Expression vectors encoding epitopes of target-associated antigens and methods for their design

Abstract
The invention disclosed herein is directed to methods of identifying a polypeptide suitable for epitope liberation including, for example, the steps of identifying an epitope of interest; providing a substrate polypeptide sequence including the epitope, wherein the substrate polypeptide permits processing by a proteasome; contacting the substrate polypeptide with a composition including the proteasome, under conditions that support processing of the substrate polypeptide by the proteasome; and assaying for liberation of the epitope. The invention further relates to vectors including a housekeeping epitope expression cassette. The housekeeping epitope(s) can be derived from a target-associated antigen, and the housekeeping epitope can be liberatable, that is capable of liberation, from a translation product of the cassette by immunoproteasome processing. The invention also relates to a method of activating a T cell comprising contacting a substrate polypeptide with an APC and contacting the APC with a T cell.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention disclosed herein is directed to methods for the design of epitope-encoding vectors for use in compositions, including for example, pharmaceutical compositions capable of inducing an immune response in a subject to whom the compositions are administered. The invention is further directed to the vectors themselves. The epitope(s) expressed using such vectors can stimulate a cellular immune response against a target cell displaying the epitope(s).


2. Description of the Related Art


The immune system can be categorized into two discrete effector arms. The first is innate immunity, which involves numerous cellular components and soluble factors that respond to all infectious challenges. The other is the adaptive immune response, which is customized to respond specifically to precise epitopes from infectious agents. The adaptive immune response is further broken down into two effector arms known as the humoral and cellular immune systems. The humoral arm is centered on the production of antibodies by B-lymphocytes while the cellular arm involves the killer cell activity of cytotoxic T Lymphocytes.


Cytotoxic T Lymphocytes (CTL) do not recognize epitopes on the infectious agents themselves. Rather, CTL detect fragments of antigens derived from infectious agents that are displayed on the surface of infected cells. As a result antigens are visible to CTL only after they have been processed by the infected cell and thus displayed on the surface of the cell.


The antigen processing and display system on the surface of cells has been well established. CTL recognize short peptide antigens, which are displayed on the surface in non-covalent association with class I major histocompatibility complex molecules (MHC). These class I peptides are in turn derived from the degradation of cytosolic proteins.


SUMMARY OF THE INVENTION

Embodiments of the invention provide expression cassettes, for example, for use in vaccine vectors, which encode one or more embedded housekeeping epitopes, and methods for designing and testing such expression cassettes. Housekeeping epitopes can be liberated from the translation product of such cassettes through proteolytic processing by the immunoproteasome of professional antigen presenting cells (pAPC). In one embodiment of the invention, sequences flanking the housekeeping epitope(s) can be altered to promote cleavage by the immunoproteasome at the desired location(s). Housekeeping epitopes, their uses, and identification are described in U.S. patent application Ser. Nos. 09/560,465 and 09/561,074 entitled EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS, and METHOD OF EPITOPE DISCOVERY, respectively; both of which were filed on Apr. 28, 2000, and which are both incorporated herein by reference in their entireties.


Examples of housekeeping epitopes are disclosed in provisional U.S. Patent Applications entitled EPITOPE SEQUENCES, Nos. 60/282,211, filed on Apr. 6, 2001; 60/337,017, filed on Nov. 7, 2001; 60/363210 filed Mar. 7, 2002; and 60/409,123, filed on Sep. 5, 2002; and U.S. application Ser. No. 10/117,937, filed on Apr. 4, 2002, which is also entitled EPITOPE SEQUENCES; which are all incorporated herein by reference in their entirety.


In other embodiments of the invention, the housekeeping epitope(s) can be flanked by arbitrary sequences or by sequences incorporating residues known to be favored in immunoproteasome cleavage sites. As used herein the term “arbitrary sequences” refers to sequences chosen without reference to the native sequence context of the epitope, their ability to promote processing, or immunological function. In further embodiments of the invention multiple epitopes can be arrayed head-to-tail. These arrays can be made up entirely of housekeeping epitopes. Likewise, the arrays can include alternating housekeeping and immune epitopes. Alternatively, the arrays can include housekeeping epitopes flanked by immune epitopes, whether complete or distally truncated. Further, the arrays can be of any other similar arrangement. There is no restriction on placing a housekeeping epitope at the terminal positions of the array. The vectors can additionally contain authentic protein coding sequences or segments thereof containing epitope clusters as a source of immune epitopes. The term “authentic” refers to natural protein sequences.


Epitope clusters and their uses are described in U.S. patent application Ser. No. 09/561,571 entitled EPITOPE CLUSTERS, filed on Apr. 28, 2000; Ser. No. 10/005,905, entitled EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS, filed on Nov. 7, 2001; and Ser. No. 10/026,066, filed on Dec. 7, 2001, also entitled EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS; all of which are incorporated herein by reference in their entirety.


Embodiments of the invention can encompass screening the constructs to determine whether the housekeeping epitope is liberated. In constructs containing multiple housekeeping epitopes, embodiments can include screening to determine which epitopes are liberated. In a preferred embodiment, a vector containing an embedded epitope can be used to immunize HLA transgenic mice and the resultant CTL can be tested for their ability to recognize target cells presenting the mature epitope. In another embodiment, target cells expressing immunoproteasome can be transformed with the vector. The target cell may express immunoproteasome either constitutively, because of treatment with interferon (IFN), or through genetic manipulation, for example. CTL that recognize the mature epitope can be tested for their ability to recognize these target cells. In yet another embodiment, the embedded epitope can be prepared as a synthetic peptide. The synthetic peptide then can be subjected to digestion by an immunoproteasome preparation in vitro and the resultant fragments can be analyzed to determine the sites of cleavage. Such polypeptides, recombinant or synthetic, from which embedded epitopes can be successfully liberated, can also be incorporated into immunogenic compositions.


The invention disclosed herein relates to the identification of a polypeptide suitable for epitope liberation. One embodiment of the invention, relates to a method of identifying a polypeptide suitable for epitope liberation including, for example, the steps of identifying an epitope of interest; providing a substrate polypeptide sequence including the epitope, wherein the substrate polypeptide permits processing by a proteasome; contacting the substrate polypeptide with a composition including the proteasome, under conditions that support processing of the substrate polypeptide by the proteasome; and assaying for liberation of the epitope.


The epitope can be embedded in the substrate polypeptide, and in some aspects the substrate polypeptide can include more than one epitope, for example. Also, the epitope can be a housekeeping epitope.


In one aspect, the substrate polypeptide can be a synthetic peptide. Optionally, the substrate polypeptide can be included in a formulation promoting protein transfer. Alternatively, the substrate polypeptide can be a fusion protein. The fusion protein can further include a protein domain possessing protein transfer activity. Further, the contacting step can include immunization with the substrate polypeptide.


In another aspect, the substrate polypeptide can be encoded by a polynucleotide. The contacting step can include immunization with a vector including the polynucleotide, for example. The immunization can be carried out in an HLA-transgenic mouse or any other suitable animal, for example. Alternatively, the contacting step can include transforming a cell with a vector including the polynucleotide. In some embodiments the transformed cell can be a target cell that is targeted by CTL for purposes of assaying for proper liberation of epitope.


The proteasome processing can take place intracellularly, either in vitro or in vivo. Further, the proteasome processing can take place in a cell-free system.


The assaying step can include a technique selected from the group including, but not limited to, mass spectrometry, N-terminal pool sequencing, HPLC, and the like. Also, the assaying step can include a T cell target recognition assay. The T cell target recognition assay can be selected from the group including, but not limited to, a cytolytic activity assay, a chromium release assay, a cytokine assay, an ELISPOT assay, tetramer analysis, and the like.


In still another aspect, the amino acid sequence of the substrate polypeptide including the epitope can be arbitrary. Also, the substrate polypeptide in which the epitope is embedded can be derived from an authentic sequence of a target-associated antigen. Further, the substrate polypeptide in which the epitope is embedded can be conformed to a preferred immune proteasome cleavage site flanking sequence.


In another aspect, the substrate polypeptide can include an array of additional epitopes. Members of the array can be arranged head-to-tail, for example. The array can include more than one housekeeping epitope. The more than one housekeeping epitope can include copies of the same epitope. The array can include a housekeeping and an immune epitope, or alternating housekeeping and immune epitopes, for example. Also, the array can include a housekeeping epitope positioned between two immune epitopes in an epitope battery. The array can include multiple epitope batteries, so that there are two immune epitopes between each housekeeping epitope in the interior of the array. Optionally, at least one of the epitopes can be truncated distally to its junction with an adjacent epitope. The truncated epitopes can be immune epitopes, for example. The truncated epitopes can have lengths selected from the group including, but not limited to, 9, 8, 7, 6, 5, 4 amino acids, and the like.


In still another aspect, the substrate polypeptide can include an array of epitopes and epitope clusters. Members of the array can be arranged head-to-tail, for example.


In yet another aspect, the proteasome can be an immune proteasome.


Another embodiment of the disclosed invention relates to vectors including a housekeeping epitope expression cassette. The housekeeping epitope(s) can be derived from a target-associated antigen, and the housekeeping epitope can be liberatable, that is capable of liberation, from a translation product of the cassette by immunoproteasome processing.


In one aspect of the invention the expression cassette can encode an array of two or more epitopes or at least one epitope and at least one epitope cluster. The members of the array can be arranged head-to-tail, for example. Also, the members of the array can be arranged head-to-tail separated by spacing sequences, for example. Further, the array can include a plurality of housekeeping epitopes. The plurality of housekeeping epitopes can include more than one copy of the same epitope or single copies of distinct epitopes, for example. The array can include at least one housekeeping epitope and at least one immune epitope. Also, the array can include alternating housekeeping and immune epitopes. Further, the array includes a housekeeping epitope sandwiched between two immune epitopes so that there are two immune epitopes between each housekeeping epitope in the interior of the array. The immune epitopes can be truncated distally to their junction with the adjacent housekeeping epitope.


In another aspect, the expression cassette further encodes an authentic protein sequence, or segment thereof, including at least one immune epitope. Optionally, the segment can include at least one epitope cluster. The housekeeping epitope expression cassette and the authentic sequence including at least one immune epitope can be encoded in a single reading frame or transcribed as a single mRNA species, for example. Also, the housekeeping epitope expression cassette and the authentic sequence including at least one immune epitope may not be transcribed as a single mRNA species.


In yet another aspect, the vector can include a DNA molecule or an RNA molecule. The vector can encode, for example, SEQ ID NO. 4, SEQ ID NO. 17, SEQ ID NO. 20, SEQ ID NO. 26, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 33, and the like. Also, the vector can include SEQ ID NO. 9, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 30, SEQ ID NO. 34, and the like. Also, the vector can encode SEQ ID NO. 5 or SEQ ID NO. 18, for example.


In still another aspect, the target-associated antigen can be an antigen derived from or associated with a tumor or an intracellular parasite, and the intracellular parasite can be, for example, a virus, a bacterium, a protozoan, or the like.


Another embodiment of the invention relates to vectors including a housekeeping epitope identified according to any of the methods disclosed herein, claimed or otherwise. For example, embodiments can relate to vector encoding a substrate polypeptide that includes a housekeeping epitope by any of the methods described herein.


In one aspect, the housekeeping epitope can be liberated from the cassette translation product by immune proteasome processing


Another embodiment of the disclosed invention relates to methods of activating a T cell. The methods can include, for example, the steps of contacting a vector including a housekeeping epitope expression cassette with an APC. The housekeeping epitope can be derived from a target-associated antigen, for example, and the housekeeping epitope can be liberatable from a translation product of the cassette by immunoproteasome processing. The methods can further include contacting the APC with a T cell. The contacting of the vector with the APC can occur in vitro or in vivo.


Another embodiment of the disclosed invention relates to a substrate polypeptide including a housekeeping epitope wherein the housekeeping epitope can be liberated by immunoproteasome processing in a pAPC.


Another embodiment of the disclosed invention relates to a method of activating a T cell comprising contacting a substrate polypeptide including a housekeeping epitope with an APC wherein the housekeeping epitope can be liberated by immunoproteasome processing and contacting the APC with a T cell.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1. An illustrative drawing depicting pMA2M.



FIG. 2. Assay results showing the % of specific lysis of ELAGIGILTV pulsed and unpulsed T2 target cells by mock immunized CTL.



FIG. 3. Assay results showing the % of specific lysis of ELAGIGILTV pulsed and unpulsed T2 target cells by pVAXM3 immunized CTL.



FIG. 4. Assay results showing the % of specific lysis of ELAGIGILTV pulsed and unpulsed T2 target cells by pVAXM2 immunized CTL.



