctggacctggatccggaatggtgagcaagggcgagga





gctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttc





agcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgca





ccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtg





cttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggc





tacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtga





agttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacgg





caacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgac





aagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgc





agctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaa





ccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtc





ctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaagctc





gctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaactactaaactgg





gggatattatgaagggccttgagcatctggattctgcctaataaaaaacatttattttcattgc





aagctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaactacta





aactgggggatattatgaagggccttgagcatctggattctgcctaataaaaaacatttatttt





cattgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





ctcggaaggacatggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgc





atctcaattagtcagcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtatgca





aagcatgcatctcaattagtcagcaaccaaattaaagtaacccataacttcgtatagcatacat





tatacgaagttatgaagttcctattctctagaaagtataggaacttctagtcacctatttcagc





atactacgcgcgtagtatgctgaaataggtttatcagcacacaatagtccattatacgcgcgta





taatggcaattgtgtgctgattgggttactttaatttggatccgtcgaccgatgcccttgagag





ccttcaacccagtcagctccttccggtgggcgcggggcatgactatcgtcgccgcacttatgac





tgtcttctttatcatgcaactcgtaggacaggtgccggcagcgctcttccgcttcctcgctcac





tgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaata





cggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaagg





ccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagca





tcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcg





tttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgt





ccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttc





ggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgc





gccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcag





cagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtg





gtggcctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaagccagtt





accttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtt





tttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatctt





ttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagatta





tcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagta





tatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgat





ctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggag





ggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatt





tatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgc





ctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttg





cgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcat





tcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggt





tagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggtt





atggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtg





agtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtc





aatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttct





tcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtg





cacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaag





gcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctt





tttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgta





tttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgcgcc





ctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgcc





agcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttc





cccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcga





ccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggttttt





cgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacac





tcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggtt





aaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatt





tgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctat





tacgccagcccaagctaccatgataagtaagtaatattaaggtacgtggaggttttacttgctt





taaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattgttgttgttaa





cttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaa





gcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatggtactg





taactgagctaacataa





SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-huMAR-3′UTR[2huBGpA-A120]-


SS*


SEQ ID NO: 28



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcc






attatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgta





gtatgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcg





tataatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcat





gctttgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattg





agatgcatgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcg





acgggactttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttc





cgggactttccgggactttccgtgcaccacgtggggactttccgtgcacgacattgattattga





ctagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgt





tacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtca





ataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagt





atttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctat





tgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggacttt





cctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagt





acatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgt





caatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgcc





ccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctgcctt





ctccctcctgtgagtttggtaagtcgacgggccgggcctgggccgggtccgggccgggtcgttg





gatccccactacagcccgatactcaagcttgacgaattcgagtatccaaggtagtggactagtg





tgacgctgctgacccctttctttcccttctgcaggttggtgtacagtagcttccaaattgatta





attcgagcgaacgcgtcgccaccatgaactccttctccacaagcgccttcggtccagttgcctt





ctccctgggcctgctcctggtgttgcctgctgccttccctgccccagtcttcacactcgaagat





ttcgttggggactggcgacagacagccggctacaacctggaccaagtccttgaacagggaggtg





tgtccagtttgtttcagaatctcggggtgtccgtaactccgatccaaaggattgtcctgagcgg





tgaaaatgggctgaagatcgacatccatgtcatcatcccgtatgaaggtctgagcggcgaccaa





atgggccagatcgaaaaaatttttaaggtggtgtaccctgtggatgatcatcactttaaggtga





tcctgcactatggcacactggtaatcgacggggttacgccgaacatgatcgactatttcggacg





gccgtatgaaggcatcgccgtgttcgacggcaaaaagatcactgtaacagggaccctgtggaac





ggcaacaaaattatcgacgagcgcctgatcaaccccgacggctccctgctgttccgagtaacca





tcaacggagtgaccggctggcggctgtgcgaacgcattctggcggctagcgctactaacttcag





cctgctgaagcaggctggagacgtggaggagaaccctggacctggaagcggagagggcagagga





agtctgctaacatgcggtgacgtcgaggagaatcctggacctggatccggaatggtgagcaagg





gcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggcca





caagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttc





atctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcg





tgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcc





cgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgcc





gaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaagg





aggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcat





ggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggc





agcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgc





ccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatca





catggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaag





taaggatcccattctccttgatgtactaatttttctttaaaagtgataataatagctcccattt





agaatttttaaataacacaacaaatgtaaagtaactaatgtgtcctctggatcatggtaagtaa





tgaataaatttaactccctttaccttctccctttgctattttttccatgctaggatttatacat





ttttaaaaaactaaatctgctatcaaatgacagctttaaatttactttttaaaatttgttattg





tatatatttatggggtataaagtgatgttatgatatatatatacacaatgtacactgattaaat





caagccaattaacattttatcatctcaaatacttaacattttttgtagtgagaacatttgaaat





ttacttttagcaatttcaaaacatacattattattattaactatagtcaccatgatgtaccata





gatctttaaaaacttattcttcctgcctaactgaaactttgtactctttgactaacatcttttc





attcccccacttcccagcctctggtaatcaccattacacactctgcttctatgagttcaattgc





tttagactccacgtaataaatgagatcatgcagcatttggctttctgtgcctggcttatccttg





cttagcatggtgtcttacaggttcatccatgttgcaacaaataacagaatctcattctttgtta





aggctgaatactattccattgggtatatataccacattttccttatccattaatccactgatgg





acccttaggttgttgattccatatattggctattgtaaatagtgcagcaatgaacatgagagtg





caactatctcttcaatgtactgatttcgaatccttcggatctatctcagaagtgagattgcagg





atcatataattctacttttagtcttttgaggagctccatacagctttccatatggccatactaa





ttacattctcatcaacagtgtacaatggtttccttttctccacatcctcaccaacatttataat





tttttgtctttttgataatagccatctgacaggtgtaaagtgatagctcattgcagttttaatt





tgcattttttgatgattagtaatgttgagaattttttcatatatctcttggccagttgcatgtc





ttctttggaaaaatgtctattcagttcctttgcccattttttaattgggatttttggtttcttg





ctattgagttgtttgaattcgctcgctttcttgctgtccaatttctattaaaggttcctttgtt





ccctaagtccaactactaaactgggggatattatgaagggccttgagcatctggattctgccta





ataaaaaacatttattttcattgcaagctcgctttcttgctgtccaatttctattaaaggttcc





tttgttccctaagtccaactactaaactgggggatattatgaagggccttgagcatctggattc





tgcctaataaaaaacatttattttcattgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaactcggaaggacatggtgtggaaagtccccaggctccccag





caggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtccccagg





ctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaaattaaagtaa





cccataacttcgtatagcatacattatacgaagttatgaagttcctattctctagaaagtatag





gaacttctagtcacctatttcagcatactacgcgcgtagtatgctgaaataggtttatcagcac





acaatagtccattatacgcgcgtataatggcaattgtgtgctgattgggttactttaatttgga





tccgtcgaccgatgcccttgagagccttcaacccagtcagctccttccggtgggcgcggggcat





gactatcgtcgccgcacttatgactgtcttctttatcatgcaactcgtaggacaggtgccggca





gcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggta





tcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaaca





tgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttcca





taggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccg





acaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccga





ccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatag





ctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaa





ccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaa





gacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtagg





cggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggt





atctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaac





aaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaagg





atctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgt





taagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaat





gaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaat





cagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtc





gtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgag





acccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcag





aagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagta





agtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcac





gctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatc





ccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttg





gccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccg





taagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcg





accgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaa





gtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagat





ccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgt





ttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaa





tgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctca





tgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttcc





ccgaaaagtgccacctgacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacg





cgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcct





ttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccg





atttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtggg





ccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggac





tcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggat





tttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaatttt





aacaaaatattaacgcttacaatttgccattcgccattcaggctgcgcaactgttgggaagggc





gatcggtgcgggcctcttcgctattacgccagcccaagctaccatgataagtaagtaatattaa





ggtacgtggaggttttacttgctttaaaaaacctcccacacctccccctgaacctgaaacataa





aatgaatgcaattgttgttgttaacttgtttattgcagcttataatggttacaaataaagcaat





agcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaac





tcatcaatgtatcttatggtactgtaactgagctaacataa





SS*-UCOE-E1-CMV-UTR1-SecNLuc-2A-eGFP-huMAR-3′UTR[2huBGpA-


A120]-SS*


SEQ ID NO: 29



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcc






attatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgta





gtatgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcg





tataatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcat





gctttgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattg





agatgcatgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcg





acgcacacgaccacaattccactgaaagcattttaatacggaacttgtcactcccagggagcct





ccgctcagccggcagttggttcatttcaatccccacgacaacccttcaaagtgcagggcagaca





gcaggtggctctgcccaggcgcctggatcacagcccggcctgcagccctcacctgggcgcgggg





agaccctgaggacgctcctccaggcggcgctggccggggcctgcggacacggacgggcgggctg





agctccgggacccctccccgcgccccgcaccccgcaccccgcaccccgcaccccgcacccggcg





ctcacccgtcccagccccgccgcccgcagccccagctgcaacgcagccaccgccgccatcgcac





ccggccccgcgggcgcttccgggacgcaggaggcatctgcatccggggcgccgctgagtcccgc





ccagagccccgcccccggctccaggttctgcgagcggcttccgccgggctgctccgcgggcgcg





tcggccatgagcgagttgccgggcgacgtgcgggcgtttctgcgggagcacccgagcctgcggc





tccagacggacgcccgcaaggttcgcagcgcgggaggggaacggagtggcggagaagggcgcag





ttgggatgaggggctgaggggagggcaggggagaggagagggcaggggagaggggagaggggag





agcaggagagaggggaaggcaggggagagggcgcggcgggatcaggggaggagagggaagggac





tttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttccgggact





ttccgggactttccgtgcaccacgtggggactttccgtgcacgacattgattattgactagtta





ttaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataa





cttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatga





cgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacg





gtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtc





aatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctactt





ggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaa





tgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatggg





agtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattga





cgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctgccttctccctc





ctgtgagtttggtaagtcgacgggccgggcctgggccgggtccgggccgggtcgttggatcccc





actacagcccgatactcaagcttgacgaattcgagtatccaaggtagtggactagtgtgacgct





gctgacccctttctttcccttctgcaggttggtgtacagtagcttccaaattgattaattcgag





cgaacgcgtcgccaccatgaactccttctccacaagcgccttcggtccagttgccttctccctg





ggcctgctcctggtgttgcctgctgccttccctgccccagtcttcacactcgaagatttcgttg





gggactggcgacagacagccggctacaacctggaccaagtccttgaacagggaggtgtgtccag





tttgtttcagaatctcggggtgtccgtaactccgatccaaaggattgtcctgagcggtgaaaat





gggctgaagatcgacatccatgtcatcatcccgtatgaaggtctgagcggcgaccaaatgggcc





agatcgaaaaaatttttaaggtggtgtaccctgtggatgatcatcactttaaggtgatcctgca





ctatggcacactggtaatcgacggggttacgccgaacatgatcgactatttcggacggccgtat





gaaggcatcgccgtgttcgacggcaaaaagatcactgtaacagggaccctgtggaacggcaaca





aaattatcgacgagcgcctgatcaaccccgacggctccctgctgttccgagtaaccatcaacgg





agtgaccggctggcggctgtgcgaacgcattctggcggctagcgctactaacttcagcctgctg





aagcaggctggagacgtggaggagaaccctggacctggaagcggagagggcagaggaagtctgc





taacatgcggtgacgtcgaggagaatcctggacctggatccggaatggtgagcaagggcgagga





gctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttc





agcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgca





ccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtg





cttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggc





tacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtga





agttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacgg





caacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgac





aagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgc





agctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaa





ccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtc





ctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaaggat





cccattctccttgatgtactaatttttctttaaaagtgataataatagctcccatttagaattt





ttaaataacacaacaaatgtaaagtaactaatgtgtcctctggatcatggtaagtaatgaataa





atttaactccctttaccttctccctttgctattttttccatgctaggatttatacatttttaaa





aaactaaatctgctatcaaatgacagctttaaatttactttttaaaatttgttattgtatatat





ttatggggtataaagtgatgttatgatatatatatacacaatgtacactgattaaatcaagcca





attaacattttatcatctcaaatacttaacattttttgtagtgagaacatttgaaatttacttt





tagcaatttcaaaacatacattattattattaactatagtcaccatgatgtaccatagatcttt





aaaaacttattcttcctgcctaactgaaactttgtactctttgactaacatcttttcattcccc





cacttcccagcctctggtaatcaccattacacactctgcttctatgagttcaattgctttagac





tccacgtaataaatgagatcatgcagcatttggctttctgtgcctggcttatccttgcttagca





tggtgtcttacaggttcatccatgttgcaacaaataacagaatctcattctttgttaaggctga





atactattccattgggtatatataccacattttccttatccattaatccactgatggaccctta





ggttgttgattccatatattggctattgtaaatagtgcagcaatgaacatgagagtgcaactat





ctcttcaatgtactgatttcgaatccttcggatctatctcagaagtgagattgcaggatcatat





aattctacttttagtcttttgaggagctccatacagctttccatatggccatactaattacatt





ctcatcaacagtgtacaatggtttccttttctccacatcctcaccaacatttataattttttgt





ctttttgataatagccatctgacaggtgtaaagtgatagctcattgcagttttaatttgcattt





tttgatgattagtaatgttgagaattttttcatatatctcttggccagttgcatgtcttctttg





gaaaaatgtctattcagttcctttgcccattttttaattgggatttttggtttcttgctattga





gttgtttgaattcgctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaag





tccaactactaaactgggggatattatgaagggccttgagcatctggattctgcctaataaaaa





acatttattttcattgcaagctcgctttcttgctgtccaatttctattaaaggttcctttgttc





cctaagtccaactactaaactgggggatattatgaagggccttgagcatctggattctgcctaa





taaaaaacatttattttcattgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaactcggaaggacatggtgtggaaagtccccaggctccccagcaggcag





aagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtccccaggctcccca





gcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaaattaaagtaacccataa





cttcgtatagcatacattatacgaagttatgaagttcctattctctagaaagtataggaacttc





tagtcacctatttcagcatactacgcgcgtagtatgctgaaataggtttatcagcacacaatag





tccattatacgcgcgtataatggcaattgtgtgctgattgggttactttaatttggatccgtcg





accgatgcccttgagagccttcaacccagtcagctccttccggtgggcgcggggcatgactatc





gtcgccgcacttatgactgtcttctttatcatgcaactcgtaggacaggtgccggcagcgctct





tccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctc





actcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagc





aaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctc





cgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggac





tataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgcc





gcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgc





tgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccg





ttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacga





cttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgct





acagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcg





ctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccac





cgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaa





gaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaaggga





ttttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttt





taaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgag





gcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtaga





taactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacg





ctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggt





cctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagtt





cgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtc





gtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatg





ttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcag





tgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatg





cttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagt





tgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctca





tcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttc





gatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctggg





tgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaa





tactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcgg





atacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaa





gtgccacctgacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcg





tgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgc





cacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagt





gctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgc





cctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgtt





ccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccg





atttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaa





tattaacgcttacaatttgccattcgccattcaggctgcgcaactgttgggaagggcgatcggt





gcgggcctcttcgctattacgccagcccaagctaccatgataagtaagtaatattaaggtacgt





ggaggttttacttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaat





gcaattgttgttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatca





caaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaa





tgtatcttatggtactgtaactgagctaacataa





SS*-UCOE-E1-CMV-UTR1-SecNLuc-2A-eGFP-WPRE-3′UTR[2huBGpA-


A120]-SS*


SEQ ID NO: 30



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcc






attatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgta





gtatgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcg





tataatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcat





gctttgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattg





agatgcatgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcg





acgcacacgaccacaattccactgaaagcattttaatacggaacttgtcactcccagggagcct





ccgctcagccggcagttggttcatttcaatccccacgacaacccttcaaagtgcagggcagaca





gcaggtggctctgcccaggcgcctggatcacagcccggcctgcagccctcacctgggcgcgggg





agaccctgaggacgctcctccaggcggcgctggccggggcctgcggacacggacgggcgggctg





agctccgggacccctccccgcgccccgcaccccgcaccccgcaccccgcaccccgcacccggcg





ctcacccgtcccagccccgccgcccgcagccccagctgcaacgcagccaccgccgccatcgcac





ccggccccgcgggcgcttccgggacgcaggaggcatctgcatccggggcgccgctgagtcccgc





ccagagccccgcccccggctccaggttctgcgagcggcttccgccgggctgctccgcgggcgcg





tcggccatgagcgagttgccgggcgacgtgcgggcgtttctgcgggagcacccgagcctgcggc





tccagacggacgcccgcaaggttcgcagcgcgggaggggaacggagtggcggagaagggcgcag





ttgggatgaggggctgaggggagggcaggggagaggagagggcaggggagaggggagaggggag





agcaggagagaggggaaggcaggggagagggcgcggcgggatcaggggaggagagggaagggac





tttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttccgggact





ttccgggactttccgtgcaccacgtggggactttccgtgcacgacattgattattgactagtta





ttaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataa





cttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatga





cgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacg





gtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtc





aatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctactt





ggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaa





tgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatggg





agtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattga





cgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctgccttctccctc





ctgtgagtttggtaagtcgacgggccgggcctgggccgggtccgggccgggtcgttggatcccc





actacagcccgatactcaagcttgacgaattcgagtatccaaggtagtggactagtgtgacgct





gctgacccctttctttcccttctgcaggttggtgtacagtagcttccaaattgattaattcgag





cgaacgcgtcgccaccatgaactccttctccacaagcgccttcggtccagttgccttctccctg





ggcctgctcctggtgttgcctgctgccttccctgccccagtcttcacactcgaagatttcgttg





gggactggcgacagacagccggctacaacctggaccaagtccttgaacagggaggtgtgtccag





tttgtttcagaatctcggggtgtccgtaactccgatccaaaggattgtcctgagcggtgaaaat





gggctgaagatcgacatccatgtcatcatcccgtatgaaggtctgagcggcgaccaaatgggcc





agatcgaaaaaatttttaaggtggtgtaccctgtggatgatcatcactttaaggtgatcctgca





ctatggcacactggtaatcgacggggttacgccgaacatgatcgactatttcggacggccgtat





gaaggcatcgccgtgttcgacggcaaaaagatcactgtaacagggaccctgtggaacggcaaca





aaattatcgacgagcgcctgatcaaccccgacggctccctgctgttccgagtaaccatcaacgg





agtgaccggctggcggctgtgcgaacgcattctggcggctagcgctactaacttcagcctgctg





aagcaggctggagacgtggaggagaaccctggacctggaagcggagagggcagaggaagtctgc





taacatgcggtgacgtcgaggagaatcctggacctggatccggaatggtgagcaagggcgagga





gctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttc





agcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgca





ccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtg





cttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggc





tacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtga





agttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacgg





caacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgac





aagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgc





agctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaa





ccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtc





ctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaaaatc





aacctctggattacaaaatttgtgaaagattgactggtattcttaactatgttgctccttttac





gctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcatt





ttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggc





aacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccac





ctgtcagctcctttccgggactttcgctttccccctccctattgccacggcggaactcatcgcc





gcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgt





cggggaaatcatcgtcctttccttggctgctcgcctgtgttgccacctggattctgcgcgggac





gtccttctgctacgtcccttcggccctcaatccagcggaccttccttcccgcggcctgctgccg





gctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccg





cctccccgcgctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagtcca





actactaaactgggggatattatgaagggccttgagcatctggattctgcctaataaaaaacat





ttattttcattgcaagctcgctttcttgctgtccaatttctattaaaggttcctttgttcccta





agtccaactactaaactgggggatattatgaagggccttgagcatctggattctgcctaataaa





aaacatttattttcattgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaactcggaaggacatggtgtggaaagtccccaggctccccagcaggcagaagt





atgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtccccaggctccccagcag





gcagaagtatgcaaagcatgcatctcaattagtcagcaaccaaattaaagtaacccataacttc





gtatagcatacattatacgaagttatgaagttcctattctctagaaagtataggaacttctagt





cacctatttcagcatactacgcgcgtagtatgctgaaataggtttatcagcacacaatagtcca





ttatacgcgcgtataatggcaattgtgtgctgattgggttactttaatttggatccgtcgaccg





atgcccttgagagccttcaacccagtcagctccttccggtgggcgcggggcatgactatcgtcg





ccgcacttatgactgtcttctttatcatgcaactcgtaggacaggtgccggcagcgctcttccg





cttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactc





aaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaa





ggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcc





cccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactata





aagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgctt





accggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgta





ggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttca





gcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgactta





tcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacag





agttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctct





gctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgct





ggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaag





atcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggatttt





ggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaa





tcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcac





ctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataac





tacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctca





ccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctg





caactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgcc





agttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgttt





ggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgt





gcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgtt





atcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttt





tctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgct





cttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcat





tggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatg





taacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgag





caaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatact





catactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatac





atatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgc





cacctgacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgac





cgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacg





ttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctt





tacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctg





atagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaa





actggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgattt





cggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatatt





aacgcttacaatttgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgg





gcctcttcgctattacgccagcccaagctaccatgataagtaagtaatattaaggtacgtggag





gttttacttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaa





ttgttgttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaa





tttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgta





tcttatggtactgtaactgagctaacataa





SS*-E1-CMV-UTR1-SecNLuc-2A-eGFP-MAR-WPRE-3′UTR[2huBGpA-


A120]-SS*


SEQ ID NO: 31



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcc






attatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgta





gtatgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcg





tataatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcat





gctttgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattg





agatgcatgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcg





acgggactttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttc





cgggactttccgggactttccgtgcaccacgtggggactttccgtgcacgacattgattattga





ctagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgt





tacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtca





ataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagt





atttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctat





tgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggacttt





cctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagt





acatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgt





caatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgcc





ccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctgcctt





ctccctcctgtgagtttggtaagtcgacgggccgggcctgggccgggtccgggccgggtcgttg





gatccccactacagcccgatactcaagcttgacgaattcgagtatccaaggtagtggactagtg





tgacgctgctgacccctttctttcccttctgcaggttggtgtacagtagcttccaaattgatta





attcgagcgaacgcgtcgccaccatgaactccttctccacaagcgccttcggtccagttgcctt





ctccctgggcctgctcctggtgttgcctgctgccttccctgccccagtcttcacactcgaagat





ttcgttggggactggcgacagacagccggctacaacctggaccaagtccttgaacagggaggtg





tgtccagtttgtttcagaatctcggggtgtccgtaactccgatccaaaggattgtcctgagcgg





tgaaaatgggctgaagatcgacatccatgtcatcatcccgtatgaaggtctgagcggcgaccaa





atgggccagatcgaaaaaatttttaaggtggtgtaccctgtggatgatcatcactttaaggtga





tcctgcactatggcacactggtaatcgacggggttacgccgaacatgatcgactatttcggacg





gccgtatgaaggcatcgccgtgttcgacggcaaaaagatcactgtaacagggaccctgtggaac





ggcaacaaaattatcgacgagcgcctgatcaaccccgacggctccctgctgttccgagtaacca





tcaacggagtgaccggctggcggctgtgcgaacgcattctggcggctagcgctactaacttcag





cctgctgaagcaggctggagacgtggaggagaaccctggacctggaagcggagagggcagagga





agtctgctaacatgcggtgacgtcgaggagaatcctggacctggatccggaatggtgagcaagg





gcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggcca





caagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttc





atctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcg





tgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcc





cgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgcc





gaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaagg





aggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcat





ggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggc





agcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgc





ccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatca





catggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaag





taaggatcccattctccttgatgtactaatttttctttaaaagtgataataatagctcccattt





agaatttttaaataacacaacaaatgtaaagtaactaatgtgtcctctggatcatggtaagtaa





tgaataaatttaactccctttaccttctccctttgctattttttccatgctaggatttatacat





ttttaaaaaactaaatctgctatcaaatgacagctttaaatttactttttaaaatttgttattg





tatatatttatggggtataaagtgatgttatgatatatatatacacaatgtacactgattaaat





caagccaattaacattttatcatctcaaatacttaacattttttgtagtgagaacatttgaaat





ttacttttagcaatttcaaaacatacattattattattaactatagtcaccatgatgtaccata





gatctttaaaaacttattcttcctgcctaactgaaactttgtactctttgactaacatcttttc





attcccccacttcccagcctctggtaatcaccattacacactctgcttctatgagttcaattgc





tttagactccacgtaataaatgagatcatgcagcatttggctttctgtgcctggcttatccttg





cttagcatggtgtcttacaggttcatccatgttgcaacaaataacagaatctcattctttgtta





aggctgaatactattccattgggtatatataccacattttccttatccattaatccactgatgg





acccttaggttgttgattccatatattggctattgtaaatagtgcagcaatgaacatgagagtg





caactatctcttcaatgtactgatttcgaatccttcggatctatctcagaagtgagattgcagg





atcatataattctacttttagtcttttgaggagctccatacagctttccatatggccatactaa





ttacattctcatcaacagtgtacaatggtttccttttctccacatcctcaccaacatttataat





tttttgtctttttgataatagccatctgacaggtgtaaagtgatagctcattgcagttttaatt





tgcattttttgatgattagtaatgttgagaattttttcatatatctcttggccagttgcatgtc





ttctttggaaaaatgtctattcagttcctttgcccattttttaattgggatttttggtttcttg





ctattgagttgtttgaattcaatcaacctctggattacaaaatttgtgaaagattgactggtat





tcttaactatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgct





attgcttcccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatg





aggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccc





cactggttggggcattgccaccacctgtcagctcctttccgggactttcgctttccccctccct





attgccacggcggaactcatcgccgcctgccttgcccgctgctggacaggggctcggctgttgg





gcactgacaattccgtggtgttgtcggggaaatcatcgtcctttccttggctgctcgcctgtgt





tgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggac





cttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcaga





cgagtcggatctccctttgggccgcctccccgcgctcgctttcttgctgtccaatttctattaa





aggttcctttgttccctaagtccaactactaaactgggggatattatgaagggccttgagcatc





tggattctgcctaataaaaaacatttattttcattgcaagctcgctttcttgctgtccaatttc





tattaaaggttcctttgttccctaagtccaactactaaactgggggatattatgaagggccttg





agcatctggattctgcctaataaaaaacatttattttcattgcaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaactcggaaggacatggtgtggaaagtcc





ccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtg





gaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaac





caaattaaagtaacccataacttcgtatagcatacattatacgaagttatgaagttcctattct





ctagaaagtataggaacttctagtcacctatttcagcatactacgcgcgtagtatgctgaaata





ggtttatcagcacacaatagtccattatacgcgcgtataatggcaattgtgtgctgattgggtt





actttaatttggatccgtcgaccgatgcccttgagagccttcaacccagtcagctccttccggt





gggcgcggggcatgactatcgtcgccgcacttatgactgtcttctttatcatgcaactcgtagg





acaggtgccggcagcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggct





gcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataac





gcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgc





tggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagag





gtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgc





tctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtgg





cgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctggg





ctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgag





tccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagag





cgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaag





aacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctct





tgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgc





gcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaa





cgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatcctt





ttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagtt





accaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgc





ctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgca





atgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaa





gggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccg





ggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggc





atcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggc





gagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgt





cagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttact





gtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaat





agtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatag





cagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatctta





ccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatctttta





ctttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataag





ggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcag





ggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttc





cgcgcacatttccccgaaaagtgccacctgacgcgccctgtagcggcgcattaagcgcggcggg





tgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgct





ttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctcc





ctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatgg





ttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttc





tttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttg





atttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatt





taacgcgaattttaacaaaatattaacgcttacaatttgccattcgccattcaggctgcgcaac





tgttgggaagggcgatcggtgcgggcctcttcgctattacgccagcccaagctaccatgataag





taagtaatattaaggtacgtggaggttttacttgctttaaaaaacctcccacacctccccctga





acctgaaacataaaatgaatgcaattgttgttgttaacttgtttattgcagcttataatggtta





caaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgt





ggtttgtccaaactcatcaatgtatcttatggtactgtaactgagctaacataa





SS*-UCOE-E1-CMV-UTR1-SecNLuc-2A-eGFP-MAR-WPRE-


3′UTR[2huBGpA-A120]-SS*


SEQ ID NO: 32



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcc






attatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgta





gtatgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcg





tataatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcat





gctttgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattg





agatgcatgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcg





acgcacacgaccacaattccactgaaagcattttaatacggaacttgtcactcccagggagcct





ccgctcagccggcagttggttcatttcaatccccacgacaacccttcaaagtgcagggcagaca





gcaggtggctctgcccaggcgcctggatcacagcccggcctgcagccctcacctgggcgcgggg





agaccctgaggacgctcctccaggcggcgctggccggggcctgcggacacggacgggcgggctg





agctccgggacccctccccgcgccccgcaccccgcaccccgcaccccgcaccccgcacccggcg





ctcacccgtcccagccccgccgcccgcagccccagctgcaacgcagccaccgccgccatcgcac





ccggccccgcgggcgcttccgggacgcaggaggcatctgcatccggggcgccgctgagtcccgc





ccagagccccgcccccggctccaggttctgcgagcggcttccgccgggctgctccgcgggcgcg





tcggccatgagcgagttgccgggcgacgtgcgggcgtttctgcgggagcacccgagcctgcggc





tccagacggacgcccgcaaggttcgcagcgcgggaggggaacggagtggcggagaagggcgcag





ttgggatgaggggctgaggggagggcaggggagaggagagggcaggggagaggggagaggggag





agcaggagagaggggaaggcaggggagagggcgcggcgggatcaggggaggagagggaagggac





tttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttccgggact





ttccgggactttccgtgcaccacgtggggactttccgtgcacgacattgattattgactagtta





ttaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataa





cttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatga





cgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacg





gtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtc





aatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctactt





ggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaa





tgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatggg





agtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattga





cgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctgccttctccctc





ctgtgagtttggtaagtcgacgggccgggcctgggccgggtccgggccgggtcgttggatcccc





actacagcccgatactcaagcttgacgaattcgagtatccaaggtagtggactagtgtgacgct





gctgacccctttctttcccttctgcaggttggtgtacagtagcttccaaattgattaattcgag





cgaacgcgtcgccaccatgaactccttctccacaagcgccttcggtccagttgccttctccctg





ggcctgctcctggtgttgcctgctgccttccctgccccagtcttcacactcgaagatttcgttg





gggactggcgacagacagccggctacaacctggaccaagtccttgaacagggaggtgtgtccag





tttgtttcagaatctcggggtgtccgtaactccgatccaaaggattgtcctgagcggtgaaaat





gggctgaagatcgacatccatgtcatcatcccgtatgaaggtctgagcggcgaccaaatgggcc





agatcgaaaaaatttttaaggtggtgtaccctgtggatgatcatcactttaaggtgatcctgca





ctatggcacactggtaatcgacggggttacgccgaacatgatcgactatttcggacggccgtat





gaaggcatcgccgtgttcgacggcaaaaagatcactgtaacagggaccctgtggaacggcaaca





aaattatcgacgagcgcctgatcaaccccgacggctccctgctgttccgagtaaccatcaacgg





agtgaccggctggcggctgtgcgaacgcattctggcggctagcgctactaacttcagcctgctg





aagcaggctggagacgtggaggagaaccctggacctggaagcggagagggcagaggaagtctgc





taacatgcggtgacgtcgaggagaatcctggacctggatccggaatggtgagcaagggcgagga





gctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttc





agcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgca





ccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtg





cttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggc





tacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtga





agttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacgg





caacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgac





aagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgc





agctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaa





ccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtc





ctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaaggat





cccattctccttgatgtactaatttttctttaaaagtgataataatagctcccatttagaattt





ttaaataacacaacaaatgtaaagtaactaatgtgtcctctggatcatggtaagtaatgaataa





atttaactccctttaccttctccctttgctattttttccatgctaggatttatacatttttaaa





aaactaaatctgctatcaaatgacagctttaaatttactttttaaaatttgttattgtatatat





ttatggggtataaagtgatgttatgatatatatatacacaatgtacactgattaaatcaagcca





attaacattttatcatctcaaatacttaacattttttgtagtgagaacatttgaaatttacttt





tagcaatttcaaaacatacattattattattaactatagtcaccatgatgtaccatagatcttt





aaaaacttattcttcctgcctaactgaaactttgtactctttgactaacatcttttcattcccc





cacttcccagcctctggtaatcaccattacacactctgcttctatgagttcaattgctttagac





tccacgtaataaatgagatcatgcagcatttggctttctgtgcctggcttatccttgcttagca





tggtgtcttacaggttcatccatgttgcaacaaataacagaatctcattctttgttaaggctga





atactattccattgggtatatataccacattttccttatccattaatccactgatggaccctta





ggttgttgattccatatattggctattgtaaatagtgcagcaatgaacatgagagtgcaactat





ctcttcaatgtactgatttcgaatccttcggatctatctcagaagtgagattgcaggatcatat





aattctacttttagtcttttgaggagctccatacagctttccatatggccatactaattacatt





ctcatcaacagtgtacaatggtttccttttctccacatcctcaccaacatttataattttttgt





ctttttgataatagccatctgacaggtgtaaagtgatagctcattgcagttttaatttgcattt





tttgatgattagtaatgttgagaattttttcatatatctcttggccagttgcatgtcttctttg





gaaaaatgtctattcagttcctttgcccattttttaattgggatttttggtttcttgctattga





gttgtttgaattcaatcaacctctggattacaaaatttgtgaaagattgactggtattcttaac





tatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgctt





cccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagtt





gtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggt





tggggcattgccaccacctgtcagctcctttccgggactttcgctttccccctccctattgcca





cggcggaactcatcgccgcctgccttgcccgctgctggacaggggctcggctgttgggcactga





caattccgtggtgttgtcggggaaatcatcgtcctttccttggctgctcgcctgtgttgccacc





tggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggaccttcctt





cccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcg





gatctccctttgggccgcctccccgcgctcgctttcttgctgtccaatttctattaaaggttcc





tttgttccctaagtccaactactaaactgggggatattatgaagggccttgagcatctggattc





tgcctaataaaaaacatttattttcattgcaagctcgctttcttgctgtccaatttctattaaa





ggttcctttgttccctaagtccaactactaaactgggggatattatgaagggccttgagcatct





ggattctgcctaataaaaaacatttattttcattgcaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaactcggaaggacatggtgtggaaagtccccaggct





ccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtc





cccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaaatta





aagtaacccataacttcgtatagcatacattatacgaagttatgaagttcctattctctagaaa





gtataggaacttctagtcacctatttcagcatactacgcgcgtagtatgctgaaataggtttat





cagcacacaatagtccattatacgcgcgtataatggcaattgtgtgctgattgggttactttaa





tttggatccgtcgaccgatgcccttgagagccttcaacccagtcagctccttccggtgggcgcg





gggcatgactatcgtcgccgcacttatgactgtcttctttatcatgcaactcgtaggacaggtg





ccggcagcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcga





gcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaa





agaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtt





tttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcga





aacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctg





ttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttc





tcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtg





cacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacc





cggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggta





tgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagta





tttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccg





gcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaa





aaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaac





tcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaatt





aaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatg





cttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactc





cccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgatac





cgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccga





gcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagct





agagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtgg





tgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttac





atgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagt





aagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgc





catccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtat





gcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaact





ttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgt





tgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcac





cagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgaca





cggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttatt





gtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcac





atttccccgaaaagtgccacctgacgcgccctgtagcggcgcattaagcgcggcgggtgtggtg





gttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcc





cttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagg





gttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgt





agtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaata





gtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttata





agggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcg





aattttaacaaaatattaacgcttacaatttgccattcgccattcaggctgcgcaactgttggg





aagggcgatcggtgcgggcctcttcgctattacgccagcccaagctaccatgataagtaagtaa





tattaaggtacgtggaggttttacttgctttaaaaaacctcccacacctccccctgaacctgaa





acataaaatgaatgcaattgttgttgttaacttgtttattgcagcttataatggttacaaataa





agcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgt





ccaaactcatcaatgtatcttatggtactgtaactgagctaacataa





(Super Sequence, SS*)