FIG. 5. Assay results showing the % of specific lysis of ELAGIGILTV pulsed and unpulsed T2 target cells by pVAXM1 immunized CTL.



FIG. 6. Illustrates a sequence of SEQ ID NO. 22 from which the NY-ESO-1157-165 epitope is liberated by immunoproteasomal processing.



FIG. 7. Shows the differential processing by immunoproteasome and housekeeping proteasome of the SLLMWITQC epitope (SEQ ID NO. 12) in its native context where the cleavage following the C is more efficiently produced by housekeeping than immunoproteasome.



FIG. 8. 8A: Shows the results of the human immunoproteasome digest of SEQ ID NO. 31. 8B: Shows the comparative results of mouse versus human immunoproteasome digestion of SEQ ID NO. 31.



FIG. 9. Shows the differential processing of SSX-231-68 by housekeeping and immunoproteasome.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Definitions

Unless otherwise clear from the context of the use of a term herein, the following listed terms shall generally have the indicated meanings for purposes of this description.


PROFESSIONAL ANTIGEN-PRESENTING CELL (pAPC)—a cell that possesses T cell costimulatory molecules and is able to induce a T cell response. Well characterized pAPCs include dendritic cells, B cells, and macrophages.


PERIPHERAL CELL—a cell that is not a pAPC.


HOUSEKEEPING PROTEASOME—a proteasome normally active in peripheral cells, and generally not present or not strongly active in pAPCs.


IMMUNOPROTEASOME—a proteasome normally active in pAPCs; the immunoproteasome is also active in some peripheral cells in infected tissues or following exposure to interferon.


EPITOPE—a molecule or substance capable of stimulating an immune response. In preferred embodiments, epitopes according to this definition include but are not necessarily limited to a polypeptide and a nucleic acid encoding a polypeptide, wherein the polypeptide is capable of stimulating an immune response. In other preferred embodiments, epitopes according to this definition include but are not necessarily limited to peptides presented on the surface of cells, the peptides being non-covalently bound to the binding cleft of class I MHC, such that they can interact with T cell receptors (TCR). Epitopes presented by class I MHC may be in immature or mature form. “Mature” refers to an MHC epitope in distinction to any precursor (“immature”) that may include or consist essentially of a housekeeping epitope, but also includes other sequences in a primary translation product that are removed by processing, including without limitation, alone or in any combination, proteasomal digestion, N-terminal trimming, or the action of exogenous enzymatic activities. Thus, a mature epitope may be provided embedded in a somewhat longer polypeptide, the immunological potential of which is due, at least in part, to the embedded epitope; or in its ultimate form that can bind in the MHC binding cleft to be recognized by TCR, respectively.


MHC EPITOPE—a polypeptide having a known or predicted binding affinity for a mammalian class I or class II major histocompatibility complex (MHC) molecule.


HOUSEKEEPING EPITOPE—In a preferred embodiment, a housekeeping epitope is defined as a polypeptide fragment that is an MHC epitope, and that is displayed on a cell in which housekeeping proteasomes are predominantly active. In another preferred embodiment, a housekeeping epitope is defined as a polypeptide containing a housekeeping epitope according to the foregoing definition, that is flanked by one to several additional amino acids. In another preferred embodiment, a housekeeping epitope is defined as a nucleic acid that encodes a housekeeping epitope according to the foregoing definitions. Exemplary housekeeping epitopes are provide in U.S. application Ser. No. 10/117,937, filed on Apr. 4, 2002; and U.S. Provisional Application Nos. 60/282,211, filed on Apr. 6, 2001; 60/337,017, filed on Nov. 7, 2001; 60/363210 filed Mar. 7, 2002; and 60/409,123, filed on Sep. 5, 2002; all of which are entitled EPITOPE SEQUENCES, and all of which above were incorporated herein by reference in their entireties.


IMMUNE EPITOPE—In a preferred embodiment, an immune epitope is defined as a polypeptide fragment that is an MHC epitope, and that is displayed on a cell in which immunoproteasomes are predominantly active. In another preferred embodiment, an immune epitope is defined as a polypeptide containing an immune epitope according to the foregoing definition, that is flanked by one to several additional amino acids. In another preferred embodiment, an immune epitope is defined as a polypeptide including an epitope cluster sequence, having at least two polypeptide sequences having a known or predicted affinity for a class I MHC. In yet another preferred embodiment, an immune epitope is defined as a nucleic acid that encodes an immune epitope according to any of the foregoing definitions.


TARGET CELL—a cell to be targeted by the vaccines and methods of the invention. Examples of target cells according to this definition include but are not necessarily limited to: a neoplastic cell and a cell harboring an intracellular parasite, such as, for example, a virus, a bacterium, or a protozoan. Target cells can also include cells that are targeted by CTL as a part of assays to determine or confirm proper epitope liberation and processing by a cell expressing immunoproteasome, to determine T cell specificity or immunogenicity for a desired epitope. Such cells may be transformed to express the substrate or liberation sequence, or the cells can simply be pulsed with peptide/epitope.


TARGET-ASSOCIATED ANTIGEN (TAA)—a protein or polypeptide present in a target cell. TUMOR-ASSOCIATED ANTIGENS (TuAA)—a TAA, wherein the target cell is a neoplastic cell.


HLA EPITOPE—a polypeptide having a known or predicted binding affinity for a human class I or class II HLA complex molecule.


ANTIBODY—a natural immunoglobulin (Ig), poly- or monoclonal, or any molecule composed in whole or in part of an Ig binding domain, whether derived biochemically or by use of recombinant DNA. Examples include inter alia, F(ab), single chain Fv, and Ig variable region-phage coat protein fusions.


ENCODE—an open-ended term such that a nucleic acid encoding a particular amino acid sequence can consist of codons specifying that (poly)peptide, but can also comprise additional sequences either translatable, or for the control of transcription, translation, or replication, or to facilitate manipulation of some host nucleic acid construct.


SUBSTANTIAL SIMILARITY—this term is used to refer to sequences that differ from a reference sequence in an inconsequential way as judged by examination of the sequence. Nucleic acid sequences encoding the same amino acid sequence are substantially similar despite differences in degenerate positions or modest differences in length or composition of any non-coding regions. Amino acid sequences differing only by conservative substitution or minor length variations are substantially similar. Additionally, amino acid sequences comprising housekeeping epitopes that differ in the number of N-terminal flanking residues, or immune epitopes and epitope clusters that differ in the number of flanking residues at either terminus, are substantially similar. Nucleic acids that encode substantially similar amino acid sequences are themselves also substantially similar.


FUNCTIONAL SIMILARITY—this term is used to refer to sequences that differ from a reference sequence in an inconsequential way as judged by examination of a biological or biochemical property, although the sequences may not be substantially similar. For example, two nucleic acids can be useful as hybridization probes for the same sequence but encode differing amino acid sequences. Two peptides that induce cross-reactive CTL responses are functionally similar even if they differ by non-conservative amino acid substitutions (and thus do not meet the substantial similarity definition). Pairs of antibodies, or TCRs, that recognize the same epitope can be functionally similar to each other despite whatever structural differences exist. In testing for functional similarity of immunogenicity one would generally immunize with the “altered” antigen and test the ability of the elicited response (Ab, CTL, cytokine production, etc.) to recognize the target antigen. Accordingly, two sequences may be designed to differ in certain respects while retaining the same function. Such designed sequence variants are among the embodiments of the present invention.


EXPRESSION CASSETTE—a polynucleotide sequence encoding a polypeptide, operably linked to a promoter and other transcription and translation control elements, including but not limited to enhancers, termination codons, internal ribosome entry sites, and polyadenylation sites. The cassette can also include sequences that facilitate moving it from one host molecule to another.


EMBEDDED EPITOPE—an epitope contained within a longer polypeptide, also can include an epitope in which either the N-terminus or the C-terminus is embedded such that the epitope is not in an interior position.


MATURE EPITOPE—a peptide with no additional sequence beyond that present when the epitope is bound in the MHC peptide-binding cleft.


EPITOPE CLUSTER—a polypeptide, or a nucleic acid sequence encoding it, that is a segment of a native protein sequence comprising two or more known or predicted epitopes with binding affinity for a shared MHC restriction element, wherein the density of epitopes within the cluster is greater than the density of all known or predicted epitopes with binding affinity for the shared MHC restriction element within the complete protein sequence, and as disclosed in U.S. patent application Ser. No. 09/561,571 entitled EPITOPE CLUSTERS.


SUBSTRATE OR LIBERATION SEQUENCE—a designed or engineered sequence comprising or encoding a housekeeping epitope (according to the first of the definitions offered above) embedded in a larger sequence that provides a context allowing the housekeeping epitope to be liberated by immunoproteasomal processing, directly or in combination with N-terminal trimming or other processes. terminal Degradation of cytosolic proteins takes place via the ubiquitin-dependent multi-catalytic multi-subunit protease system known as the proteasome. The proteasome degrades cytosolic proteins generating fragments that can then be translocated from the cytosol into the endoplasmic reticulum (ER) for loading onto class I MHC. Such protein fragments shall be referred to as class I peptides. The peptide loaded MHC are subsequently transported to the cell surface where they can be detected by CTL.


The multi-catalytic activity of the proteasome is the result of its multi-subunit structure. Subunits are expressed from different genes and assembled post-translationally into the proteasome complex. A key feature of the proteasome is its bimodal activity, which enables it to exert its protease, or cleavage function, with two discrete kinds of cleavage patterns. This bimodal action of the proteasome is extremely fundamental to understanding how CTL are targeted to recognize peripheral cells in the body and how this targeting requires synchronization between the immune system and the targeted cells.


The housekeeping proteasome is constitutively active in all peripheral cells and tissues of the body. The first mode of operation for the housekeeping proteasome is to degrade cellular protein, recycling it into amino acids. Proteasome function is therefore a necessary activity for cell life. As a corollary to its housekeeping protease activity, however, class I peptides generated by the housekeeping proteasome are presented on all of the peripheral cells of the body.


The proteasome's second mode of function is highly exclusive and occurs specifically in pAPCs or as a consequence of a cellular response to interferons (IFNs). In its second mode of activity the proteasome incorporates unique subunits, which replace the catalytic subunits of the constitutive housekeeping proteasome. This “modified” proteasome has been called the immunoproteasome, owing to its expression in pAPC and as a consequence of induction by IFN in body cells.


APC define the repertoire of CTL that recirculate through the body and are potentially active as killer cells. CTL are activated by interacting with class I peptide presented on the surface of a pAPC. Activated CTL are induced to proliferate and caused to recirculate through the body in search of diseased cells. This is why the CTL response in the body is defined specifically by the class I peptides produced by the pAPC. It is important to remember that pAPCs express the immunoproteasome, and that as a consequence of the bimodal activity of the proteasome, the cleavage pattern of proteins (and the resultant class I peptides produced) are different from those in peripheral body cells which express housekeeping proteasome. The differential proteasome activity in pAPC and peripheral body cells, therefore, is important to consider during natural infection and with therapeutic CTL vaccination strategies.


All cells of the body are capable of producing IFN in the event that they are infected by a pathogen such as a virus. IFN production in turn results in the expression of the immunoproteasome in the infected cell. Viral antigens are thereby processed by the immunoproteasome of the infected cell and the consequent peptides are displayed with class I MHC on the cell surface. At the same time, pAPC are sequestering virus antigens and are processing class I peptides with their immunoproteasome activity, which is normal for the pAPC cell type. The CTL response in the body is being stimulated specifically by the class I peptides produced by the pAPC. Fortunately, the infected cell is also producing class I peptides from the immunoproteasome, rather than the normal housekeeping proteasome. Thus, virus-related class I peptides are being produced that enable detection by the ensuing CTL response. The CTL immune response is induced by pAPC, which normally produce different class I peptides compared to peripheral body cells, owing to different proteasome activity. Therefore, during infection there is epitope synchronization between the infected cell and the immune system.


This is not the case with tumors and chronic viruses, which block the interferon system. For tumors there is no infection in the tumor cell to induce the immunoproteasome expression, and chronic virus infection either directly or indirectly blocks immunoproteasome expression. In both cases the diseased cell maintains its display of class I peptides derived from housekeeping proteasome activity and avoids effective surveillance by CTL.


In the case of therapeutic vaccination to eradicate tumors or chronic infections, the bimodal function of the proteasome and its differential activity in APC and peripheral cells of the body is significant. Upon vaccination with protein antigen, and before a CTL response can occur, the antigen must be acquired and processed into peptides that are subsequently presented on class I MHC on the pAPC surface. The activated CTL recirculate in search of cells with similar class I peptide on the surface. Cells with this peptide will be subjected to destruction by the cytolytic activity of the CTL. If the targeted diseased cell does not express the immunoproteasome, which is present in the pAPC, then the epitopes are not synchronized and CTL fail to find the desired peptide target on the surface of the diseased cell.


Preferably, therapeutic vaccine design takes into account the class I peptide that is actually present on the target tissue. That is, effective antigens used to stimulate CTL to attack diseased tissue are those that are naturally processed and presented on the surface of the diseased tissue. For tumors and chronic infection this generally means that the CTL epitopes are those that have been processed by the housekeeping proteasome. In order to generate an effective therapeutic vaccine, CTL epitopes are identified based on the knowledge that such epitopes are, in fact, produced by the housekeeping proteasome system. Once identified, these epitopes, embodied as peptides, can be used to successfully immunize or induce therapeutic CTL responses against housekeeping proteasome expressing target cells in the host.


However, in the case of DNA vaccines, there can be an additional consideration. The immunization with DNA requires that APCs take up the DNA and express the encoded proteins or peptides. It is possible to encode a discrete class I peptide on the DNA. By immunizing with this construct, APCs can be caused to express a housekeeping epitope, which is then displayed on class I MHC on the surface of the cell for stimulating an appropriate CTL response. Constructs for generation of proper termini of housekeeping epitopes have been described in U.S. patent application Ser. No. 09/561,572 entitled EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS, filed on Apr. 28, 2000, which is incorporated herein by reference in its entirety.


Embodiments of the invention provide expression cassettes that encode one or more embedded housekeeping epitopes, and methods for designing and testing such expression cassettes. The expression cassettes and constructs can encode epitopes, including housekeeping epitopes, derived from antigens that are associated with targets. Housekeeping epitopes can be liberated from the translation product(s) of the cassettes. For example, in some embodiments of the invention, the housekeeping epitope(s) can be flanked by arbitrary sequences or by sequences incorporating residues known to be favored in immunoproteasome cleavage sites. In further embodiments of the invention multiple epitopes can be arrayed head-to-tail. In some embodiments, these arrays can be made up entirely of housekeeping epitopes. Likewise, the arrays can include alternating housekeeping and immune epitopes. Alternatively, the arrays can include housekeeping epitopes flanked by immune epitopes, whether complete or distally truncated. In some preferred embodiments, each housekeeping epitope can be flanked on either side by an immune epitope, such that an array of such arrangements has two immune epitopes between each housekeeping epitope. Further, the arrays can be of any other similar arrangement. There is no restriction on placing a housekeeping epitope at the terminal positions of the array. The vectors can additionally contain authentic protein coding sequences or segments thereof containing epitope clusters as a source of immune epitopes.


Several disclosures make reference to polyepitopes or string-of-bead arrays. See, for example, WO0119408A1, Mar. 22, 2001; WO9955730A2, Nov. 4, 1999; WO0040261A2, Jul. 13, 2000; WO9603144A1, Feb. 8, 1996; EP1181314A1, Feb. 27, 2002; WO0123577A3, April 5; U.S. Pat No. 6,074,817, Jun. 13, 2000; U.S. Pat. No. 5,965,381, Oct. 12, 1999; WO9741440A1, Nov. 6, 1997; U.S. Pat. No. 6,130,066, Oct. 10, 2000; U.S. Pat. No.6,004,777, Dec. 21, 1999; U.S. Pat. No. 5,990,091, Nov. 23, 1999; WO9840501A1, Sep. 17, 1998; WO9840500A1, Sep. 17, 1998; WO018035A2, Mar. 15, 2001; WO02068654A2, Sep. 6, 2002; WO0189281A2, Nov. 29, 2001; WO0158478A, Aug. 16, 2001; EP1118860A1, Jul. 25, 2001; WO011040A1, Feb. 15, 2001; WO0073438A1, Dec. 7, 2000; WO0071158A1, Nov. 30, 2000; WO0066727A1, Nov. 9, 2000; WO0052451A1, Sep. 8, 2000; WO0052157A1, Sep. 8, 2000; WO0029008A2, May 25, 2000; WO0006723A1, Feb. 10, 2000; all of which are incorporated by reference in their entirety. Additional disclosures, all of which are hereby incorporated by reference in their entirety, include Palmowski M J, et al—J Immunol 2002;168(9):4391-8; Fang Z Y, et al—Virology 2001;291(2):272-84; Firat H, et al—J Gene Med 2002;4(1):38-45; Smith S G, et al—Clin Cancer Res 2001;7(12):4253-61; Vonderheide R H, et al—Clin Cancer Res 2001; 7(11):3343-8; Firat H, et al—Eur J Immunol 2001;31(10):3064-74; Le T T, et al—Vaccine 2001;19(32):4669-75; Fayolle C, et al—J Virol 2001;75(16):7330-8; Smith S G—Curr Opin Mol Ther 1999;1(1):10-5; Firat H, et al—Eur J Immunol 1999;29(10):3112-21; Mateo L, et al—J Immunol 1999;163(7):4058-63; Heemskerk M H, et al—Cell Immunol 1999;195(1):10-7; Woodberry T, et al—J Virol 1999;73(7):5320-5; Hanke T, et al—Vaccine 1998;16(4):426-35; Thomson S A, et al—J Immunol 1998;160(4):1717-23; Toes R E, et al—Proc Natl Acad Sci USA 1997;94(26):14660-5; Thomson S A, et al—J Immunol 1996;157(2):822-6; Thomson S A, et al—Proc Natl Acad Sci USA 1995;92(13):5845-9; Street M D, et al—Immunology 2002;106(4):526-36; Hirano K, et al—Histochem Cell Biol 2002;117(1):41-53; Ward S M, et al—Virus Genes 2001;23(1):97-104; Liu W J, et al—Virology 2000;273(2):374-82; Gariglio P, et al—Arch Med Res 1998;29(4):279-84; Suhrbier A—Immunol Cell Biol 1997;75(4):402-8; Fomsgaard A, et al—Vaccine 1999;18(7-8):681-91; An L L, et al—J Virol 1997;71(3):2292-302; Whitton J L, et al—J Virol 1993;67(1):348-52; Ripalti A, et al—J Clin Microbiol 1994;32(2):358-63; and Gilbert, S. C., et al., Nat. Biotech. 15:1280-1284, 1997.


One important feature that the disclosures in the preceding paragraph all share is their lack of appreciation for the desirability of regenerating housekeeping epitopes when the construct is expressed in a pAPC. This understanding was not apparent until the present invention. Embodiments of the invention include sequences, that when processed by an immune proteasome, liberate or generate a housekeeping epitope. Embodiments of the invention also can liberate or generate such epitopes in immunogenically effective amounts. Accordingly, while the preceding references contain disclosures relating to polyepitope arrays, none is enabling of the technology necessary to provide or select a polyepitope capable of liberating a housekeeping epitope by action of an immunoproteasome in a pAPC. In contrast, embodiments of the instant invention are based upon a recognition of the desirability of achieving this result. Accordingly, embodiments of the instant invention include any nucleic acid construct that encodes a polypeptide containing at least one housekeeping epitope provided in a context that promotes its generation via immunoproteasomal activity, whether the housekeeping epitope is embedded in a string-of-beads array or some other arrangement. Some embodiments of the invention include uses of one or more of the nucleic acid constructs or their products that are specifically disclosed in any one or more of the above-listed references. Such uses include, for example, screening a polyepitope for proper liberation context of a housekeeping epitope and/or an immune epitope, designing an effective immunogen capable of causing presentation of a housekeeping epitope and/or an immune epitope on a pAPC, immunizing a patient, and the like. Alternative embodiments include use of only a subset of such nucleic acid constructs or a single such construct, while specifically excluding one or more other such constructs, for any of the purposes disclosed herein. Some preferred embodiments employ these and/or other nucleic acid sequences encoding polyepitope arrays alone or in combination. For example, some embodiments exclude use of polyepitope arrays from one or more of the above-mentioned references. Other embodiments may exclude any combination or all of the polyepitope arrays from the above-mentioned references collectively. Some embodiments include viral and/or bacterial vectors encoding polyepitope arrays, while other embodiments specifically exclude such vectors. Such vectors can encode carrier proteins that may have some immunostimulatory effect. Some embodiments include such vectors with such immunostimulatory/immunopotentiating effects, as opposed to immunogenic effects, while in other embodiments such vectors may be included. Further, in some instances viral and bacterial vectors encode the desired epitope as a part of substantially complete proteins which are not associated with the target cell. Such vectors and products are included in some embodiments, while excluded from others. Some embodiments relate to repeated administration of vectors. In some of those embodiments, nonviral and nonbacterial vectors are included. Likewise, some embodiments include arrays that contain extra amino acids between epitopes, for example anywhere from 1-6 amino acids, or more, in some embodiments, while other embodiments specifically exclude such arrays.


Embodiments of the present invention also include methods, uses, therapies, and compositions directed to various types of targets. Such targets can include, for example, neoplastic cells such as those listed below, for example; and cells infected with any virus, bacterium, protozoan, fungus, or other agents, examples of which are listed below, in Tables 1-5, or which are disclosed in any of the references listed above. Alternative embodiments include the use of only a subset of such neoplastic cells and infected cells listed below, in Tables 1-5, or in any of the references disclosed herein, or a single one of the neoplastic cells or infected cells, while specifically excluding one or more other such neoplastic cells or infected cells, for any of the purposes disclosed herein. The following are examples of neoplastic cells that can be targeted: human sarcomas and carcinomas, e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma; leukemias, e.g., acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia); and polycythemia vera, lymphoma (Hodgkin's disease and non Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, hepatocellular cancer, brain cancer, stomach cancer, liver cancer, and the like. Examples of infectious agents that infect the target cells can include the following: adenovirus, cytomegalovirus, Epstein-Barr virus, herpes simplex virus 1, herpes simplex virus 2, human herpesvirus 6, varicella-zoster virus, hepatitis B virus, hepatitis D virus, papilloma virus, parvovirus B19, polyomavirus BK, polyomavirus JC, hepatitis C virus, measles virus, rubella virus, human immunodeficiency virus (HIV), human T cell leukemia virus I, human T cell leukemia virus II, Chlamydia, Listeria, Salmonella, Legionella, Brucella, Coxiella, Rickettsia, Mycobacterium, Leishmania, Trypanasoma, Toxoplasma, Plasmodium, and the like. Exemplary infectious agents and neoplastic cells are also included in Tables 1-5 below.