SEQ ID NO: 33



taaagtaacccaatcagcacacaattgccattatacgcgcgtataatggactattgtgtgctgat






aaacctatttcagcatactacgcgcgtagtatgctgaaataggtgactagaagttcctatacttt





ctagagaataggaacttcataacttcgtataatgtatgctatacgaagttatgggttactttaat





ttggttgctgactaattgagatgcatgctttgcatacttctgcctgctggggagcctggggactt





tccacacctggttgctgactaattgagatgcatgctttgcatacttctgcctgctggggagcctg





gggactttccacacc





pGL2-CAG-SecNLuc-2A-eGFP-WPRE-bGlobin polyA


SEQ ID NO: 34



cccgggaggtaccgagctcttacgcgtgctagcctgggtcgacattgattattgactagttatta






atagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataactta





cggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtat





gttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaac





tgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacg





gtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtac





atctacgtattagtcatcgctattaccatggtcgaggtgagccccacgttctgcttcactctccc





catctcccccccctccccacccccaattttgtatttatttattttttaattattttgtgcagcga





tgggggcggggggggggggggcgcgcgccaggcggggcggggcggggcgaggggcggggcggggc





gaggcggaaaggtgcggcggcagccaatcagagcggcgcgctccgaaagtttccttttatggcga





ggcggcggcggcggcggccctataaaaagcgaagcgcgcggcgggcgggagtcgctgcgttgcct





tcgccccgtgccccgctccgcgccgcctcgcgccgcccgccccggctctgactgaccgcgttact





cccacaggtgagcgggcgggacggcccttctcctccgggctgtaattagcgcttggtttaatgac





ggctcgtttcttttctgtggctgcgtgaaagccttaaagggctccgggagggccctttgtgcggg





ggggagcggctcggggggtgcgtgcgtgtgtgtgtgcgtggggagcgccgcgtgcggctccgcgc





tgcccggcggctgtgagcgctgcgggcgcggcgcggggctttgtgcgctccgcagtgtgcgcgag





gggagcgcggccgggggcggtgccccgcggtgcggggggggctgcgaggggaacaaaggctgcgt





gcggggtgtgtgcgtgggggggtgagcagggggtgtgggcgcggcggtcgggctgtaaccccccc





ctgcacccccctccccgagttgctgagcacggcccggcttcgggtgcggggctccgtacggggcg





tggcgcggggctcgccgtgccgggcggggggtggcggcaggtgggggtgccgggcggggcggggc





cgcctcgggccggggagggctcgggggaggggcgcggcggcccccggagcgccggcggctgtcga





ggcgcggcgagccgcagccattgccttttatggtaatcgtgcgagagggcgcagggacttccttt





gtcccaaatctgtgcggagccgaaatctgggaggcgccgccgcaccccctctagcgggcgcgggg





cgaagcggtgcggcgccggcaggaaggaaatgggcggggagggccttcgtgcgtcgccgcgccgc





cgtccccttctccctctccagcctcggggctgtccgcggggggacggctgccttcgggggggacg





gggcagggcggggttcggcttctggcgtgtgaccggcggctctagagcctctgctaaccatgttc





atgccttcttctttttcctacagctcctgggcaacgtgctggttattgtgctgtctcatcatttt





ggcaaagaattgattaattcgagcgaacgcgtcgccaccatgaactccttctccacaagcgcctt





cggtccagttgccttctccctgggcctgctcctggtgttgcctgctgccttccctgccccagtct





tcacactcgaagatttcgttggggactggcgacagacagccggctacaacctggaccaagtcctt





gaacagggaggtgtgtccagtttgtttcagaatctcggggtgtccgtaactccgatccaaaggat





tgtcctgagcggtgaaaatgggctgaagatcgacatccatgtcatcatcccgtatgaaggtctga





gcggcgaccaaatgggccagatcgaaaaaatttttaaggtggtgtaccctgtggatgatcatcac





tttaaggtgatcctgcactatggcacactggtaatcgacggggttacgccgaacatgatcgacta





tttcggacggccgtatgaaggcatcgccgtgttcgacggcaaaaagatcactgtaacagggaccc





tgtggaacggcaacaaaattatcgacgagcgcctgatcaaccccgacggctccctgctgttccga





gtaaccatcaacggagtgaccggctggcggctgtgcgaacgcattctggcggctagcgctactaa





cttcagcctgctgaagcaggctggagacgtggaggagaaccctggacctggaagcggagagggca





gaggaagtctgctaacatgcggtgacgtcgaggagaatcctggacctggatccggaatggtgagc





aagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacgg





ccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagt





tcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggc





gtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcc





cgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccg





aggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggag





gacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggc





cgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcg





tgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgac





aaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggt





cctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaagcgg





ccgcactcctcaggtgcaggctgcctatcagaaggtggtggctggtgtggccaatgccctggctc





acaaataccactgagatctttttccctctgccaaaaattatggggacatcatgaagccccttgag





catctgacttctggctaataaaggaaatttattttcattgcaatagtgtgttggaattttttgtg





tctctcactcggaaggacattggatccgtcgaccgatgcccttgagagccttcaacccagtcagc





tccttccggtgggcgcggggcatgactatcgtcgccgcacttatgactgtcttctttatcatgca





actcgtaggacaggtgccggcagcgctcttccgcttcctcgctcactgactcgctgcgctcggtc





gttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcagg





ggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccg





cgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagt





cagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgt





gcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcg





tggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctg





ggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttga





gtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagag





cgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaaga





acagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttg





atccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgca





gaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaa





aactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaa





ttaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaat





gcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactc





cccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgatacc





gcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagc





gcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctaga





gtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtc





acgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgat





cccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttg





gccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgt





aagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgac





cgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtg





ctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccag





ttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctg





ggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttga





atactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcgg





atacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaag





tgccacctgacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtg





accgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccac





gttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctt





tacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctga





tagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaac





tggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcgg





cctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacg





cttacaatttgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctc





ttcgctattacgccagcccaagctaccatgataagtaagtaatattaaggtacgtggaggtttta





cttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattgttgt





tgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaa





ataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatggt





actgtaactgagctaacataa





CAG [E1X3 + CBA promoter + intron]


SEQ ID NO: 35



gggactttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttccgg






gactttccgggactttccgtgcaccacgtggggactttccgtgcacgggactttccggggcgggg





cacgtggtgcacgggactttccgtgcacgtgcacgggactttccgggactttccgggactttccg





tgcaccacgtggggactttccgtgcacgggactttccggggcggggcacgtggtgcacgggactt





tccgtgcacgtgcacgggactttccgggactttccgggactttccgtgcaccacgtggggacttt





ccgtgcacgtcgaggtgagccccacgttctgcttcactctccccatctcccccccctccccaccc





ccaattttgtatttatttattttttaattattttgtgcagcgatgggggcggggggggggggggc





gcgcgccaggcggggcggggcggggcgaggggcggggcggggcgaggcggaaaggtgcggcggca





gccaatcagagcggcgcgctccgaaagtttccttttatggcgaggcggcggcggcggcggcccta





taaaaagcgaagcgcgcggcgggcgggagtcgctgcgttgccttcgccccgtgccccgctccgcg





ccgcctcgcgccgcccgccccggctctgactgaccgcgttactcccacaggtgagcgggcgggac





ggcccttctcctccgggctgtaattagcgcttggtttaatgacggctcgtttcttttctgtggct





gcgtgaaagccttaaagggctccgggagggccctttgtgcgggggggagcggctcggggggtgcg





tgcgtgtgtgtgtgcgtggggagcgccgcgtgcggctccgcgctgcccggcggctgtgagcgctg





cgggcgcggcgcggggctttgtgcgctccgcagtgtgcgcgaggggagcgcggccgggggcggtg





ccccgcggtgcggggggggctgcgaggggaacaaaggctgcgtgcggggtgtgtgcgtggggggg





tgagcagggggtgtgggcgcggcggtcgggctgtaacccccccctgcacccccctccccgagttg





ctgagcacggcccggcttcgggtgcggggctccgtacggggcgtggcgcggggctcgccgtgccg





ggcggggggtggcggcaggtgggggtgccgggcggggcggggccgcctcgggccggggagggctc





gggggaggggcgcggcggcccccggagcgccggcggctgtcgaggcgcggcgagccgcagccatt





gccttttatggtaatcgtgcgagagggcgcagggacttcctttgtcccaaatctgtgcggagccg





aaatctgggaggcgccgccgcaccccctctagcgggcgcggggcgaagcggtgcggcgccggcag





gaaggaaatgggcggggagggccttcgtgcgtcgccgcgccgccgtccccttctccctctccagc





ctcggggctgtccgcggggggacggctgccttcgggggggacggggcagggcggggttcggcttc





tggcgtgtgaccggcggctctagagcctctgctaaccatgttcatgccttcttctttttcctaca





g





CAG [E2 + CBA promoter + intron]


SEQ ID NO: 36



tgggactttccactagacatgacacagcaatctgatatgcttgcgtgagaagaggattcatatcc






tgggactttccacagattttaccggaagttgttagatgcttgcgtgagaagatctaacatgacac





agcaatccttagtgggactttccaagtatgtggggcggggagtatacatgacacagcaattgatc





attaccggaagtttataggtgggactttccagacctatgcttgcgtgagaagaaaggtctgggac





tttccagtcgaggtgagccccacgttctgcttcactctccccatctcccccccctccccaccccc





aattttgtatttatttattttttaattattttgtgcagcgatgggggcggggggggggggggcgc





gcgccaggcggggcggggcggggcgaggggcggggcggggcgaggcggaaaggtgcggcggcagc





caatcagagcggcgcgctccgaaagtttccttttatggcgaggcggcggcggcggcggccctata





aaaagcgaagcgcgcggcgggcgggagtcgctgcgttgccttcgccccgtgccccgctccgcgcc





gcctcgcgccgcccgccccggctctgactgaccgcgttactcccacaggtgagcgggcgggacgg





cccttctcctccgggctgtaattagcgcttggtttaatgacggctcgtttcttttctgtggctgc





gtgaaagccttaaagggctccgggagggccctttgtgcgggggggagcggctcggggggtgcgtg





cgtgtgtgtgtgcgtggggagcgccgcgtgcggctccgcgctgcccggcggctgtgagcgctgcg





ggcgcggcgcggggctttgtgcgctccgcagtgtgcgcgaggggagcgcggccgggggcggtgcc





ccgcggtgcggggggggctgcgaggggaacaaaggctgcgtgcggggtgtgtgcgtgggggggtg





agcagggggtgtgggcgcggcggtcgggctgtaacccccccctgcacccccctccccgagttgct





gagcacggcccggcttcgggtgcggggctccgtacggggcgtggcgcggggctcgccgtgccggg





cggggggtggcggcaggtgggggtgccgggcggggcggggccgcctcgggccggggagggctcgg





gggaggggcgcggcggcccccggagcgccggcggctgtcgaggcgcggcgagccgcagccattgc





cttttatggtaatcgtgcgagagggcgcagggacttcctttgtcccaaatctgtgcggagccgaa





atctgggaggcgccgccgcaccccctctagcgggcgcggggcgaagcggtgcggcgccggcagga





aggaaatgggcggggagggccttcgtgcgtcgccgcgccgccgtccccttctccctctccagcct





cggggctgtccgcggggggacggctgccttcgggggggacggggcagggcggggttcggcttctg





gcgtgtgaccggcggctctagagcctctgctaaccatgttcatgccttcttctttttcctacag





CAG [E1X3 + CBA promoter + UTR1]


SEQ ID NO: 37



gggactttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttccgg






gactttccgggactttccgtgcaccacgtggggactttccgtgcacgggactttccggggcgggg





cacgtggtgcacgggactttccgtgcacgtgcacgggactttccgggactttccgggactttccg





tgcaccacgtggggactttccgtgcacgggactttccggggcggggcacgtggtgcacgggactt





tccgtgcacgtgcacgggactttccgggactttccgggactttccgtgcaccacgtggggacttt





ccgtgcacgtcgaggtgagccccacgttctgcttcactctccccatctcccccccctccccaccc





ccaattttgtatttatttattttttaattattttgtgcagcgatgggggcggggggggggggggc





gcgcgccaggcggggcggggcggggcgaggggcggggcggggcgaggcggaaaggtgcggcggca





gccaatcagagcggcgcgctccgaaagtttccttttatggcgaggcggcggcggcggcggcccta





taaaaagcgaagcgcgcggcgggcgctgccttctccctcctgtgagtttggtaagtcgacgggcc





gggcctgggccgggtccgggccgggtcgttggatccccactacagcccgatactcaagcttgacg





aattcgagtatccaaggtagtggactagtgtgacgctgctgacccctttctttcccttctgcagg





ttggtgtacagtagcttccaaattgattaattcgagcgaacgcgtc





CAG [E2 (U100) + CBA promoter + UTR1]


SEQ ID NO: 38



Tgggactttccactagacatgacacagcaatctgatatgcttgcgtgagaagaggattcatatcc






tgggactttccacagattttaccggaagttgttagatgcttgcgtgagaagatctaacatgacac





agcaatccttagtgggactttccaagtatgtggggcggggagtatacatgacacagcaattgatc





attaccggaagtttataggtgggactttccagacctatgcttgcgtgagaagaaaggtctgggac





tttccagtcgaggtgagccccacgttctgcttcactctccccatctcccccccctccccaccccc





aattttgtatttatttattttttaattattttgtgcagcgatgggggcggggggggggggggcgc





gcgccaggcggggcggggcggggcgaggggcggggcggggcgaggcggaaaggtgcggcggcagc





caatcagagcggcgcgctccgaaagtttccttttatggcgaggcggcggcggcggcggccctata





aaaagcgaagcgcgcggcgggcgctgccttctccctcctgtgagtttggtaagtcgacgggccgg





gcctgggccgggtccgggccgggtcgttggatccccactacagcccgatactcaagcttgacgaa





ttcgagtatccaaggtagtggactagtgtgacgctgctgacccctttctttcccttctgcaggtt





ggtgtacagtagcttccaaattgattaattcgagcgaacgcgtc





CMV enhancer-EF1-UTR1


SEQ ID NO: 39



Gacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatat






atggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccg





cccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtc





aatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagt





acgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgacctt





atgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggggcagagcg





cacatcgcccacagtccccgagaagttggggggaggggtcggcaattgaaccggtgcctagagaa





ggtggcgcggggtaaactgggaaagtgatgtcgtgtactggctccgcctttttcccgagggtggg





ggagaaccgtatataagtgcagtagtcgccgtgaacgttctttttcgcaacgggtttgccgccag





aacacagctgccttctccctcctgtgagtttggtaagtcgacgggccgggcctgggccgggtccg





ggccgggtcgttggatccccactacagcccgatactcaagcttgacgaattcgagtatccaaggt





agtggactagtgtgacgctgctgacccctttctttcccttctgcaggttggtgtacagtagcttc





caaattgattaattcgagcgaacgcgtc





4-1 pGL2-SS*-CAG [CMV enhancer + CBA Promoter + intron]-


SecNLuc-2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*


SEQ ID NO: 40



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcca






ttatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgtagt





atgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcgtat





aatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcatgctt





tgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattgagatg





catgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcgacgaca





ttgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatgg





agttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccca





ttgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatg





ggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgc





cccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgg





gactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtcgaggtgagccc





cacgttctgcttcactctccccatctcccccccctccccacccccaattttgtatttatttattt





tttaattattttgtgcagcgatgggggcggggggggggggggcgcgcgccaggcggggcggggcg





gggcgaggggcggggcggggcgaggcggaaaggtgcggcggcagccaatcagagcggcgcgctcc





gaaagtttccttttatggcgaggcggcggcggcggcggccctataaaaagcgaagcgcgcggcgg





gcgggagtcgctgcgttgccttcgccccgtgccccgctccgcgccgcctcgcgccgcccgccccg





gctctgactgaccgcgttactcccacaggtgagcgggcgggacggcccttctcctccgggctgta





attagcgcttggtttaatgacggctcgtttcttttctgtggctgcgtgaaagccttaaagggctc





cgggagggccctttgtgcgggggggagcggctcggggggtgcgtgcgtgtgtgtgtgcgtgggga





gcgccgcgtgcggctccgcgctgcccggcggctgtgagcgctgcgggcgcggcgcggggctttgt





gcgctccgcagtgtgcgcgaggggagcgcggccgggggcggtgccccgcggtgcggggggggctg





cgaggggaacaaaggctgcgtgcggggtgtgtgcgtgggggggtgagcagggggtgtgggcgcgg





cggtcgggctgtaacccccccctgcacccccctccccgagttgctgagcacggcccggcttcggg





tgcggggctccgtacggggcgtggcgcggggctcgccgtgccgggcggggggtggcggcaggtgg





gggtgccgggcggggcggggccgcctcgggccggggagggctcgggggaggggcgcggcggcccc





cggagcgccggcggctgtcgaggcgcggcgagccgcagccattgccttttatggtaatcgtgcga





gagggcgcagggacttcctttgtcccaaatctgtgcggagccgaaatctgggaggcgccgccgca





ccccctctagcgggcgcggggcgaagcggtgcggcgccggcaggaaggaaatgggcggggagggc





cttcgtgcgtcgccgcgccgccgtccccttctccctctccagcctcggggctgtccgcgggggga





cggctgccttcgggggggacggggcagggcggggttcggcttctggcgtgtgaccggcggctcta





gagcctctgctaaccatgttcatgccttcttctttttcctacagctcctgggcaacgtgctggtt





attgtgctgtctcatcattttggcaaagaattgattaattcgagcgaacgcgtcgccaccatgaa





ctccttctccacaagcgccttcggtccagttgccttctccctgggcctgctcctggtgttgcctg





ctgccttccctgccccagtcttcacactcgaagatttcgttggggactggcgacagacagccggc





tacaacctggaccaagtccttgaacagggaggtgtgtccagtttgtttcagaatctcggggtgtc





cgtaactccgatccaaaggattgtcctgagcggtgaaaatgggctgaagatcgacatccatgtca





tcatcccgtatgaaggtctgagcggcgaccaaatgggccagatcgaaaaaatttttaaggtggtg





taccctgtggatgatcatcactttaaggtgatcctgcactatggcacactggtaatcgacggggt





tacgccgaacatgatcgactatttcggacggccgtatgaaggcatcgccgtgttcgacggcaaaa





agatcactgtaacagggaccctgtggaacggcaacaaaattatcgacgagcgcctgatcaacccc





gacggctccctgctgttccgagtaaccatcaacggagtgaccggctggcggctgtgcgaacgcat





tctggcggctagcgctactaacttcagcctgctgaagcaggctggagacgtggaggagaaccctg





gacctggaagcggagagggcagaggaagtctgctaacatgcggtgacgtcgaggagaatcctgga





cctggatccggaatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcga





gctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacct





acggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctc





gtgaccaccctgacctacggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacga





cttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacg





gcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctg





aagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacag





ccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgcc





acaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgac





ggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaa





cgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatgg





acgagctgtacaagtaaaatcaacctctggattacaaaatttgtgaaagattgactggtattctt





aactatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgc





ttcccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagt





tgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggt





tggggcattgccaccacctgtcagctcctttccgggactttcgctttccccctccctattgccac





ggcggaactcatcgccgcctgccttgcccgctgctggacaggggctcggctgttgggcactgaca





attccgtggtgttgtcggggaaatcatcgtcctttccttggctgctcgcctgtgttgccacctgg





attctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggaccttccttcccg





cggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatct





ccctttgggccgcctccccgcgctcgctttcttgctgtccaatttctattaaaggttcctttgtt





ccctaagtccaactactaaactgggggatattatgaagggccttgagcatctggattctgcctaa





taaaaaacatttattttcattgcaagctcgctttcttgctgtccaatttctattaaaggttcctt





tgttccctaagtccaactactaaactgggggatattatgaagggccttgagcatctggattctgc





ctaataaaaaacatttattttcattgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaactcggaaggacatggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagc





atgcatctcaattagtcagcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtat





gcaaagcatgcatctcaattagtcagcaaccaaattaaagtaacccataacttcgtatagcatac





attatacgaagttatgaagttcctattctctagaaagtataggaacttctagtcacctatttcag





catactacgcgcgtagtatgctgaaataggtttatcagcacacaatagtccattatacgcgcgta





taatggcaattgtgtgctgattgggttactttaatttggatccgtcgaccgatgcccttgagagc





cttcaacccagtcagctccttccggtgggcgcggggcatgactatcgtcgccgcacttatgactg





tcttctttatcatgcaactcgtaggacaggtgccggcagcgctcttccgcttcctcgctcactga





ctcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggt





tatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccagg





aaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaa





aaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttcccc





ctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgccttt





ctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggt





cgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccg





gtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggt





aacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaacta





cggctacactagaagaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaa





gagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaag





cagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctga





cgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttca





cctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttgg





tctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatc





catagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggcccca





gtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagcca





gccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattg





ttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgcta





caggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatca





aggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgt





tgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctctta





ctgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaa





tagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatag





cagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttac





cgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttact





ttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggc





gacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggtt





attgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgc





acatttccccgaaaagtgccacctgacgcgccctgtagcggcgcattaagcgcggcgggtgtggt





ggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcc





cttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttaggg





ttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtag





tgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtg





gactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataaggg





attttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattt





taacaaaatattaacgcttacaatttgccattcgccattcaggctgcgcaactgttgggaagggc





gatcggtgcgggcctcttcgctattacgccagcccaagctaccatgataagtaagtaatattaag





gtacgtggaggttttacttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaa





tgaatgcaattgttgttgttaacttgtttattgcagcttataatggttacaaataaagcaatagc





atcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcat





caatgtatcttatggtactgtaactgagctaacataa





4-2 pGL2-SS*-CAG [E1 X3 + CBA promoter + introne]-SecNLuc-


2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*


SEQ ID NO: 41



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcca






ttatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgtagt





atgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcgtat





aatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcatgctt





tgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattgagatg





catgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcgacggga





ctttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttccgggact





ttccgggactttccgtgcaccacgtggggactttccgtgcacgggactttccggggcggggcacg





tggtgcacgggactttccgtgcacgtgcacgggactttccgggactttccgggactttccgtgca





ccacgtggggactttccgtgcacgggactttccggggcggggcacgtggtgcacgggactttccg





tgcacgtgcacgggactttccgggactttccgggactttccgtgcaccacgtggggactttccgt





gcacgtcgaggtgagccccacgttctgcttcactctccccatctcccccccctccccacccccaa





ttttgtatttatttattttttaattattttgtgcagcgatgggggcggggggggggggggcgcgc





gccaggcggggcggggcggggcgaggggcggggcggggcgaggcggaaaggtgcggcggcagcca





atcagagcggcgcgctccgaaagtttccttttatggcgaggcggcggcggcggcggccctataaa





aagcgaagcgcgcggcgggcgggagtcgctgcgttgccttcgccccgtgccccgctccgcgccgc





ctcgcgccgcccgccccggctctgactgaccgcgttactcccacaggtgagcgggcgggacggcc





cttctcctccgggctgtaattagcgcttggtttaatgacggctcgtttcttttctgtggctgcgt





gaaagccttaaagggctccgggagggccctttgtgcgggggggagcggctcggggggtgcgtgcg





tgtgtgtgtgcgtggggagcgccgcgtgcggctccgcgctgcccggcggctgtgagcgctgcggg





cgcggcgcggggctttgtgcgctccgcagtgtgcgcgaggggagcgcggccgggggcggtgcccc





gcggtgcggggggggctgcgaggggaacaaaggctgcgtgcggggtgtgtgcgtgggggggtgag





cagggggtgtgggcgcggcggtcgggctgtaacccccccctgcacccccctccccgagttgctga





gcacggcccggcttcgggtgcggggctccgtacggggcgtggcgcggggctcgccgtgccgggcg





gggggtggcggcaggtgggggtgccgggcggggcggggccgcctcgggccggggagggctcgggg





gaggggcgcggcggcccccggagcgccggcggctgtcgaggcgcggcgagccgcagccattgcct





tttatggtaatcgtgcgagagggcgcagggacttcctttgtcccaaatctgtgcggagccgaaat





ctgggaggcgccgccgcaccccctctagcgggcgcggggcgaagcggtgcggcgccggcaggaag





gaaatgggcggggagggccttcgtgcgtcgccgcgccgccgtccccttctccctctccagcctcg





gggctgtccgcggggggacggctgccttcgggggggacggggcagggcggggttcggcttctggc





gtgtgaccggcggctctagagcctctgctaaccatgttcatgccttcttctttttcctacagctc





ctgggcaacgtgctggttattgtgctgtctcatcattttggcaaagaattgattaattcgagcga





acgcgtcgccaccatgaactccttctccacaagcgccttcggtccagttgccttctccctgggcc





tgctcctggtgttgcctgctgccttccctgccccagtcttcacactcgaagatttcgttggggac





tggcgacagacagccggctacaacctggaccaagtccttgaacagggaggtgtgtccagtttgtt





tcagaatctcggggtgtccgtaactccgatccaaaggattgtcctgagcggtgaaaatgggctga





agatcgacatccatgtcatcatcccgtatgaaggtctgagcggcgaccaaatgggccagatcgaa





aaaatttttaaggtggtgtaccctgtggatgatcatcactttaaggtgatcctgcactatggcac





actggtaatcgacggggttacgccgaacatgatcgactatttcggacggccgtatgaaggcatcg





ccgtgttcgacggcaaaaagatcactgtaacagggaccctgtggaacggcaacaaaattatcgac





gagcgcctgatcaaccccgacggctccctgctgttccgagtaaccatcaacggagtgaccggctg





gcggctgtgcgaacgcattctggcggctagcgctactaacttcagcctgctgaagcaggctggag





acgtggaggagaaccctggacctggaagcggagagggcagaggaagtctgctaacatgcggtgac





gtcgaggagaatcctggacctggatccggaatggtgagcaagggcgaggagctgttcaccggggt





ggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagg





gcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgccc





gtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgctaccccga





ccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcacca





tcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctg





gtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagct





ggagtacaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaagg





tgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcag





aacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgc





cctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccg





ggatcactctcggcatggacgagctgtacaagtaaaatcaacctctggattacaaaatttgtgaa





agattgactggtattcttaactatgttgctccttttacgctatgtggatacgctgctttaatgcc





tttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaatcctggttgc





tgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgct





gacgcaacccccactggttggggcattgccaccacctgtcagctcctttccgggactttcgcttt





ccccctccctattgccacggcggaactcatcgccgcctgccttgcccgctgctggacaggggctc





ggctgttgggcactgacaattccgtggtgttgtcggggaaatcatcgtcctttccttggctgctc





gcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatcc





agcggaccttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgcc





ctcagacgagtcggatctccctttgggccgcctccccgcgctcgctttcttgctgtccaatttct





attaaaggttcctttgttccctaagtccaactactaaactgggggatattatgaagggccttgag





catctggattctgcctaataaaaaacatttattttcattgcaagctcgctttcttgctgtccaat





ttctattaaaggttcctttgttccctaagtccaactactaaactgggggatattatgaagggcct





tgagcatctggattctgcctaataaaaaacatttattttcattgcaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaactcggaaggacatggtgtggaaagtccccaggctccccagca





ggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtccccaggctc





cccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaaattaaagtaaccca





taacttcgtatagcatacattatacgaagttatgaagttcctattctctagaaagtataggaact





tctagtcacctatttcagcatactacgcgcgtagtatgctgaaataggtttatcagcacacaata





gtccattatacgcgcgtataatggcaattgtgtgctgattgggttactttaatttggatccgtcg





accgatgcccttgagagccttcaacccagtcagctccttccggtgggcgcggggcatgactatcg





tcgccgcacttatgactgtcttctttatcatgcaactcgtaggacaggtgccggcagcgctcttc





cgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcact





caaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaa





ggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgccc





ccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaa





gataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttacc





ggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggta





tctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccg





accgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgcca





ctggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttctt





gaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaagc





cagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggt





ggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgat





cttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagat





tatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagt





atatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgat





ctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagg





gcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagattta





tcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctc





catccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgca





acgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagc





tccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctc





cttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcag





cactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactca





accaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacggga





taataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaa





aactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactga





tcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgc





aaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattatt





gaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaa





caaataggggttccgcgcacatttccccgaaaagtgccacctgacgcgccctgtagcggcgcatt





aagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccg





ctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaat





cgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgatta





gggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagt





ccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctat





tcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaaca





aaaatttaacgcgaattttaacaaaatattaacgcttacaatttgccattcgccattcaggctgc





gcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagcccaagctaccatga





taagtaagtaatattaaggtacgtggaggttttacttgctttaaaaaacctcccacacctccccc





tgaacctgaaacataaaatgaatgcaattgttgttgttaacttgtttattgcagcttataatggt





tacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttg





tggtttgtccaaactcatcaatgtatcttatggtactgtaactgagctaacataa





4-3 pGL2-SS*-CAG [E2(U100) + CBA promoter + introne]-


SecNLuc-2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*


SEQ ID NO: 42



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcca






ttatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgtagt





atgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcgtat





aatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcatgctt





tgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattgagatg





catgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcgactggg





actttccactagacatgacacagcaatctgatatgcttgcgtgagaagaggattcatatcctggg





actttccacagattttaccggaagttgttagatgcttgcgtgagaagatctaacatgacacagca





atccttagtgggactttccaagtatgtggggcggggagtatacatgacacagcaattgatcatta





ccggaagtttataggtgggactttccagacctatgcttgcgtgagaagaaaggtctgggactttc





cagtcgaggtgagccccacgttctgcttcactctccccatctcccccccctccccacccccaatt





ttgtatttatttattttttaattattttgtgcagcgatgggggcggggggggggggggcgcgcgc





caggcggggcggggcggggcgaggggcggggcggggcgaggcggaaaggtgcggcggcagccaat





cagagcggcgcgctccgaaagtttccttttatggcgaggcggcggcggcggcggccctataaaaa





gcgaagcgcgcggcgggcgggagtcgctgcgttgccttcgccccgtgccccgctccgcgccgcct





cgcgccgcccgccccggctctgactgaccgcgttactcccacaggtgagcgggcgggacggccct





tctcctccgggctgtaattagcgcttggtttaatgacggctcgtttcttttctgtggctgcgtga





aagccttaaagggctccgggagggccctttgtgcgggggggagcggctcggggggtgcgtgcgtg





tgtgtgtgcgtggggagcgccgcgtgcggctccgcgctgcccggcggctgtgagcgctgcgggcg





cggcgcggggctttgtgcgctccgcagtgtgcgcgaggggagcgcggccgggggcggtgccccgc





ggtgcggggggggctgcgaggggaacaaaggctgcgtgcggggtgtgtgcgtgggggggtgagca





gggggtgtgggcgcggcggtcgggctgtaacccccccctgcacccccctccccgagttgctgagc





acggcccggcttcgggtgcggggctccgtacggggcgtggcgcggggctcgccgtgccgggcggg





gggtggcggcaggtgggggtgccgggcggggcggggccgcctcgggccggggagggctcggggga





ggggcgcggcggcccccggagcgccggcggctgtcgaggcgcggcgagccgcagccattgccttt





tatggtaatcgtgcgagagggcgcagggacttcctttgtcccaaatctgtgcggagccgaaatct





gggaggcgccgccgcaccccctctagcgggcgcggggcgaagcggtgcggcgccggcaggaagga





aatgggcggggagggccttcgtgcgtcgccgcgccgccgtccccttctccctctccagcctcggg





gctgtccgcggggggacggctgccttcgggggggacggggcagggcggggttcggcttctggcgt





gtgaccggcggctctagagcctctgctaaccatgttcatgccttcttctttttcctacagctcct





gggcaacgtgctggttattgtgctgtctcatcattttggcaaagaattgattaattcgagcgaac





gcgtcgccaccatgaactccttctccacaagcgccttcggtccagttgccttctccctgggcctg





ctcctggtgttgcctgctgccttccctgccccagtcttcacactcgaagatttcgttggggactg





gcgacagacagccggctacaacctggaccaagtccttgaacagggaggtgtgtccagtttgtttc





agaatctcggggtgtccgtaactccgatccaaaggattgtcctgagcggtgaaaatgggctgaag





atcgacatccatgtcatcatcccgtatgaaggtctgagcggcgaccaaatgggccagatcgaaaa





aatttttaaggtggtgtaccctgtggatgatcatcactttaaggtgatcctgcactatggcacac





tggtaatcgacggggttacgccgaacatgatcgactatttcggacggccgtatgaaggcatcgcc





gtgttcgacggcaaaaagatcactgtaacagggaccctgtggaacggcaacaaaattatcgacga





gcgcctgatcaaccccgacggctccctgctgttccgagtaaccatcaacggagtgaccggctggc





ggctgtgcgaacgcattctggcggctagcgctactaacttcagcctgctgaagcaggctggagac





gtggaggagaaccctggacctggaagcggagagggcagaggaagtctgctaacatgcggtgacgt





cgaggagaatcctggacctggatccggaatggtgagcaagggcgaggagctgttcaccggggtgg





tgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggc





gagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgt





gccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgctaccccgacc





acatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatc





ttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggt





gaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctgg





agtacaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtg





aacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaa





cacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccc





tgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccggg





atcactctcggcatggacgagctgtacaagtaaaatcaacctctggattacaaaatttgtgaaag





attgactggtattcttaactatgttgctccttttacgctatgtggatacgctgctttaatgcctt





tgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaatcctggttgctg





tctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctga





cgcaacccccactggttggggcattgccaccacctgtcagctcctttccgggactttcgctttcc





ccctccctattgccacggcggaactcatcgccgcctgccttgcccgctgctggacaggggctcgg





ctgttgggcactgacaattccgtggtgttgtcggggaaatcatcgtcctttccttggctgctcgc





ctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccag





cggaccttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccct





cagacgagtcggatctccctttgggccgcctccccgcgctcgctttcttgctgtccaatttctat





taaaggttcctttgttccctaagtccaactactaaactgggggatattatgaagggccttgagca





tctggattctgcctaataaaaaacatttattttcattgcaagctcgctttcttgctgtccaattt





ctattaaaggttcctttgttccctaagtccaactactaaactgggggatattatgaagggccttg





agcatctggattctgcctaataaaaaacatttattttcattgcaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaactcggaaggacatggtgtggaaagtccccaggctccccagcagg





cagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaaagtccccaggctccc





cagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaaattaaagtaacccata





acttcgtatagcatacattatacgaagttatgaagttcctattctctagaaagtataggaacttc





tagtcacctatttcagcatactacgcgcgtagtatgctgaaataggtttatcagcacacaatagt





ccattatacgcgcgtataatggcaattgtgtgctgattgggttactttaatttggatccgtcgac





cgatgcccttgagagccttcaacccagtcagctccttccggtgggcgcggggcatgactatcgtc





gccgcacttatgactgtcttctttatcatgcaactcgtaggacaggtgccggcagcgctcttccg





cttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactca





aaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaagg





ccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgccccc





ctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaaga





taccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccgg





atacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatc





tcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgac





cgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccact





ggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttga





agtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaagcca





gttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtgg





tttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatct





tttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagatta





tcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtat





atatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatct





gtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggc





ttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatc





agcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctcca





tccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaac





gttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctc





cggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctcct





tcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagca





ctgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaac





caagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggata





ataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaa





ctctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatc





ttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaa





aaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattga





agcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaaca





aataggggttccgcgcacatttccccgaaaagtgccacctgacgcgccctgtagcggcgcattaa





gcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgct





cctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcg





ggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagg





gtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtcc





acgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattc





ttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaa





aatttaacgcgaattttaacaaaatattaacgcttacaatttgccattcgccattcaggctgcgc





aactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagcccaagctaccatgata





agtaagtaatattaaggtacgtggaggttttacttgctttaaaaaacctcccacacctccccctg





aacctgaaacataaaatgaatgcaattgttgttgttaacttgtttattgcagcttataatggtta





caaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtg





gtttgtccaaactcatcaatgtatcttatggtactgtaactgagctaacataa





4-4 pGL2-SS*-CAG [E1 X3 + CBA promoter + UTR1]-SecNLuc-


2A-eGFP-WPRE-3′UTR(108 to 120 polyA)-SS*


SEQ ID NO: 43



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcca






ttatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgtagt





atgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcgtat





aatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcatgctt





tgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattgagatg





catgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcgacggga





ctttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttccgggact





ttccgggactttccgtgcaccacgtggggactttccgtgcacgggactttccggggcggggcacg





tggtgcacgggactttccgtgcacgtgcacgggactttccgggactttccgggactttccgtgca





ccacgtggggactttccgtgcacgggactttccggggcggggcacgtggtgcacgggactttccg





tgcacgtgcacgggactttccgggactttccgggactttccgtgcaccacgtggggactttccgt





gcacgtcgaggtgagccccacgttctgcttcactctccccatctcccccccctccccacccccaa





ttttgtatttatttattttttaattattttgtgcagcgatgggggcggggggggggggggcgcgc





gccaggcggggcggggcggggcgaggggcggggcggggcgaggcggaaaggtgcggcggcagcca





atcagagcggcgcgctccgaaagtttccttttatggcgaggcggcggcggcggcggccctataaa





aagcgaagcgcgcggcgggcgctgccttctccctcctgtgagtttggtaagtcgacgggccgggc





ctgggccgggtccgggccgggtcgttggatccccactacagcccgatactcaagcttgacgaatt





cgagtatccaaggtagtggactagtgtgacgctgctgacccctttctttcccttctgcaggttgg





tgtacagtagcttccaaattgattaattcgagcgaacgcgtcgccaccatgaactccttctccac





aagcgccttcggtccagttgccttctccctgggcctgctcctggtgttgcctgctgccttccctg





ccccagtcttcacactcgaagatttcgttggggactggcgacagacagccggctacaacctggac





caagtccttgaacagggaggtgtgtccagtttgtttcagaatctcggggtgtccgtaactccgat





ccaaaggattgtcctgagcggtgaaaatgggctgaagatcgacatccatgtcatcatcccgtatg





aaggtctgagcggcgaccaaatgggccagatcgaaaaaatttttaaggtggtgtaccctgtggat





gatcatcactttaaggtgatcctgcactatggcacactggtaatcgacggggttacgccgaacat





gatcgactatttcggacggccgtatgaaggcatcgccgtgttcgacggcaaaaagatcactgtaa





cagggaccctgtggaacggcaacaaaattatcgacgagcgcctgatcaaccccgacggctccctg





ctgttccgagtaaccatcaacggagtgaccggctggcggctgtgcgaacgcattctggcggctag





cgctactaacttcagcctgctgaagcaggctggagacgtggaggagaaccctggacctggaagcg





gagagggcagaggaagtctgctaacatgcggtgacgtcgaggagaatcctggacctggatccgga





atggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcga





cgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctga





ccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctg





acctacggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtc





cgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaaga





cccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgac





ttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtcta





tatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgagg





acggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctg





ctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcga





tcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtaca





agtaaaatcaacctctggattacaaaatttgtgaaagattgactggtattcttaactatgttgct





ccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggc





tttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttg





tcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgcc





accacctgtcagctcctttccgggactttcgctttccccctccctattgccacggcggaactcat





cgccgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgt





tgtcggggaaatcatcgtcctttccttggctgctcgcctgtgttgccacctggattctgcgcggg





acgtccttctgctacgtcccttcggccctcaatccagcggaccttccttcccgcggcctgctgcc





ggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccg





cctccccgcgctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaa





ctactaaactgggggatattatgaagggccttgagcatctggattctgcctaataaaaaacattt





attttcattgcaagctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagt





ccaactactaaactgggggatattatgaagggccttgagcatctggattctgcctaataaaaaac





atttattttcattgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaactcggaa





ggacatggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaat





tagtcagcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgca





tctcaattagtcagcaaccaaattaaagtaacccataacttcgtatagcatacattatacgaagt





tatgaagttcctattctctagaaagtataggaacttctagtcacctatttcagcatactacgcgc





gtagtatgctgaaataggtttatcagcacacaatagtccattatacgcgcgtataatggcaattg





tgtgctgattgggttactttaatttggatccgtcgaccgatgcccttgagagccttcaacccagt





cagctccttccggtgggcgcggggcatgactatcgtcgccgcacttatgactgtcttctttatca





tgcaactcgtaggacaggtgccggcagcgctcttccgcttcctcgctcactgactcgctgcgctc





ggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaat





caggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaag





gccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctc





aagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccc





tcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcggga





agcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaa





gctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtc





ttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagc





agagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactag





aagaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagct





cttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacg





cgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaa





cgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttt





taaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttac





caatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctg





actccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatga





taccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggcc





gagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagc





tagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtgg





tgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttaca





tgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaa





gttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccat





ccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcgg





cgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaa





agtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagat





ccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtt





tctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatg





ttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatga





gcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccga





aaagtgccacctgacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcag





cgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcg





ccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagt





gctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgcc





ctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttcc





aaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatt





tcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatatt





aacgcttacaatttgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcggg





cctcttcgctattacgccagcccaagctaccatgataagtaagtaatattaaggtacgtggaggt





tttacttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattg





ttgttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttc





acaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatctta





tggtactgtaactgagctaacataa





4-5-pGL2-SS*-CAG [E2 (U100) + CBA promoter + UTR1]-SecNLuc-


2A-eGFP-WPRE-3′UTR (108 to 120 polyA)-SS*


SEQ ID NO: 44



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcca






ttatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgtagt





atgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcgtat





aatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcatgctt





tgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattgagatg





catgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcgactggg





actttccactagacatgacacagcaatctgatatgcttgcgtgagaagaggattcatatcctggg





actttccacagattttaccggaagttgttagatgcttgcgtgagaagatctaacatgacacagca





atccttagtgggactttccaagtatgtggggcggggagtatacatgacacagcaattgatcatta





ccggaagtttataggtgggactttccagacctatgcttgcgtgagaagaaaggtctgggactttc





cagtcgaggtgagccccacgttctgcttcactctccccatctcccccccctccccacccccaatt





ttgtatttatttattttttaattattttgtgcagcgatgggggcggggggggggggggcgcgcgc





caggcggggcggggcggggcgaggggcggggcggggcgaggcggaaaggtgcggcggcagccaat





cagagcggcgcgctccgaaagtttccttttatggcgaggcggcggcggcggcggccctataaaaa





gcgaagcgcgcggcgggcgctgccttctccctcctgtgagtttggtaagtcgacgggccgggcct





gggccgggtccgggccgggtcgttggatccccactacagcccgatactcaagcttgacgaattcg





agtatccaaggtagtggactagtgtgacgctgctgacccctttctttcccttctgcaggttggtg





tacagtagcttccaaattgattaattcgagcgaacgcgtcgccaccatgaactccttctccacaa





gcgccttcggtccagttgccttctccctgggcctgctcctggtgttgcctgctgccttccctgcc





ccagtcttcacactcgaagatttcgttggggactggcgacagacagccggctacaacctggacca





agtccttgaacagggaggtgtgtccagtttgtttcagaatctcggggtgtccgtaactccgatcc





aaaggattgtcctgagcggtgaaaatgggctgaagatcgacatccatgtcatcatcccgtatgaa





ggtctgagcggcgaccaaatgggccagatcgaaaaaatttttaaggtggtgtaccctgtggatga





tcatcactttaaggtgatcctgcactatggcacactggtaatcgacggggttacgccgaacatga





tcgactatttcggacggccgtatgaaggcatcgccgtgttcgacggcaaaaagatcactgtaaca





gggaccctgtggaacggcaacaaaattatcgacgagcgcctgatcaaccccgacggctccctgct





gttccgagtaaccatcaacggagtgaccggctggcggctgtgcgaacgcattctggcggctagcg





ctactaacttcagcctgctgaagcaggctggagacgtggaggagaaccctggacctggaagcgga





gagggcagaggaagtctgctaacatgcggtgacgtcgaggagaatcctggacctggatccggaat





ggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacg





taaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgacc





ctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgac





ctacggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccg





ccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacc





cgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgactt





caaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctata





tcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggac





ggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgct





gcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatc





acatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaag





taaaatcaacctctggattacaaaatttgtgaaagattgactggtattcttaactatgttgctcc





ttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctt





tcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtc





aggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccac





cacctgtcagctcctttccgggactttcgctttccccctccctattgccacggcggaactcatcg





ccgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttg





tcggggaaatcatcgtcctttccttggctgctcgcctgtgttgccacctggattctgcgcgggac





gtccttctgctacgtcccttcggccctcaatccagcggaccttccttcccgcggcctgctgccgg





ctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcc





tccccgcgctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaact





actaaactgggggatattatgaagggccttgagcatctggattctgcctaataaaaaacatttat





tttcattgcaagctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagtcc





aactactaaactgggggatattatgaagggccttgagcatctggattctgcctaataaaaaacat





ttattttcattgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaactcggaagg





acatggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaatta





gtcagcaaccaggtgtggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatc





tcaattagtcagcaaccaaattaaagtaacccataacttcgtatagcatacattatacgaagtta





tgaagttcctattctctagaaagtataggaacttctagtcacctatttcagcatactacgcgcgt





agtatgctgaaataggtttatcagcacacaatagtccattatacgcgcgtataatggcaattgtg





tgctgattgggttactttaatttggatccgtcgaccgatgcccttgagagccttcaacccagtca





gctccttccggtgggcgcggggcatgactatcgtcgccgcacttatgactgtcttctttatcatg





caactcgtaggacaggtgccggcagcgctcttccgcttcctcgctcactgactcgctgcgctcgg





tcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatca





ggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggc





cgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaa





gtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctc





gtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaag





cgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagc





tgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtctt





gagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcag





agcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaa





gaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctct





tgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcg





cagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacg





aaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatcctttta





aattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttacca





atgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgac





tccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgata





ccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccga





gcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagcta





gagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtg





tcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatg





atcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagt





tggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatcc





gtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcg





accgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaag





tgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatcc





agttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttc





tgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgtt





gaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagc





ggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaa





agtgccacctgacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcg





tgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgcc





acgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgc





tttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccct





gatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaa





actggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttc





ggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaa





cgcttacaatttgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcc





tcttcgctattacgccagcccaagctaccatgataagtaagtaatattaaggtacgtggaggttt





tacttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattgtt





gttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcac





aaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatg





gtactgtaactgagctaacataa





4-6-pGL2-SS*-CMV enhancer-EF1-UTR1-SecNLuc-2A-eGFP-WPRE-


3′UTR(108 to 120 polyA)-SS*


SEQ ID NO: 45



cccgggaggtaccgagctcttacgcgtgctagaattaaagtaacccaatcagcacacaattgcca






ttatacgcgcgtataatggactattgtgtgctgataaacctatttcagcatactacgcgcgtagt





atgctgaaataggtgactagaagttcctatactttctagagaataggaacttcataacttcgtat





aatgtatgctatacgaagttatgggttactttaatttggttgctgactaattgagatgcatgctt





tgcatacttctgcctgctggggagcctggggactttccacacctggttgctgactaattgagatg





catgctttgcatacttctgcctgctggggagcctggggactttccacacccctgggtcgacgaca





ttgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatgg





agttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccca





ttgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatg





ggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgc





cccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgg





gactttcctacttggcagtacatctacgtattagtcatcgctattaccatggggcagagcgcaca





tcgcccacagtccccgagaagttggggggaggggtcggcaattgaaccggtgcctagagaaggtg





gcgcggggtaaactgggaaagtgatgtcgtgtactggctccgcctttttcccgagggtgggggag





aaccgtatataagtgcagtagtcgccgtgaacgttctttttcgcaacgggtttgccgccagaaca





cagctgccttctccctcctgtgagtttggtaagtcgacgggccgggcctgggccgggtccgggcc





gggtcgttggatccccactacagcccgatactcaagcttgacgaattcgagtatccaaggtagtg





gactagtgtgacgctgctgacccctttctttcccttctgcaggttggtgtacagtagcttccaaa





ttgattaattcgagcgaacgcgtcgccaccatgaactccttctccacaagcgccttcggtccagt





tgccttctccctgggcctgctcctggtgttgcctgctgccttccctgccccagtcttcacactcg





aagatttcgttggggactggcgacagacagccggctacaacctggaccaagtccttgaacaggga





ggtgtgtccagtttgtttcagaatctcggggtgtccgtaactccgatccaaaggattgtcctgag





cggtgaaaatgggctgaagatcgacatccatgtcatcatcccgtatgaaggtctgagcggcgacc





aaatgggccagatcgaaaaaatttttaaggtggtgtaccctgtggatgatcatcactttaaggtg





atcctgcactatggcacactggtaatcgacggggttacgccgaacatgatcgactatttcggacg





gccgtatgaaggcatcgccgtgttcgacggcaaaaagatcactgtaacagggaccctgtggaacg





gcaacaaaattatcgacgagcgcctgatcaaccccgacggctccctgctgttccgagtaaccatc





aacggagtgaccggctggcggctgtgcgaacgcattctggcggctagcgctactaacttcagcct





gctgaagcaggctggagacgtggaggagaaccctggacctggaagcggagagggcagaggaagtc





tgctaacatgcggtgacgtcgaggagaatcctggacctggatccggaatggtgagcaagggcgag





gagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagtt





cagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgca





ccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgc





ttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggcta





cgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagt





tcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaac





atcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaagca





gaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcg





ccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactac





ctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctgga





gttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaaaatcaacctctgg





attacaaaatttgtgaaagattgactggtattcttaactatgttgctccttttacgctatgtgga





tacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctcctt





gtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtgg





tgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagctcctt





tccgggactttcgctttccccctccctattgccacggcggaactcatcgccgcctgccttgcccg





ctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaaatcatcgt





cctttccttggctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtc





ccttcggccctcaatccagcggaccttccttcccgcggcctgctgccggctctgcggcctcttcc





gcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccgcgctcgcttt





cttgctgtccaatttctattaaaggttcctttgttccctaagtccaactactaaactgggggata





ttatgaagggccttgagcatctggattctgcctaataaaaaacatttattttcattgcaagctcg





ctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaactactaaactgggg





gatattatgaagggccttgagcatctggattctgcctaataaaaaacatttattttcattgcaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaactcggaaggacatggtgtggaaagt





ccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgt





ggaaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaac





caaattaaagtaacccataacttcgtatagcatacattatacgaagttatgaagttcctattctc





tagaaagtataggaacttctagtcacctatttcagcatactacgcgcgtagtatgctgaaatagg





tttatcagcacacaatagtccattatacgcgcgtataatggcaattgtgtgctgattgggttact





ttaatttggatccgtcgaccgatgcccttgagagccttcaacccagtcagctccttccggtgggc





gcggggcatgactatcgtcgccgcacttatgactgtcttctttatcatgcaactcgtaggacagg





tgccggcagcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcg





agcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaa





agaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgttt





ttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaa





cccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttc





cgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcat





agctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacga





accccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaa





gacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggc





ggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtat





ctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaa





ccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatct





caagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagg





gattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagtt





ttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgag





gcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagat





aactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgct





caccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcct





gcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgcc





agttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttg





gtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgc





aaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatc





actcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctg





tgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgc





ccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaa





acgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaaccca





ctcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaaca





ggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactctt





cctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaat





gtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgcg





ccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgc





cagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttc





cccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgac





cccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcg





ccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactca





accctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaa





aatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatttgcca





ttcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgcc





agcccaagctaccatgataagtaagtaatattaaggtacgtggaggttttacttgctttaaaaaa





cctcccacacctccccctgaacctgaaacataaaatgaatgcaattgttgttgttaacttgttta





ttgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttt





tcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatggtactgtaactgagct





aacataa





3 copies of Enhancer-1


SEQ ID NO: 46



gggactttccggggcggggcacgtggtgcacgggactttccgtgcacgtgcacgggactttccgg






gactttccgggactttccgtgcaccacgtggggactttccgtgcacgggactttccggggcgggg





cacgtggtgcacgggactttccgtgcacgtgcacgggactttccgggactttccgggactttccg





tgcaccacgtggggactttccgtgcacgggactttccggggcggggcacgtggtgcacgggactt





tccgtgcacgtgcacgggactttccgggactttccgggactttccgtgcaccacgtggggacttt





ccgtgcac





chimeric intron


SEQ ID NO: 47



ggagtcgctgcgttgccttcgccccgtgccccgctccgcgccgcctcgcgccgcccgccccggctct






gactgaccgcgttactcccacaggtgagcgggcgggacggcccttctcctccgggctgtaattagcg





cttggtttaatgacggctcgtttcttttctgtggctgcgtgaaagccttaaagggctccgggagggc





cctttgtgcgggggggagcggctcggggggtgcgtgcgtgtgtgtgtgcgtggggagcgccgcgtgc





ggctccgcgctgcccggcggctgtgagcgctgcgggcgcggcgcggggctttgtgcgctccgcagtg





tgcgcgaggggagcgcggccgggggcggtgccccgcggtgcggggggggctgcgaggggaacaaagg





ctgcgtgcggggtgtgtgcgtgggggggtgagcagggggtgtgggcgcggcggtcgggctgtaaccc





ccccctgcacccccctccccgagttgctgagcacggcccggcttcgggtgcggggctccgtacgggg





cgtggcgcggggctcgccgtgccgggcggggggtggcggcaggtgggggtgccgggcggggcggggc





cgcctcgggccggggagggctcgggggaggggcgcggcggcccccggagcgccggcggctgtcgagg





cgcggcgagccgcagccattgccttttatggtaatcgtgcgagagggcgcagggacttcctttgtcc





caaatctgtgcggagccgaaatctgggaggcgccgccgcaccccctctagcgggcgcggggcgaagc





ggtgcggcgccggcaggaaggaaatgggcggggagggccttcgtgcgtcgccgcgccgccgtcccct





tctccctctccagcctcggggctgtccgcggggggacggctgccttcgggggggacggggcagggcg





gggttcggcttctggcgtgtgaccggcggctctagagcctctgctaaccatgttcatgccttcttct





ttttcctacag






The disclosure is not to be limited in scope by the specific aspects described herein. Indeed, various modifications of the disclosure in addition to those described will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.