Furthermore the targets can include neoplastic cells described in or cells infected by agents that are described in any of the following references: Jäger, E. et al., “Granulocyte-macrophage-colony-stimulating factor enhances immune responses to melanoma-associated peptides in vivo,” Int. J Cancer, 67:54-62 (1996); Kündig, T.M., Althage, A., Hengartner, H. & Zinkernagel, R. M., “A skin test to assess CD8+ cytotoxic T cell activity,” Proc. Natl. Acad Sci. USA, 89:7757-76 (1992); Bachmann, M.F. & Kundig, T. M., “In vitro vs. in vivo assays for the assessment of T- and B-cell function,” Curr. Opin. Immunol., 6:320-326 (1994); Kundig et al., “On the role of antigen in maintaining cytotoxic T cell memory,” Proceedings of the National Academy of Sciences of the United States of America, 93:9716-23 (1996); Steinmann, R.M., “The dendritic cells system and its role in immunogenicity,” Annual Review of Immunology 9:271-96 (1991); Inaba, K. et al., “Identification of proliferating dendritic cell precursors in mouse blood,” Journal of Experimental Medicine, 175:1157-67 (1992); Young, J. W. & Inaba, K., “Dendritic cells as adjuvants for class I major histocompatibility complex-restricted anti-tumor immunity,” Journal of Experimental Medicine, 183:7-11 (1996); Kuby, Janis, Immunology, Second Edition, Chapter 15, W. H. Freeman and Company (1991); Austenst, E., Stahl, T., and de Gruyter, Walter, Insulin Pump Therapy, Chapter 3, Berlin, N.Y. (1990); Remington, The Science and Practice of Pharmacy, Nineteenth Edition, Chapters 86-88 (1985); Cleland, Jeffery L. and Langer, Robert (Editor), “Formulation and delivery of proteins and peptides,” American Chemical Society (ACS Symposium Series, No. 567) (1994); Santus, Giancarlo and Baker, Richard, “Osmotic drug delivery: A review of the patent literature,” Journal of Controlled Release, 35:1-21 (1995); Rammensee, U.S. Pat. No. 5,747,269, issued May 5, 1998; Magruder, U.S. Pat. No. 5,059,423, issued Oct. 22, 1991; Sandbrook, U.S. Pat. No. 4,552,651, issued Nov. 25, 1985; Eckenhoff et al., U.S. Pat. No. 3,987,790, issued Oct. 26, 1976; Theeuwes, U.S. Pat. No. 4,455,145, issued Jun. 19, 1984; Roth et al. U.S. Pat. No. 4,929,233, issued May 29 1990; van der Bruggen et al., U.S. Pat. No. 5,554,506, issued Sep. 10, 1996; Pfreundschuh, U.S. Pat. No. 5,698,396, issued Dec. 16, 1997; Magruder, U.S. Pat. No. 5,110,596, issued May 5, 1992; Eckenhoff, U.S. Pat. No. 4,619,652, issued Oct. 28, 1986; Higuchi et al., U.S. Pat. No. 3,995,631, issued Dec. 7, 1976; Maruyama, U.S. Pat. No. 5,017,381, issued May 21, 1991; Eckenhoff, U.S. Pat. No. 4,963,141, issued Oct. 16, 1990; van der Bruggen et al., U.S. Pat. No. 5,558,995, issued Sep. 24, 1996; Stolzenberg et al. U.S. Pat. No. 3,604,417, issued Sep. 14, 1971; Wong et al., U.S. Pat. No. 5,110,597, issued May 5, 1992; Eckenhoff, U.S. Pat. No. 4,753,651, issued Jun. 28, 1988; Theeuwes, U.S. Pat. No. 4,203,440, issued May 20, 1980; Wong et al. U.S. Pat. No. 5,023,088, issued Jun. 11, 1991; Wong et al., U.S. Pat. No. 4,976,966, issued Dec. 11, 1990; Van den Eynde et al., U.S. Pat. No. 5,648,226, issued Jul. 15, 1997; Baker et al., U.S. Pat. No. 4,838,862, issued Jun. 13, 1989; Magruder, U.S. Pat. No. 5,135,523, issued Aug. 4, 1992; Higuchi et al., U.S. Pat. No. 3,732,865, issued May 15, 1975; Theeuwes, U.S. Pat. No. 4,286,067, issued Aug. 25, 1981; Theeuwes et al., U.S. Pat. No. 5,030,216, issued Jul. 9, 1991; Boon et al., U.S. Pat. No. 5,405,940, issued Apr. 11, 1995; Faste, U.S. Pat. No. 4,898,582, issued Feb. 6, 1990; Eckenhoff, U.S. Pat. No. 5,137,727, issued Aug. 11, 1992; Higuchi et al., U.S. Pat. No. 3,760,804, issued Sep. 25, 1973; Eckenhoff et al., U.S. Pat. No. 4,300,558, issued Nov. 12, 1981; Magruder et al., U.S. Pat. No. 5,034,229, issued Jul. 23, 1991; Boon et al., U.S. Pat. No. 5,487,974, issued Jan. 30, 1996; Kam et al., U.S. Pat. No. 5,135,498, issued Aug. 4, 1992; Magruder et al., U.S. Pat. No. 5,174,999, issued Dec. 29, 1992; Higuchi, U.S. Pat. No. 3,760,805, Sep. 25, 1973; Michaels, U.S. Pat. No. 4,304,232, issued Dec. 8, 1981; Magruder et al., U.S. Pat. No. 5,037,420, issued Oct. 15, 1991; Wolfel et al., U.S. Pat. No. 5,530,096, issued Jun. 25, 1996; Athadye et al., U.S. Pat. No. 5,169,390, issued Dec. 8, 1992; Balaban et al., U.S. Pat. No. 5,209,746, issued May 11, 1993; Higuchi, U.S. Pat. No. 3,929,132, issued Dec. 30, 1975; Michaels, U.S. Pat. No. 4,340,054, issued Jul. 20, 1982; Magruder et al., U.S. Pat. No. 5,057,318, issued Oct. 15, 1991; Wolfel et al., U.S. Pat. No. 5,519,117, issued May 21, 1996; Athadye et al., U.S. Pat. No. 5,257,987, issued Nov. 2, 1993; Linkwitz et al., U.S. Pat. No. 5,221,278, issued Jun. 22, 1993; Nakano et al., U.S. Pat. No. 3,995,632, issued Dec. 7, 1976; Michaels, U.S. Pat. No. 4,367,741, issued January 11, 1983; Eckenhoff, U.S. Pat. No. 4,865,598, issued Sep. 12, 1989; Lethe et al., U.S. Pat. No. 5,774,316, issued Apr. 28, 1998; Eckenhoff, U.S. Pat. No. 4,340,048, issued Jul. 20, 1982; Wong, U.S. Pat. No. 5,223,265, issued Jun. 29, 1993; Higuchi et al., U.S. Pat. No. 4,034,756, issued Jul. 12, 1977; Michaels, U.S. Pat. No. 4,450,198, issued May 22, 1984; Eckenhoff et al., U.S. Pat. No. 4,865,845, issued Sep. 12, 1989; Melief et. al., U.S. Pat. No. 5,554,724, issued Sep. 10, 1996; Eckenhoff et al., U.S. Pat. No. 4,474,575, issued Oct. 2, 1984; Theeuwes, U.S. Pat. No. 3,760,984, issued Sep. 25, 1983; Eckenhoff, U.S. Pat. No. 4,350,271, issued Sep. 21, 1982; Eckenhoff et al., U.S. Pat. No. 4,855,141, issued Aug. 8, 1989; Zingerman, U.S. Pat. No. 4,872,873, issued Oct. 10, 1989; Townsend et al., U.S. Pat. No. 5,585,461, issued Dec. 17, 1996; Carulli, J.P. et al., J. Cellular Biochem Suppl., 30/31:286-96 (1998); Tiireci, Ö., Sahin, U., and Pfreundschuh, M., “Serological analysis of human tumor antigens: molecular definition and implications,” Molecular Medicine Today, 3:342 (1997); Rammensee et al., MHC Ligands and Peptide Motifs, Landes Bioscience Austin, Tex., 224-27, (1997); Parker et al., “Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains,” J. Immunol. 152:163-175 (1994); Kido & Ohshita, Anal. Biochem., 230:41-47 (1995); Yamada et al., J. Biochem. (Tokyo), 95:1155-60 (1984); Kawashima et al., Kidney Int., 54:275-8 (1998); Nakabayshi & Ikezawa, Biochem. Int. 16:1119-25 (1988); Kanaseki & Ohkuma, J. Biochem. (Tokyo), 110:541-7 (1991); Wattiaux et al., J. Cell Biol., 78:349-68 (1978); Lisman et al., Biochem. J., 178:79-87 (1979); Dean, B., Arch. Biochem. Biophys., 227:154-63 (1983); Overdijk et al., Adv. Exp. Med. Biol., 101:601-10 (1978); Stromhaug et al., Biochem. J., 335:217-24 (1998); Escola et al., J. Biol. Chem., 271:27360-05 (1996); Hammond et al., Am. J. Physiol., 267:F516-27 (1994); Williams & Smith, Arch. Biochem. Biophys., 305:298-306 (1993); Marsh, M., Methods Cell Biol., 31:319-34 (1989); Schmid & Mellman, Prog. Clin. Biol. Res., 270:35-49 (1988); Falk, K. et al., Nature, 351:290, (1991); Ausubel et al., Short Protocols in Molecular Biology, Third Edition, Unit 11.2 (1997); hypertext transfer protocol address syfpeithi.de/Scripts/MHCServer.d11/EpitopePrediction.htm; Levy, Morel, S. et al., Immunity 12:107-117 (2000); Seipelt et al., “The structures of picornaviral proteinases,” Virus Research, 62:159-68, 1999; Storkus et al., U.S. Pat. No. 5,989,565, issued Nov. 23, 1999; Morton, U.S. Pat. No. 5,993,828, issued Nov. 30, 1999; Virus Research 62:159-168, (1999); Simard et al., U.S. patent application Ser No. 10/026,066, filed Dec. 7, 2001; Simard et al., U.S. patent application Ser No. 09/561,571, filed Apr. 28, 2000; Simard et al., U.S. patent application Ser. No. 09/561,572, filed Apr. 28, 2000; Kundig et al., WO 99/02183, Jan. 21, 1999; Simard et al., U.S. patent application Ser No. 09/561,074, filed Apr. 28, 2000; Simard et al., U.S. patent application Ser No. 10/225,568, filed Aug. 20, 2002; Simard et al., U.S. patent application Ser No. 10/005,905, filed Nov. 7, 2001; Simard et al., U.S. patent application Ser No. 09/561,074, filed Apr. 28, 2000.


Additional embodiments of the invention include methods, uses, therapies, and compositions relating to a particular antigen, whether the antigen is derived from, for example, a target cell or an infective agent, such as those mentioned above. Some preferred embodiments employ the antigens listed herein, in Tables 1-5, or in the list below, alone, as subsets, or in any combination. For example, some embodiments exclude use of one or more of those antigens. Other embodiments may exclude any combination or all of those antigens. Several examples of such antigens include MelanA (MART-I), gp100 (Pmel 17), tyrosinase, TRP-1, TRP-2, MAGE-1, MAGE-3, BAGE, GAGE-1, GAGE-2, CEA, RAGE, NY-ESO, SCP-1, Hom/Mel-40, PRAME, p53, H-Ras, HER-2/neu, BCR-ABL, E2A-PRL, H4-RET, IGH-IGK, MYL-RAR, Epstein Barr virus antigens, EBNA, human papillomavirus (HPV) antigens E6 and E7, TSP-180, MAGE-4, MAGE-5, MAGE-6, p185erbB2, p180erbB-3, c-met, nmn-23H1, PSA, TAG-72-4, CAM 17.1, NuMa, K-ras, β-Catenin, CDK4, Mum-1, p16, as well as any of those set forth in the above mentioned references. Other antigens are included in Tables 1-4 below.


Further embodiments include methods, uses, compositions, and therapies relating to epitopes, including, for example those epitopes listed in Tables 1-5. These epitopes can be useful to flank housekeeping epitopes in screening vectors, for example. Some embodiments include one or more epitopes from Tables 1-5, while other embodiments specifically exclude one or more of such epitopes or combinations thereof.













TABLE 1







AA
T cell epitope MHC



Virus
Protein
Position
ligand (Antigen)
MHC molecule







Adenovirus 3
E3 9Kd
30-38
LIVIGILIL
HLA-A*0201





(SEQ. ID NO.: 44)



Adenovirus 5
EIA
234-243
SGPSNTPPEI
H2-Db





(SEQ. ID NO.: 45)



Adenovirus 5
E1B
192-200
VNIRNCCY1
H2-Db





(SEQ. ID NO.: 46)



Adenovirus 5
EIA
234-243
SGPSNIPPEI (T > I)
H2-Db





(SEQ. ID NO.: 47)



CSFV
NS
2276-2284
ENALLVALF
SLA,



polyprotein

(SEQ. ID NO.: 48)
haplotype d/d


Dengue virus 4
NS3
500-508
TPEGIIPTL
HLA-B*3501





(SEQ. ID NO.: 49)



EBV
LMP-2
426-434
CLGGLLTMV
HLA-A*0201





(SEQ. ID NO.: 50)



EBV
EBNA-1
480-484
NIAEGLRAL
HLA-A*0201





(SEQ. ID NO.: 51)



EBV
EBNA-1
519-527
NLRRGTALA
HLA-A*0201





(SEQ. ID NO.: 52)



EBV
EBNA-1
525-533
ALAIPQCRL
HLA-A*0201





(SEQ. ID NO.: 53)



EBV
EBNA-1
575-582
VLKDAIKDL
HLA-A*0201





(SEQ. ID NO.: 54)



EBV
EBNA-1
562-570
FMVFLQTHI
HLA-A*0201





(SEQ. ID NO.: 55)



EBV
EBNA-2
15-23
HLIVDTDSL
HLA-A*0201





(SEQ. ID NO.: 56)



EBV
EBNA-2
22-30
SLGNPSLSV
HLA-A*0201





(SEQ. ID NO.: 57)



EBV
EBNA-2
126-134
PLASAMRML
HLA-A*0201





(SEQ. ID NO.: 58)



EBV
EBNA-2
132-140
RMLWMANY1
HLA-A*0201





(SEQ. ID NO.: 59)



EBV
EBNA-2
133-141
MLWMANYIV
HLA-A*0201





(SEQ. ID NO.: 60)



EBV
EBNA-2
151-159
ILPQGPQTA
HLA-A*0201





(SEQ. ID NO.: 61)



EBV
EBNA-2
171-179
PLRPTAPTI
HLA-A*0201





(SEQ. ID NO.: 62)



EBV
EBNA-2
205-213
PLPPATLTV
HLA-A*0201





(SEQ. ID NO.: 63)



EBV
EBNA-2
246-254
RMHLPVLHV
HLA-A*0201





(SEQ. ID NO.: 64)



EBV
EBNA-2
287-295
PMPLPPSQL
HLA-A*0201





(SEQ. ID NO.: 65)