Other aspects are within the following claims.

Claims
  • 1-135. (canceled)
  • 136. An expression vector comprising: (a) a backbone sequence,(b) a sequence comprising: (i) an expression cassette comprising a nucleic acid sequence of interest,(ii) a first target sequence for a first recombinase flanking the 5′ side of the expression cassette,(iii) a second target sequence for the first recombinase flanking the 3′ side of the expression cassette, and(iv) one or more additional target sequences for one or more additional recombinases integrated within the first and second target sequences in non-binding regions for the first recombinase, and(c) one or more of: (i) an endonuclease target sequence integrated within the first and/or second target sequences for the first recombinase in non-binding regions for the first recombinase and the one or more additional recombinases, wherein the endonuclease target sequence is between the backbone sequence and cleavage sites for the first recombinase and the one or more additional recombinases,(ii) a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO: 12 integrated between the 3′ end of the first target sequence for the first recombinase and the 5′ end of another enhancer or a promoter in the expression cassette,(iii) a cytomegalovirus (CMV) enhancer integrated between the 3′ end of the first target sequence for the first recombinase and the 5′ end of a promoter in the expression cassette,(iv) a 5′ untranslated region (5′UTR) comprising an intron, wherein the 5′UTR is integrated in the expression cassette between a promoter and the nucleic acid sequence of interest,(v) a vertebrate chromatin insulator integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal,(vi) a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal,(vii) a scaffold/matrix attachment region (S/MAR) integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, or(viii) a DNA nuclear targeting sequence (DTS) integrated within the first and/or second target sequences for the first recombinase in non-binding regions for the first recombinase and the one or more additional recombinases, wherein the DTS is between the expression cassette and cleavage sites for the first recombinase and the one or more additional recombinases.
  • 137. The expression vector of claim 136, wherein the endonuclease target sequence of (c)(i) is for: (a) a homing endonuclease,(b) I-AniI, I-CeuI, I-ChuI, I-CpaI, I-CpaII, I-CreI, I-DmoI, H-DreI, I-HmuI, I-HmuII, I-LlaI, I-MsoI, PI-PfuI, PI-PkoII, I-PorI, I-PpoI, PI-PspI, I-ScaI, I-SceI, PI-SceI, I-SceII, I-SecIII, I-SceIV, I-SceV, I-SceVI, I-SceVII, I-Ssp6803I, I-TevI, I-TevII, I-TevIII, PI-TliI, PI-TliII, I-Tsp061I, or I-Vdi141I,(c) I-SceI,(d) PI-SceI,(e) a Cas endonuclease, or(f) Cas9.
  • 138. The expression vector of claim 136, wherein the synthetic enhancer of (c)(ii): (a) comprises multiple contiguous copies of a nucleic acid sequence at least about 90% identical to SEQ ID NO:12, optionally wherein the synthetic enhancer comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:46, and/or(b) is integrated at the 5′ end of a chicken β-actin promoter, optionally comprising a chimeric intron comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:47 integrated at the 3′ end of the chicken β-actin promoter and 5′ to the nucleic acid sequence of interest.
  • 139. The expression vector of claim 136, wherein the CMV enhancer of (c)(iii) is integrated at the 3′ end of a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:12 or SEQ ID NO:46, and/or wherein a CMV promoter is integrated at the 3′ end of the CMV enhancer and 5′ to the nucleic acid sequence of interest.
  • 140. The expression vector of claim 136, comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39 integrated between the first target sequence for the first recombinase and the nucleic acid sequence of interest.
  • 141. The expression vector of claim 136, wherein: (a) (i) the intron of (c)(iv) comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:1, and/or a non-coding sequence integrated within the intron, optionally wherein a non-coding sequence is integrated between two of the nucleotides in the intron corresponding to any two nucleotides from positions 25 to 55 of SEQ ID NO:1, optionally wherein the non-coding sequence is an S/MAR, optionally wherein the S/MAR is MAR-5, or (ii) the 5′UTR of (c)(iv) comprises a nucleic acid sequence at least about 90% identical SEQ ID NO:3 or SEQ ID NO:5,(b) the promoter of (c)(iv) is a chicken β-actin promoter or a CMV promoter, and/or(c) the promoter of (c)(iv) is integrated at the 3′ end of a CMV enhancer, optionally wherein the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO: 12 or SEQ ID NO:46.
  • 142. The expression vector of claim 136, wherein: (a) a polyadenylation signal is integrated at the 3′ end of the nucleic acid sequence of interest and comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:13, SEQ ID NO: 14, or SEQ ID NO:15,(b) the vertebrate chromatin insulator of (c)(v) is 5′-HS4 chicken-β-globin insulator (cHS4),(c) the S/MAR of (c)(vii) is MAR-5,(d) the polyadenylation signal of (c)(v), (c)(vi), and/or (c)(vii) comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:13, SEQ ID NO:14, or SEQ ID NO:15, or(e) the DTS of (c)(viii) is a SV40 enhancer sequence or is cell-specific.
  • 143. The expression vector of claim 136, wherein: (a) the first and second target sequences and the one or more additional target sequences are selected from the group consisting of the PY54 pal site, the N15 telRL site, the loxP site, φK02 telRL site, the FRT site, the phiC31 attP site, and the λ attP site, optionally wherein the expression vector comprises each of the target sequences, further optionally wherein the expression vector comprises the pal site and the telRL, loxP, and FRT recombinase target binding sequences integrated within the pal site, or(b) the first and second target sequences for the first recombinase each comprise the nucleic acid sequence of SEQ ID NO:33.
  • 144. A vector production system comprising recombinant cells encoding a recombinase under the control of an inducible promoter, wherein the recombinant cells comprise the expression vector of claim 136, and wherein the recombinase targets the first and second target sequences for the first recombinase or one of the one or more additional target sequences for the one or more additional recombinases in the expression vector, optionally wherein the recombinant cells further encode an endonuclease under the control of an inducible promoter, wherein the endonuclease targets an endonuclease target sequence in an expression vector comprising the endonuclease target sequence.
  • 145. A method of producing a bacterial sequence-free vector comprising incubating the vector production system of claim 144 under suitable conditions for expression of the recombinase, optionally further comprising harvesting the bacterial sequence-free vector.
  • 146. A bacterial sequence-free vector produced by the method of claim 145.
  • 147. A bacterial sequence-free vector comprising: (a) an expression cassette comprising a nucleic acid sequence of interest, and(b) one or more of: (i) a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO: 12 located 5′ to another enhancer or a promoter in the expression cassette,(ii) a CMV enhancer located 5′ to a promoter in the expression cassette,(iii) a 5′UTR comprising an intron, wherein the 5′UTR is integrated in the expression cassette between a promoter and the nucleic acid sequence of interest,(iv) a vertebrate chromatin insulator integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal,(v) a WPRE integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal,(vi) a S/MAR integrated in the expression cassette between the nucleic acid of interest and a polyadenylation signal, or(vii) a DTS located 5′ to the expression cassette.
  • 148. The bacterial sequence-free vector of claim 147, wherein the synthetic enhancer of (c)(i): (a) comprises multiple contiguous copies of a nucleic acid sequence at least about 90% identical to SEQ ID NO:12, optionally wherein the synthetic enhancer comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:46, and/or(b) is integrated at the 5′ end of a chicken β-actin promoter, optionally comprising a chimeric intron comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:47 integrated at the 3′ end of the chicken β-actin promoter and 5′ to the nucleic acid sequence of interest.
  • 149. The bacterial sequence-free vector of claim 147, wherein the CMV enhancer of (c)(ii) is integrated at the 3′ end of a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO: 12 or SEQ ID NO:46, and/or wherein a CMV promoter is integrated at the 3′ end of the CMV enhancer and 5′ to the nucleic acid sequence of interest.
  • 150. The bacterial sequence-free vector of claim 147, comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, or SEQ ID NO:39 located 5′ to the nucleic acid sequence of interest.
  • 151. The bacterial sequence-free vector of claim 147, wherein: (a) (i) the intron of (c)(iii) comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:1, and/or a non-coding sequence integrated within the intron, optionally wherein a non-coding sequence is integrated between two of the nucleotides in the intron corresponding to any two nucleotides from nucleotide positions 25 and 55 of SEQ ID NO:1, optionally wherein the non-coding sequence is an S/MAR, optionally wherein the S/MAR is MAR-5, or (ii) the 5′UTR of (c)(iii) comprises a nucleic acid sequence at least about 90% identical SEQ ID NO:3 or SEQ ID NO:5,(b) the promoter of (c)(iii) is a chicken β-actin promoter or a CMV promoter, and/or(c) the promoter of (c)(iii) is integrated at the 3′ end of a CMV enhancer, optionally wherein the CMV enhancer is integrated at the 3′ end of a synthetic enhancer comprising a nucleic acid sequence at least about 90% identical to SEQ ID NO: 12 or SEQ ID NO:46.
  • 152. The bacterial sequence-free vector of claim 147, wherein: (a) a polyadenylation signal is integrated at the 3′ end of the nucleic acid sequence of interest and comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:13, SEQ ID NO:14, or SEQ ID NO:15,(b) the vertebrate chromatin insulator of (c)(iv) is cHS4,(c) the S/MAR of (c)(vi) is MAR-5,(d) the polyadenylation signal of (c)(iv), (c)(v), or (c)(vi) comprises a nucleic acid sequence at least about 90% identical to SEQ ID NO:13, SEQ ID NO:14, or SEQ ID NO:15, or(e) the DTS is a SV40 enhancer sequence or is cell-specific.
  • 153. The bacterial sequence-free vector of claim 147, which is a circular covalently closed vector or a linear covalently closed vector.
  • 154. A recombinant cell comprising the expression vector claim 136.
  • 155. A recombinant cell comprising the bacterial sequence-free vector of claim 147.
  • 156. A composition comprising the expression vector of claim 136.
  • 157. A composition comprising the bacterial sequence-free vector of claim 147.
  • 158. A method of treating a disease or disorder in a subject in need thereof, comprising administering to the subject the expression vector of claim 136.
  • 159. A method of treating a disease or disorder in a subject in need thereof, comprising administering to the subject the bacterial sequence free vector of claim 147.
  • 160. A method of treating a disease or disorder in a subject in need thereof, comprising administering to the subject the composition of claim 156.
  • 161. A method of treating a disease or disorder in a subject in need thereof, comprising administering to the subject the composition of claim 157.
  • 162. A polynucleotide comprising a nucleic acid sequence at least about 90% identical to any one of SEQ ID NOs: 1, 2, 3, 5, 12-18, 35-39, and 46.
  • 163. An expression vector comprising the polynucleotide of claim 162.
  • 164. An expression vector comprising: a polynucleotide comprising a nucleic acid sequence at least about 90% identical to any one of SEQ ID NOs: 2, 3, and 5, and a polynucleotide comprising a nucleic acid sequence at least about 90% identical to any one of SEQ ID NOs: 13-18.
  • 165. A method of gene editing comprising inserting a nucleic acid sequence of interest from the expression vector of claim 136 into a target site for gene editing.
  • 166. A method of gene editing comprising inserting a nucleic acid sequence of interest from the bacterial sequence-free vector of claim 147 into a target site for gene editing.
  • 167. A method of gene editing comprising inserting a nucleic acid sequence of interest from the composition of claim 156 into a target site for gene editing
  • 168. A method of gene editing comprising inserting a nucleic acid sequence of interest from the composition of claim 157 into a target site for gene editing.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT Application No. PCT/IB2022/055620, filed Jun. 16, 2022, which claims the priority benefit of U.S. Provisional Application Nos. 63/211,343, filed Jun. 16, 2021, 63/306,015, filed Feb. 2, 2022, and 63/331,638, filed Apr. 15, 2022, which are incorporated herein by reference in their entireties.

Provisional Applications (3)
Number Date Country
63211343 Jun 2021 US
63306015 Feb 2022 US
63331638 Apr 2022 US
Continuations (1)
Number Date Country
Parent PCT/IB2022/055620 Jun 2022 WO
Child 18541459 US