EBV
EBNA-2
294-302
QLPPPAAPA
HLA-A*0201





(SEQ. ID NO.: 66)



EBV
EBNA-2
381-389
SMPELSPVL
HLA-A*0201





(SEQ. ID NO.: 67)



EBV
EBNA-2
453-461
DLDESWDYI
HLA-A*0201





(SEQ. ID NO.: 68)



EBV
BZLF1
43-51
PLPCVLWPV
HLA-A*0201





(SEQ. ID NO.: 69)



EBV
BZLF1
167-175
SLEECDSEL
HLA-A*0201





(SEQ. ID NO.: 70)



EBV
BZLF1
176-184
EIKRYKNRV
HLA-A*0201





(SEQ. ID NO.: 71)



EBV
BZLF1
195-203
QLLQHYREV
HLA-A*0201





(SEQ. ID NO.: 72)



EBV
BZLF1
196-204
LLQHYREVA
HLA-A*0201





(SEQ. ID NO.: 73)



EBV
BZLFI
217-225
LLKQMCPSL
HLA-A*0201





(SEQ. ID NO.: 74)



EBV
BZLF1
229-237
SIIPRTPDV
HLA-A*0201





(SEQ. ID NO.: 75)



EBV
EBNA-6
284-293
LLDFVRFMGV
HLA-A*0201





(SEQ. ID NO.: 76)



EBV
EBNA-3
464-472
SVRDRLARL
HLA-A*0203





(SEQ. ID NO.: 77)



EBV
EBNA-4
416-424
IVTDFSVIK
HLA-A*1101





(SEQ. ID NO.: 78)



EBV
EBNA-4
399-408
AVFDRKSDAK
HLA-A*0201





(SEQ. ID NO.: 79)



EBV
EBNA-3
246-253
RYSIFFDY
HLA-A24





(SEQ. ID NO.: 80)



EBV
EBNA-6
881-889
QPRAPIRPI
HLA-B7





(SEQ. ID NO.: 81)



EBV
EBNA-3
379-387
RPPIFIRRI
HLA-B7





(SEQ. ID NO.: 82)



EBV
EBNA-1
426-434
EPDVPPGAI
HLA-B7





(SEQ. ID NO.: 83)



EBV
EBNA-1
228-236
IPQCRLTPL
HLA-B7





(SEQ. ID NO.: 84)



EBV
EBNA-1
546-554
GPGPQPGPL
HLA-B7





(SEQ. ID NO.: 85)



EBV
EBNA-1
550-558
QPGPLRESI
HLA-B7





(SEQ. ID NO.: 86)



EBV
EBNA-1
72-80
R.PQKRPSCI
HLA-B7





(SEQ. ID NO.: 87)



EBV
EBNA-2
224-232
PPTPLLTVL
HLA-B7





(SEQ. ID NO.: 88)



EBV
EBNA-2
241-249
TPSPPRMHL
HLA-B7





(SEQ. ID NO.: 89)



EBV
EBNA-2
244-252
PPRMHLPVL
HLA-B7





(SEQ. ID NO.: 90)



EBV
EBNA-2
254-262
VPDQSMHPL
HLA-B7





(SEQ. ID NO.: 91)



EBV
EBNA-2
446-454
PPSIDPADL
HLA-B7





(SEQ. ID NO.: 92)



EBV
BZLFI
44-52
LPCVLWPVL
HLA-B7





(SEQ. ID NO.: 93)



EBV
BZLF1
222-231
CPSLDVDSII
HLA-B7





(SEQ. ID NO.: 94)



EBV
BZLFI
234-242
TPDVLHEDL
HLA-B7





(SEQ. ID NO.: 95)



EBV
EBNA-3
339-347
FLRGRAYGL
HLA-B8





(SEQ. ID NO.: 96)



EBV
EBNA-3
26-34
QAKWRLQTL
HLA-B8





(SEQ. ID NO.: 97)



EBV
EBNA-3
325-333
AYPLHEQHG
HLA-B8





(SEQ. ID NO.: 98)



EBV
EBNA-3
158-166
YIKSFVSDA
HLA-B8





(SEQ. ID NO.: 99)



EBV
LMP-2
236-244
RRRWRRLTV
HLA-B*2704





(SEQ. ID NO.: 100)



EBV
EBNA-6
258-266
RRIYDLIEL
HLA-B*2705





(SEQ. ID NO.: 101)



EBV
EBNA-3
458-466
YPLHEQHGM
HLA-B*3501





(SEQ. ID NO.: 102)



EBV
EBNA-3
458-466
YPLHEQHGM
HLA-B*3503





(SEQ. ID NO.: 103)



HCV
NS3
389-397
HSKKKCDEL
HLA-B8





(SEQ. ID NO.: 104)



HCV
env E
44-51
ASRCWVAM
HLA-B*3501





(SEQ. ID NO.: 105)



HCV
core
27-35
GQIVGGVYL
HLA-B*40012



protein

(SEQ. ID NO.: 106)



HCV
NSI
77-85
PPLTDFDQGW
HLA-B*5301





(SEQ. ID NO.: 107)



HCV
core
18-27
LMGYIPLVGA
H2-Dd



protein

(SEQ. ID NO.: 108)



HCV
core
16-25
ADLMGYIPLV
H2-Dd



protein

(SEQ. ID NO.: 109)



HCV
NS5
409-424
MSYSWTGALVTPCAEE
H2-Dd





(SEQ. ID NO.: 110)



HCV
NS1
205-213
KHPDATYSR
Papa-A06





(SEQ. ID NO.: 111)



HCV-1
NS3
400-409
KLVALGINAV
HLA-A*0201





(SEQ. ID NO.: 112)



HCV-1
NS3
440-448
GDFDSVIDC
Patr-B16





(SEQ. ID NO.: 113)



HCV-1
env E
118-126
GNASRCWVA
Patr-BI6





(SEQ. ID NO.: 114)



HCV-1
NSI
159-167
TRPPLGNWF
Patr-B13





(SEQ. ID NO.: 115)



HCV-1
NS3
351-359
VPHPNIEEV
Patr-B13





(SEQ. ID NO.: 116)



HCV-1
NS3
438-446
YTGDFDSVI
Patr-B01





(SEQ. ID NO.: 117)



HCV-1
NS4
328-335
SWAIKWEY
Patr-A1 1





(SEQ. ID NO.: 118)



HCV-1
NSI
205-213
KHPDATYSR
Patr-A04





(SEQ. ID NO.: 119)



HCV-1
NS3
440-448
GDFDSVIDC
Patr-A04





(SEQ. ID NO.: 120)



HIV
gp41
583-591
RYLKDQQLL
HLA_A24





(SEQ. ID NO.: 121)



HIV
gagp24
267-275
IVGLNKIVR
HLA-A*3302





(SEQ. ID NO.: 122)



HIV
gagp24
262-270
EIYKRWIIL
HLA-B8





(SEQ. ID NO.: 123)



HIV
gagp24
261-269
GE1YKRWI1
HLA-B8





(SEQ. ID NO.: 124)



HIV
gagp17
 93-101
EIKDTKEAL
HLA-B8





(SEQ. ID NO.: 125)



HIV
gp41
586-593
YLKDQQLL
HLA-B8





(SEQ. ID NO.: 126)



HIV
gagp24
267-277
ILGLNKIVRMY
HLA-B* 1501





(SEQ. ID NO.: 127)



HIV
gp41
584-592
ERYLKDQQL
HLA-B14





(SEQ. ID NO.: 128)



HIV
nef
115-125
YHTQGYFPQWQ
HLA-B17





(SEQ. ID NO.: 129)



HIV
nef
117-128
TQGYFPQWQNYT
HLA-B17





(SEQ. ID NO.: 130)



HIV
gp120
314-322
GRAFVT1GK
HLA-B*2705





(SEQ. ID NO.: 131)



HIV
gagp24
263-271
KRWIILGLN
HLA-B*2702





(SEQ. ID NO.: 132)



HIV
nef
72-82
QVPLRPMTYK
HLA-B*3501





(SEQ. ID NO.: 133)



HIV
nef
117-125
TQGYFPQWQ
HLA-B*3701





(SEQ. ID NO.: 134)



HIV
gagp24
143-151
HQAISPRTI,
HLA-Cw*0301





(SEQ. ID NO.: 135)



HIV
gagp24
140-151
QMVHQAISPRTL
HLA-Cw*0301





(SEQ. ID NO.: 136)



HIV
gp120
431-440
MYAPPIGGQI
H2-Kd





(SEQ. ID NO.: 137)



HIV
gp160
318-327
RGPGRAFVTI
H2-Dd





(SEQ. ID NO.: 138)



HIV
gp120
17-29
MPGRAFVTI
H2-Ld





(SEQ. ID NO.: 139)



HIV-1
RT
476-484
ILKEPVHGV
HLA-A*0201





(SEQ. ID NO.: 140)



HIV-1
nef
190-198
AFHHVAREL
HLA-A*0201





(SEQ. ID NO.: 141)



HIV-1
gpI60
120-128
KLTPLCVTL
HLA-A*0201





(SEQ. ID NO.: 142)



HIV-1
gp]60
814-823
SLLNATDIAV
HLA-A*0201





(SEQ. ID NO.: 143)



HIV-1
RT
179-187
VIYQYMDDL
HLA-A*0201





(SEQ. ID NO.: 144)



HIV-1
gagp 17
77-85
SLYNTVATL
HLA-A*0201





(SEQ. ID NO.: 145)



HIV-1
gp160
315-329
RGPGRAFVT1
HLA-A*0201





(SEQ. ID NO.: 146)



HIV-1
gp41
768-778
RLRDLLLIVTR
HLA-A3





(SEQ. ID NO.: 147)



HIV-1
nef
73-82
QVPLRPMTYK
HLA-A3





(SEQ. ID NO.: 148)



HIV-1
gp120
36-45
TVYYGVPVWK
HLA-A3





(SEQ. ID NO.: 149)



HIV-1
gagp17
20-29
RLRPGGKKK
HLA-A3





(SEQ. ID NO.: 150)



HIV-1
gp120
38-46
VYYGVPVWK
HLA-A3





(SEQ. ID NO.: 151)



HIV-1
nef
74-82
VPLRPMTYK
HLA-a*1101





(SEQ. ID NO.: 152)



HIV-1
gagp24
325-333
AIFQSSMTK
HLA-A*1101





(SEQ. ID NO.: 153)



HIV-1
nef
73-82
QVPLRPMTYK
HLA-A*1101





(SEQ. ID NO.: 154)



HIV-1
nef
83-94
AAVDLSHFLKEK
HLA-A*1101





(SEQ. ID NO.: 155)



HIV-1
gagp24
349-359
ACQGVGGPGGHK
HLA-A*1101





(SEQ. ID NO.: 156)



HIV-1
gagp24
203-212
ETINEEAAEW
HLA-A25





(SEQ. ID NO.: 157)



HIV-1
nef
128-137
TPGPGVRYPL
HLA-B7





(SEQ. ID NO.: 158)



HIV-1
gagp 17
24-31
GGKKKYKL
HLA-B8





(SEQ. ID NO.: 159)



HIV-1
gp120
 2-10
RVKEKYQHL
HLA-B8





(SEQ. ID NO.: 160)



HIV-1
gagp24
298-306
DRFYKTLRA
HLA-B 14





(SEQ. ID NO.: 161)



HIV-1
NEF
132-147
GVRYPLTFGWCYKLV
HLA-B18





P






(SEQ. ID NO.: 162)



HIV-1
gagp24
265-24 
KRWIILGLNK
HLA-B*2705





(SEQ. ID NO.: 163)



HIV-1
nef
190-198
AFHHVAREL
HLA-B*5201





(SEQ. ID NO.: 164)



EBV
EBNA-6
335-343
KEHVIQNAF
HLA-B44





(SEQ. ID NO.: 165)



EBV
EBNA-6
130-139
EENLLDFVRF
HLA-B*4403





(SEQ. ID NO.: 166)



EBV
EBNA-2
42-51
DTPLIPLTIF
HLA-B51





(SEQ. ID NO.: 167)



EBV
EBNA-6
213-222
QNGALAINTF
HLA-1362





(SEQ. ID NO.: 168)



EBV
EBNA-3
603-611
RLRAEAGVK
HLA-A3





(SEQ. ID NO.: 169)



HBV
sAg
348-357
GLSPTVWLSV
HLA-A*0201





(SEQ. ID NO.: 170)



HBV
SAg
335-343
WLSLLVPFV
HLA-A*0201





(SEQ. ID NO.: 171)



HBV
cAg
18-27
FLPSDFFPSV
HLA-A*0201





(SEQ. ID NO.: 172)



HBV
cAg
18-27
FLPSDFFPSV
HLA-A*0202





(SEQ. ID NO.: 173)



HBV
cAg
18-27
FLPSDFFPSV
HLA-A*0205





(SEQ. ID NO.: 174)



HBV
cAg
18-27
FLPSDFFPSV
HLA-A*0206





(SEQ. ID NO.: 175)



HBV
pol
575-583
FLLSLGIHlL
HLA-A*0201





(SEQ. ID NO.: 176)



HBV
pol
816-824
SLYADSPSV
HLA-A*0201





(SEQ. ID NO.: 177)



HBV
pol
455-463
GLSRYVARL
HLA-A*0201





(SEQ. ID NO.: 178)



HBV
env
338-347
LLVPFVQWFV
HLA-A*0201





(SEQ. ID NO.: 179)



HBV
pol
642-650
ALMPLYACI
HLA-A*0201





(SEQ. ID NO.: 180)



HBV
env
378-387
LLPIFFCLWV
HLA-A*0201





(SEQ. ID NO.: 181)



HBV
pol
538-546
YMDDVVLGA
HLA-A*0201





(SEQ. ID NO.: 182)



HBV
env
250-258
LLLCLIFLL
HLA-A*0201





(SEQ. ID NO.: 183)



HBV
env
260-269
LLDYQGMLPV
HLA-A*0201





(SEQ. ID NO.: 184)



HBV
env
370-379
SIVSPFIPLL
HLA-A*0201





(SEQ. ID NO.: 185)



HBV
env
183-191
FLLTRILTI
HLA-A*0201





(SEQ. ID NO.: 186)



HBV
cAg
88-96
YVNVNMGLK
HLA-A* 1101





(SEQ. ID NO.: 187)



HBV
cAg
141-151
STLPETTVVRR
HLA-A*3101





(SEQ. ID NO.: 188)



HBV
cAg
141-151
STLPETTVVRR
HLA-A*6801





(SEQ. ID NO.: 189)



HBV
cAg
18-27
FLPSDFFPSV
HLA-A*6801





(SEQ. ID NO.: 190)



HBV
sAg
28-39
IPQSLDSWWTSL
H2-Ld





(SEQ. ID NO.: 191)



HBV
cAg
 93-100
MGLKFRQL
H2-Kb





(SEQ. ID NO.: 192)



HBV
preS
141-149
STBXQSGXQ
HLA-A*0201





(SEQ. ID NO.: 193)



HCMV
gp B
618-628
FIAGNSAYEYV
HLA-A*0201





(SEQ. ID NO.: 194)



HCMV
E1
978-989
SDEEFAIVAYTL
HLA-B18





(SEQ. ID NO.: 195)



HCMV
pp65
397-411
DDVWTSGSDSDEELV
HLA-b35





(SEQ. ID NO.: 196)



HCMV
pp65
123-131
IPSINVHHY
HLA-B*3501





(SEQ. ID NO.: 197)



HCMV
pp65
495-504
NLVPMVATVO
HLA-A*0201





(SEQ. ID NO.: 198)



HCMV
pp65
415-429
RKTPRVTOGGAMAGA
HLA-B7





(SEQ. ID NO.: 199)



HCV
MP
17-25
DLMGYIPLV
HLA-A*0201





(SEQ. ID NO.: 200)



HCV
MP
63-72
LLALLSCLTV
HLA-A*0201





(SEQ. ID NO.: 201)



HCV
MP
105-112
ILHTPGCV
HLA-A*0201





(SEQ. ID NO.: 202)



HCV
env E
66-75
QLRRHIDLLV
HLA-A*0201





(SEQ. ID NO.: 203)



HCV
env E
88-96
DLCGSVFLV
HLA-A*0201





(SEQ. ID NO.: 204)



HCV
env E
172-180
SMVGNWAKV
HLA-A*0201





(SEQ. ID NO.: 205)



HCV
NSI
308-316
HLIIQNIVDV
HLA-A*0201





(SEQ. ID NO.: 206)



HCV
NSI
340-348
FLLLADARV
HLA-A*0201





(SEQ. ID NO.: 207)



HCV
NS2
234-246
GLRDLAVAVEPVV
HLA-A*0201





(SEQ. ID NO.: 208)



HCV
NSI
18-28
SLLAPGAKQNV
HLA-A*0201





(SEQ. ID NO.: 209)



HCV
NSI
19-28
LLAPGAKQNV
HLA-A*0201





(SEQ. ID NO.: 210)



HCV
NS4
192-201
LLFNILGGWV
HLA-A*0201





(SEQ. ID NO.: 211)



HCV
NS3
579-587
YLVAYQATV
HLA-A*0201





(SEQ. ID NO.: 212)



HCV
core
34-43
YLLPRRGPRL
HLA-A*0201



protein

(SEQ. ID NO.: 213)



HCV
MP
63-72
LLALLSCLTI
HLA-A*0201





(SEQ. ID NO.: 214)



HCV
NS4
174-182
SLMAFTAAV
HLA-A*0201





(SEQ. ID NO.: 215)



HCV
NS3
67-75
CINGVCWTV
HLA-A*0201





(SEQ. ID NO.: 216)



HCV
NS3
163-171
LLCPAGHAV
HLA-A*0201





(SEQ. ID NO.: 217)



HCV
NS5
239-247
ILDSFDPLV
HLA-A*0201





(SEQ. ID NO.: 218)



HCV
NS4A
236-244
ILAGYGAGV
HLA-A*0201





(SEQ. ID NO.: 219)



HCV
NS5
714-722
GLQDCTMLV
HLA-A*0201





(SEQ. ID NO.: 220)



HCV
NS3
281-290
TGAPVTYSTY
HLA-A*0201





(SEQ. ID NO.: 221)



HCV
NS4A
149-157
HMWNFISGI
HLA-A*0201





(SEQ. ID NO.: 222)



HCV
NS5
575-583
RVCEKMALY
HLA-A*0201-A3





(SEQ. ID NO.: 223)



HCV
NS1
238-246
TINYTIFK
HLA-A*1101





(SEQ. ID NO.: 224)



HCV
NS2
109-116
YISWCLWW
HLA-A23





(SEQ. ID NO.: 225)



HCV
core
40-48
GPRLGVRAT
HLA-B7



protein

(SEQ. ID NO.: 226)



HIV-1
gp120
380-388
SFNCGGEFF
HLA-Cw*0401





(SEQ. ID NO.: 227)



HIV-1
RT
206-214
TEMEKEGKI
H2-Kk





(SEQ. ID NO.: 228)



HIV-1
p17
18-26
KIRLRPGGK
HLA-A*0301





(SEQ. ID NO.: 229)



HIV-1
P17
20-29
RLRPGGKKKY
HLA-A*0301





(SEQ. ID NO.: 230)



HIV-1
RT
325-333
AIFQSSMTK
HLA-A*0301





(SEQ. ID NO.: 231)



HIV-1
p17
84-92
TLYCVHQRI
HLA-A11





(SEQ. ID NO.: 232)



HIV-1
RT
508-517
IYQEPFKNLK
HLA-A11





(SEQ. ID NO.: 233)



HIV-1
p17
28-36
KYKLKHIVW
HLA-A24





(SEQ. ID NO.: 234)



HIV-1
gp120
53-62
LFCASDAKAY
HLA-A24





(SEQ. ID NO.: 235)



HIV-1
gagp24
145-155
QAISPRTLNAW
HLA-A25





(SEQ. ID NO.: 236)



HIV-1
gagp24
167-175
EVIPMFSAL
HLA-A26





(SEQ. ID NO.: 237)



HIV-1
RT
593-603
ETFYVDGAANR
HLA-A26





(SEQ. ID NO.: 238)



HIV-1
gp41
775-785
RLRDLLLIVTR
HLA-A31





(SEQ. ID NO.: 239)



HIV-1
RT
559-568
PIQKETWETW
HLA-A32





(SEQ. ID NO.: 240)



HIV-1
gp120
419-427
RIKQIINMW
HLA-A32





(SEQ. ID NO.: 241)



HIV-1
RT
71-79
ITLWQRPLV
HLA-A*6802





(SEQ. ID NO.: 242)



HIV-1
RT
85-93
DTVLEEMNL
HLA-A*6802





(SEQ. ID NO.: 243)



HIV-1
RT
71-79
ITLWQRPLV
HLA-A*7401





(SEQ. ID NO.: 244)



HIV-1
gag p24
148-156
SPRTLNAWV
HLA-B7





(SEQ. ID NO.: 245)



HIV-1
gagp24
179-187
ATPQDLNTM
HLA-B7





(SEQ. ID NO.: 246)



HIV-1
gp120
303-312
RPNNNTRKSI
HLA-B7





(SEQ. ID NO.: 247)



HIV-1
gp41
843-851
IPRRIRQGL
HLA-B7





(SEQ. ID NO.: 248)



HIV-1
p17
74-82
ELRSLYNTV
HLA-B8





(SEQ. ID NO.: 249)



HIV-1
nef
13-20
WPTVRERM
HLA-B8





(SEQ. ID NO.: 250)



HIV-1
nef
90-97
FLKEKGGL
HLA-B8





(SEQ. ID NO.: 251)



HIV-1
gag p24
183-191
DLNTMLNTV
HLA-B14





(SEQ. ID NO.: 252)



HIV-1
P17
18-27
KIRLRPGGKK
HLA-B27





(SEQ. ID NO.: 253)



HIV-1
p17
19-27
IRLRPGGKK
HLA-B27





(SEQ. ID NO.: 254)



HIV-1
gp41
791-799
GRRGWEALKY
HLA-B27





(SEQ. ID NO.: 255)



HIV-1
nef
73-82
QVPLRPMTYK
HLA-B27





(SEQ. ID NO.: 256)



HIV-1
GP41
590-597
RYLKDQQL
HLA-B27





(SEQ. ID NO.: 257)



HIV-1
nef
105-114
RRQDILDLWI
HLA-B*2705





(SEQ. ID NO.: 258)



HIV-1
nef
134-141
RYPLTFGW
HLA-B*2705





(SEQ. ID NO.: 259)



HIV-1
p17
36-44
WASRELERF
HLA-B35





(SEQ. ID NO.: 260)



HIV-1
GAG P24
262-270
TVLDVGDAY
HLA-B35





(SEQ. ID NO.: 261)



HIV-1
gp120
42-52
VPVWKEATTTL
HLA-B35





(SEQ. ID NO.: 262)



HIV-1
P17
36-44
NSSKVSQNY
HLA-B35





(SEQ. ID NO.: 263)



HIV-1
gag p24
254-262
PPIPVGDIY
HLA-B35





(SEQ. ID NO.: 264)



HIV-1
RT
342-350
HPDIVIYQY
HLA-B35





(SEQ. ID)NO.: 265)



HIV-1
gp41
611-619
TAVPWNASW
HLA-B35





(SEQ. ID NO.: 266)



HIV-1
gag
245-253
NPVPVGN1Y
HLA-B35





(SEQ. ID NO.: 267)



HIV-1
nef
120-128
YFPDWQNYT
HLA-B37





(SEQ. ID NO.: 268)



HIV-1
gag p24
193-201
GHQAAMQML
HLA-B42





(SEQ. ID NO.: 269)



HIV-1
p17
20-29
RLRPGGKKKY
HLA-B42





(SEQ. ID NO.: 270)



HIV-1
RT
438-446
YPGIKVRQL
HLA-B42





(SEQ. ID NO.: 271)



HIV-1
RT
591-600
GAETFYVDGA
HLA-B45





(SEQ. ID NO.: 272)



HIV-1
gag p24
325-333
NANPDCKTI
HLA-B51





(SEQ. ID NO.: 273)



HIV-1
gag p24
275-282
RMYSPTSI
HLA-B52





(SEQ. ID NO.: 274)



HIV-1
gp120
42-51
VPVWKEATTT
HLA-B*5501





(SEQ. ID NO.: 275)



HIV-1
gag p24
147-155
ISPRTLNAW
HLA-B57





(SEQ. ID NO.: 276)



HIV-1
gag p24
240-249
TSTLQEQIGW
HLA-B57





(SEQ. ID NO.: 277)



HIV-1
gag p24
162-172
KAFSPEVIPMF
HLA-B57





(SEQ. ID NO.: 278)



HIV-1
gag p24
311-319
QASQEVKNW
HLA-B57





(SEQ. ID NO.: 279)



HIV-1
gag p24
311-319
QASQDVKNW
HLA-B57





(SEQ. ID NO.: 280)



HIV-1
nef
116-125
HTQGYFPDWQ
HLA-B57





(SEQ. ID NO.: 281)



HIV-1
nef
120-128
YFPDWQNYT
HLA-B57





(SEQ. ID NO.: 282)



HIV-1
gag p24
240-249
TSTLQEQIGW
HLA-B58





(SEQ. ID NO.: 283)



HIV-1
p17
20-29
RLRPGGKKKY
HLA-B62





(SEQ. ID NO.: 284)



HIV-1
p24
268-277
LGLNKJVRMY
HLA-B62





(SEQ. ID NO.: 285)



HIV-1
RT
415-426
LVGKLNWASQIY
HLA-B62





(SEQ. ID NO.: 286)



HIV-1
RT
476-485
ILKEPVHGVY
HLA-B62





(SEQ. ID NO.: 287)



HIV-1
nef
117-127
TQGYFPDWQNY
HLA-B62





(SEQ. ID NO.: 288)



HIV-1
nef
84-91
AVDLSHFL
HLA-B62





(SEQ. ID NO.: 289)



HIV-1
gag p24
168-175
VIPMFSAL
HLA-Cw*0102





(SEQ. ID NO.: 290)



HIV-1
gp120
376-384
FNCGGEFFY
HLA-A29





(SEQ. ID NO.: 291)



HIV-1
gp120
375-383
SFNCGGEFF
HLA-B15





(SEQ. ID NO.: 292)



HIV-1
nef
136-145
PLTFGWCYKL
HLA-A*0201





(SEQ. ID NO.: 293)



HIV-1
nef
180-189
VLEWRFDSRL
HLA-A*0201





(SEQ. ID NO.: 294)



HIV-1
nef
68-77
FPVTPQVPLR
HLA-B7





(SEQ. ID NO.: 295)



HIV-1
nef
128-137
TPGPGVRYPL
HLA-B7





(SEQ. ID NO.: 296)



HIV-1
gag p24
308-316
QASQEVKNW
HLA-Cw*0401





(SEQ. ID NO.: 297)



HIV-1 IIIB
RT
273-282
VPLDEDFRKY
HLA-B35





(SEQ. ID NO.: 298)



HIV-1 IIIB
RT
25-33
NPDIVIYQY
HLA-B35





(SEQ. ID NO.: 299)



HIV-1 IIIB
gp41
557-565
RAIEAQAHL
HLA-B51





(SEQ. ID NO.: 300)



HIV-1 IIIB
RT
231-238
TAFTIPSI
HLA-B51





(SEQ. ID NO.: 301)



HIV-1 IIIB
p24
215-223
VHPVHAGPIA
HLA-B*5501





(SEQ. ID NO.: 302)



HIV-1 IIIB
gp120
156-165
NCSFNISTSI
HLA-Cw8





(SEQ. ID NO.: 303)



HIV-1 IIIB
gp120
241-249
CTNVSTVQC
HLA-Cw8





(SEQ. ID NO.: 304)



HIV-1 5F2
gp120
312-320
IGPGRAFHT
H2-Dd





(SEQ. ID NO.: 305)



HIV-1 5F2
pol
25-33
NPDIVIYQY
HLA-B*3501





(SEQ. ID NO.: 306)



HIV-1 5F2
pol
432-441
EPIVGAETFY
HLA-B*3501





(SEQ. ID NO.: 307)



HIV-1 5F2
pol
432-440
EPIVGAETF
HLA-B*3501





(SEQ. ID NO.: 308)



HIV-1 5F2
pol
 6-14
SPAIFQSSM
HLA-B*3501





(SEQ. ID NO.: 309)



HIV-1 5F2
pol
59-68
VPLDKDFRKY
HLA-B*3501





(SEQ. ID NO.: 310)



HIV-1 5F2
pol
 6-14
IPLTEEAEL
HLA-B*3501





(SEQ. ID NO.: 311)



HIV-1 5F2
nef
69-79
RPQVPLRPMTY
HLA-B*3501





(SEQ. ID NO.: 312)



HIV-1 5F2
nef
66-74
FPVRPQVPL
HLA-B*3501





(SEQ. ID NO.: 313)



HIV-1 5F2
env
10-18
DPNPQEVVL
HLA-B*3501





(SEQ. ID NO.: 314)



HIV-1 5F2
env
 7-15
RPIVSTQLL
HLA-B*3501





(SEQ. ID NO.: 315)



HIV-1 5F2
pol
 6-14
IPLTEEAEL
HLA-B51





(SEQ. ID NO.: 316)



HIV-1 5F2
env
10-18
DPNPQEVVL
HLA-B51





(SEQ. ID NO.: 317)



HIV-1 5F2
gagp24
199-207
AMQMLKETI
H2-Kd





(SEQ. ID NO.: 318)



HIV-2
gagp24
182-190
TPYDrNQML
HLA-B*5301





(SEQ. ID NO.: 319)



HIV-2
gag
260-269
RRWIQLGLQKV
HLA-B*2703





(SEQ. ID NO.: 320)



HIV-1 5F2
gp41
593-607
GIWGCSGKLICTTAV
HLA-B17





(SEQ. ID NO.: 321)



HIV-1 5F2
gp41
753-767
ALIWEDLRSLCLFSY
HLA-B22





(SEQ. ID NO.: 322)



HPV 6b
E7
21-30
GLHCYEQLV
HLA-A*0201





(SEQ. ID NO.: 323)



HPV 6b
E7
47-55
PLKQHFQIV
HLA-A*0201





(SEQ. ID NO.: 324)



HPV11
E7
 4-12
RLVTLKDIV
HLA-A*0201





(SEQ. ID NO.: 325)



HPV16
E7
86-94
TLGIVCPIC
HLA-A*0201





(SEQ. ID NO.: 326)



HPV16
E7
85-93
GTLGIVCPI
HLA-A*0201





(SEQ. ID NO.: 327)



HPV16
E7
12-20
MLDLQPETT
HLA-A*0201





(SEQ. ID NO.: 328)



HPV16
E7
11-20
YMLDLQPETT
HLA-A*0201





(SEQ. ID NO.: 329)



HPV16
E6
15-22
RPRKLPQL
HLA-B7





(SEQ. ID NO.: 330)



HPV16
E6
49-57
RAHYNIVTF
HW-Db





(SEQ. ID NO.: 331)



HSV
gp B
498-505
SSIEFARL
H2-Kb





(SEQ. ID NO.: 332)



HSV-1
gp C
480-488
GIGIGVLAA
HLA-A*0201





(SEQ. ID NO.: 333)



HSV-1
ICP27
448-456
DYATLGVGV
H2-Kd





(SEQ. ID NO.: 334)



HSV-1
ICP27
322-332
LYRTFAGNPRA
H2-Kd





(SEQ. ID NO.: 335)



HSV-1
UL39
822-829
QTFDFGRL
H2-Kb





(SEQ.ID NO.: 336)



HSV-2
gpC
446-454
GAGIGVAVL
HLA-A*0201





(SEQ. ID NO.: 337)



HLTV-1
TAX
11-19
LLFGYPVYV
HLA-A*0201





(SEQ. ID NO.: 338)



Influenza
MP
58-66
GILGFVFTL
HLA-A*0201





(SEQ. ID NO.: 339)



Influenza
MP
59-68
ILGFVFTLTV
HLA-A*0201





(SEQ. ID NO.: 340)



Influenza
NP
265-273
ILRGSVAHK
HLA-A3





(SEQ. ID NO.: 341)



Influenza
NP
91-99
KTGGPIYKR
HLA-A*6801





(SEQ. ID NO.: 342)



Influenza
NP
380-388
ELRSRYWAI
HLA-B8





(SEQ. ID NO.: 343)



Influenza
NP
381-388
LRSRYWAI
HLA-B*2702





(SEQ. ID NO.: 344)



Influenza
NP
339-347
EDLRVLSFI
HLA-B*3701





(SEQ. ID NO.: 345)



Influenza
NSI
158-166
GEISPLPSL
HLA-B44





(SEQ. ID NO.: 346)



Influenza
NP
338-346
FEDLRVLSF
HLA-B44





(SEQ. ID NO.: 347)



Influenza
NSI
158-166
GEISPLPSL
HLA-B*4402





(SEQ. ID NO.: 348)



Influenza
NP
338-346
FEDLRVLSF
HLA-B*4402





(SEQ. ID NO.: 349)



Influenza
PBI
591-599
VSDGGPKLY
HLA-A1





(SEQ. ID NO.: 350)



Influenza A
NP
44-52
CTELKLSDY
HLA-A1





(SEQ. ID NO.: 351)



Influenza
NSI
122-130
AIMDKNIIL
HLA-A*0201





(SEQ. ID NO.: 352)



Influenza A
NSI
123-132
IMDKNIILKA
HLA-A*0201





(SEQ. ID NO.: 353)



Influenza A
NP
383-391
SRYWAIRTR
HLA-B*2705





(SEQ. ID NO.: 354)



Influenza A
NP
147-155
TYQRTRALV
H2-Kd





(SEQ. ID NO.: 355)



Influenza A
HA
210-219
TYVSVSTSTL
H2-Kd





(SEQ. ID NO.: 356)



Influenza A
HA
518-526
IYSTVASSL
H2-Kd





(SEQ. ID NO.: 357)



Influenza A
HA
259-266
FEANGNLI
H2-Kk





(SEQ. ID NO.: 358)



Influenza A
HA
10-18
IEGGWTGM1
H2-Kk





(SEQ. ID NO.: 359)



Influenza A
NP
50-57
SDYEGRLI
H2-Kk





(SEQ. ID NO.: 360)



Influenza a
NSI
152-160
EEGAIVGEI
H2-Kk





(SEQ. ID NO.: 361)



Influenza A34
NP
336-374
ASNENMETM
H2Db





(SEQ. ID NO.: 362)



Influenza A68
NP
366-374
ASNENMDAM
H2Db





(SEQ. ID NO.: 363)



Influenza B
NP
85-94
KLGEFYNQMM
HLA-A*0201





(SEQ. ID NO.: 364)



Influenza B
NP
85-94
KAGEFYNQMM
HLA-A*0201





(SEQ. ID NO.: 365)



Influenza JAP
HA
204-212
LYQNVGTYV
H2Kd





(SEQ. ID NO.: 366)



Influenza JAP
HA
210-219
TYVSVGTSTL
H2-Kd





(SEQ. ID NO.: 367)



Influenza JAP
HA
523-531
VYQILATYA
H2-Kd





(SEQ. ID NO.: 368)



Influenza JAP
HA
529-537
IYATVAGSL
H2-Kd





(SEQ. ID NO.: 369)



Influenza JAP
HA
210-219
TYVSVGTSTI(L>I)
H2-Kd





(SEQ. ID NO.: 370)



Influenza JAP
HA
255-262
FESTGNLI
H2-Kk





(SEQ. ID NO.: 371)



JHMV
cAg
318-326
APTAGAFFF
H2-Ld





(SEQ. ID NO.: 372)



LCMV
NP
118-126
RPQASGVYM
H2-Ld





(SEQ. ID NO.: 373)



LCMV
NP
396-404
FQPQNGQFI
H2-Db





(SEQ. ID NO.: 374)



LCMV
GP
276-286
SGVENPGGYCL
H2-Db





(SEQ. ID NO.: 375)



LCMV
GP
33-42
KAVYNFATCG
H2-Db





(SEQ. ID NO.: 376)



MCMV
pp89
168-176
YPHFMPTNL
H2-Ld





(SEQ. ID NO.: 377)



MHV
spike
510-518
CLSWNGPHL
H2-Db



protein

(SEQ. ID NO.: 378)



MMTV
env gp 36
474-482
SFAVATTAL
H2-Kd





(SEQ. ID NO.: 379)



MMTV
gag p27
425-433
SYETFISRL
H2-Kd





(SEQ. ID NO.: 380)



MMTV
env gp73
544-551
ANYDFICV
H2-Kb





(SEQ. ID NO.: 381)



MuLV
env p15E
574-581
KSPWFTTL
H2-Kb





(SEQ. ID NO.: 382)



MuLV
env gp70
189-196
SSWDFITV
H2-Kb





(SEQ. ID NO.: 383)



MuLV
gag 75K
75-83
CCLCLTVFL
H2-Db





(SEQ. ID NO.: 384)



MuLV
env gp70
423-431
SPSYVYHQF
H2Ld





(SEQ. ID NO.: 385)



MV
F protein
437-447
SRRYPDAVYLH
HLA-B*2705





(SEQ. ID NO.: 386)



Mv
F protein
438-446
RRYPDAVYL
HLA-B*2705





(SEQ. ID NO.: 387)



Mv
NP
281-289
YPALGLHEF
H2-Ld





(SEQ. ID NO.: 388)



Mv
HA
343-351
DPVIDRLYL
H2-Ld





(SEQ. ID NO.: 389)



MV
HA
544-552
SPGRSFSYF
H2-Ld





(SEQ. ID NO.: 390)



Poliovirus
VP1
111-118
TYKDTVQL
H2-kd





(SEQ. ID NO.: 391)



Poliovirus
VP1
208-217
FYDGFSKVPL
H2-Kd





(SEQ. ID NO.: 392)



Pseudorabies
G111
455-463
IAGIGILAI
HLA-A*0201


virus gp


(SEQ. ID NO.: 393)



Rabiesvirus
NS
197-205
VEAEIAHQI
H2-Kk





(SEQ. ID NO.: 394)



Rotavirus
VP7
33-40
11YRFLL1
H2-Kb





(SEQ. ID NO.: 395)



Rotavirus
VP6
376-384
VGPVFPPGM
H2-Kb





(SEQ. ID NO.: 396)



Rotavirus
VP3
585-593
YSGYIFRDL
H2-Kb





(SEQ. ID NO.: 397)



RSV
M2
82-90
SYIGSINNI
H2-Kd





(SEQ. ID NO.: 398)



SIV
gagp11C
179-190
EGCTPYDTNQML
Mamu-A*01





(SEQ. ID NO.: 399)



SV
NP
324-332
FAPGNYPAL
H2-Db





(SEQ. ID NO.: 400)



SV
NP
324-332
FAPCTNYPAL
H2-Kb





(SEQ. ID NO.: 401)



SV40
T
404-411
VVYDFLKC
H2-Kb





(SEQ. ID NO.: 402)



SV40
T
206-215
SAINNYAQKL
H2-Db





(SEQ. ID NO.: 403)



SV40
T
223-231
CKGVNKEYL
H2-Db





(SEQ. ID NO.: 404)



SV40
T
489-497
QGINNLDNL
H2-Db





(SEQ. ID NO.: 405)



SV40
T
492-500
NNLDNLRDY(L)
H2-Db




(501)
(SEQ. ID NO.: 406)



SV40
T
560-568
SEFLLEKRI
H2-Kk





(SEQ. ID NO.: 407)



VSV
NP
52-59
RGYVYQGL
H2-Kb





(SEQ. ID NO.: 408)


















TABLE 2





HLA-A1
Position (Antigen)
Source







T cell
EADPTGHSY
MAGE-1 161-169


epitopes





(SEQ. ID NO.: 409)




VSDGGPNLY
Influenza A PB 1591-599



(SEQ. ID NO.: 410)




CTELKLSDY
Influenza A NP 44-52



(SEQ. ID NO.: 411)




EVDPIGHLY
MAGE-3 168-176



(SEQ. ID NO.: 412)



HLA-A201
MLLSVPLLLG
Calreticulin signal



(SEQ. ID NO.: 413)
sequence I-10



STBXQSGXQ
HBV PRE-S PROTEIN 141-149



(SEQ. ID NO.: 414)




YMDGTMSQV
Tyrosinase 369-377



(SEQ. ID NO.: 415)




ILKEPVHGV
HIV-I RT 476-484



(SEQ. ID NO.: 416)




LLGFVFTLTV
Influenza MP 59-68



(SEQ. ID NO.: 417)




LLFGYPVYVV
HTLV-1 tax 11-19



(SEQ. ID NO.: 418)




GLSPTVWLSV
HBV sAg 348-357



(SEQ. ID NO.: 419)




WLSLLVPFV
HBV sAg 335-343



(SEQ. ID NO.: 420)




FLPSDFFPSV
HBV cAg 18-27



(SEQ. ID NO.: 421)




CLGOLLTMV
EBV LMP-2 426-434



(SEQ. ID NO.: 422)




FLAGNSAYEYV
HCMV gp 618-628B



(SEQ. ID NO.: 423)




KLGEFYNQMM
Influenza BNP 85-94



(SEQ. ID NO.: 424)




KLVALGINAV
HCV-1 NS3 400-409



(SEQ. ID NO.: 425)




DLMGYIPLV
HCV MP 17-25



(SEQ. ID NO.: 426)




RLVTLKDIV
HPV 11 EZ 4-12



(SEQ. ID NO.: 427)




MLLAVLYCL
Tyrosinase 1-9



(SEQ. ID NO.: 428)




AAGIGILTV
Melan A\Mart-127-35



(SEQ. ID NO.: 429)




YLEPGPVTA
Pmel 17/gp 100 480-488



(SEQ. ID NO.: 430)




ILDGTATLRL
Pmel 17/gp 100 457-466



(SEQ. ID NO.: 431)




LLDGTATLRL
Pmel gplOO 457-466



(SEQ. ID NO.: 432)




ITDQVPFSV
Pmel gp 100 209-217



(SEQ. ID NO.: 433)




KTWGQYWQV
Pmel gp 100 154-162



(SEQ. ID NO.: 434)




TITDQVPFSV
Pmel gp 100 208-217



(SEQ. ID NO.: 435)




AFHIIVAREL
HIV-I nef 190-198



(SEQ. ID NO.: 436)




YLNKIQNSL

P. falciparum CSP 334-342




(SEQ. ID NO.: 437)




MMRKLAELSV

P. falciparum CSP 1-10




(SEQ. ID NO.: 438)




KAGEFYNQMM
Influenza BNP 85-94



(SEQ. ID NO.: 439)




NIAEGLRAL
EBNA-1 480-488



(SEQ. ID NO.: 440)




NLRRGTALA
EBNA-1 519-527



(SEQ. ID NO.: 441)




ALAIPQCRL
EBNA-1 525-533



(SEQ. ID NO.: 442)




VLKDAIKDL
EBNA-1 575-582



(SEQ. ID NO.: 443)




FMVFLQTHI
EBNA-1 562-570



(SEQ. ID NO.: 444)




HLIVDTDSL
EBNA-2 15-23



(SEQ. ID NO.: 445)




SLGNPSLSV
EBNA-2 22-30



(SEQ. ID NO.: 446)




PLASAMRML
EBNA-2 126-134



(SEQ. ID NO.: 447)




RMLWMANYI
EBNA-2 132-140



(SEQ. ID NO.: 448)




MLWMANYIV
EBNA-2 133-141



(SEQ. ID NO.: 449)




ILPQGPQTA
EBNA-2 151-159



(SEQ. ID NO.: 450)




PLRPTAPTTI
EBNA-2 171-179



(SEQ. ID NO.: 451)




PLPPATLTV
EBNA-2 205-213



(SEQ. ID NO.: 452)




RMHLPVLHV
EBNA-2 246-254



(SEQ. ID NO.: 453)




PMPLPPSQL
EBNA-2 287-295



(SEQ. ID NO.: 454)




QLPPPAAPA
EBNA-2 294-302



(SEQ. ID NO.: 455)




SMPELSPVL
EBNA-2 381-389



(SEQ. ID NO.: 456)




DLDESWDY1
EBNA-2 453-461



(SEQ. ID NO.: 457)




PLPCVLWPVV
BZLF1 43-51



(SEQ. ID NO.: 458)




SLEECDSEL
BZLF1 167-175



(SEQ. ID NO.: 459)




EIKRYKNRV
BZLF1 176-184



(SEQ. ID NO.: 460)




QLLQFIYREV
BZLF1 195-203



(SEQ. ID NO.: 461)




LLQHYREVA
BZLFI 196-204



(SEQ. ID NO.: 462)




LLKQMCPSL
BZLFI 217-225



(SEQ. ID NO.: 463)




SIIPRTPDV
BZLFI 229-237



(SEQ. ID NO.: 464)




AIMDKNIIL
Influenza A NSI 122-130



(SEQ. ID NO.: 465)




IMDKNIILKA
Influenza A NSI 123-132



(SEQ. ID NO.: 466)




LLALLSCLTV
HCV MP 63-72



(SEQ. ID NO.: 467)




ILHTPGCV
HCV MP 105-112



(SEQ. ID NO.: 468)




QLRRHIDLLV
HCV env E 66-75



(SEQ. ID NO.: 469)




DLCGSVFLV
HCV env E 88-96



(SEQ. ID NO.: 470)




SMVGNWAKV
HCV env E 172-180



(SEQ. ID NO.: 471)




HLHQNIVDV
HCV NSI 308-316



(SEQ. ID NO.: 472)




FLLLADARV
HCV NSI 340-348



(SEQ. ID NO.: 473)




GLRDLAVAVEPVV
HCV NS2 234-246



(SEQ. ID NO.: 474)




SLLAPGAKQNV
HCV NS1 18-28



(SEQ. ID NO.: 475)




LLAPGAKQNV
HCV NS1 19-28



(SEQ. ID NO.: 476)




FLLSLGIHL
HBV pol 575-583



(SEQ. ID NO.: 477)




SLYADSPSV
HBV pol 816-824



(SEQ. ID NO.: 478)




GLSRYVARL
HBV POL 455-463



(SEQ. ID NO.: 479)




KIFGSLAFL
HER-2 369-377



(SEQ. ID NO.: 480)




ELVSEFSRM
HER-2 971-979



(SEQ. ID NO.: 481)




KLTPLCVTL
HIV-I gp 160 120-128



(SEQ. ID NO.: 482)




SLLNATDIAV
HIV-I GP 160 814-823



(SEQ. ID NO.: 483)




VLYRYGSFSV
Pmel gp100 476-485



(SEQ. ID NO.: 484)




YIGEVLVSV
Non-filament forming



(SEQ. ID NO.: 485)
class I myosin




family (HA-2)**



LLFNILGGWV
HCV NS4 192-201



(SEQ. ID NO.: 486)




LLVPFVQWFW
HBV env 338-347



(SEQ. ID NO.: 487)




ALMPLYACI
HBV pol 642-650



(SEQ. ID NO.: 488)




YLVAYQATV
HCV NS3 579-587



(SEQ. ID NO.: 489)




TLGIVCPIC
HIPV 16 E7 86-94



(SEQ. ID NO.: 490)




YLLPRRGPRL
HCV core protein 34-43



(SEQ. ID NO.: 491)




LLPIFFCLWV
HBV env 378-387



(SEQ. ID NO.: 492)




YMDDVVLGA
HBV Pol 538-546



(SEQ. ID NO.: 493)




GTLGIVCPI
HPV16 E7 85-93



(SEQ. ID NO.: 494)




LLALLSCLTI
HCV MP 63-72



(SEQ. ID NO.: 495)




MLDLQPETT
HPV 16 E7 12-20



(SEQ. ID NO.: 496)




SLMAFTAAV
HCV NS4 174-182



(SEQ. ID NO.: 497)




CINGVCWTV
HCV NS3 67-75



(SEQ. ID NO.: 498)




VMNILLQYVV
Glutarnic acid decarboxylase



(SEQ. ID NO.: 499)
114-123



ILTVILGVL
Melan A/Mart- 32-40



(SEQ. ID NO.: 500)




FLWGPRALV
MAGE-3 271-279



(SEQ. ID NO.: 501)




LLCPAGHAV
HCV NS3 163-171



(SEQ. ID NO.: 502)




ILDSFDPLV
HCV NSS 239-247



(SEQ. ID NO.: 503)




LLLCLIFLL
HBV env 250-258



(SEQ. ID NO.: 504)




LIDYQGMLPV
HBV env 260-269



(SEQ. ID NO.: 505)




SIVSPFIPLL
HBV env 370-379



(SEQ. ID NO.: 506)




FLLTRILTI
HBV env 183-191



(SEQ. ID NO.: 507)




HLGNVKYLV

P. faciparum TRAP 3-11




(SEQ. ID NO.: 508)




GIAGGLALL

P. faciparum TRAP 500-508




(SEQ. ID NO.: 509)




ILAGYGAGV
HCV NS S4A 236-244



(SEQ. ID NO.: 510)




GLQDCTMLV
HCV NS5 714-722



(SEQ. ID NO.: 511)




TGAPVTYSTY
HCV NS3 281-290



(SEQ. ID NO.: 512)




VIYQYMDDLV
HIV-1RT 179-187



(SEQ. ID NO.: 513)




VLPDVFIRCV
N-acetylglucosaminyl-



(SEQ. ID NO.: 514)
transferase V Gnt-V intron



VLPDVFIRC
N-acetylglucosaminyl-



(SEQ. ID NO.: 515)
transferase V Gnt-V intron



AVGIGIAVV
Human CD9



(SEQ. ID NO.: 516)




LVVLGLLAV
Human glutamyltransferase



(SEQ. ID NO.: 517)




ALGLGLLPV
Human G protein



(SEQ. ID NO.: 5 18)
coupled receptor



164-172




GIGIGVLAA
HSV-I gp C 480-488



(SEQ. ID NO.: 519)




GAGIGVAVL
HSV-2 gp C 446-454



(SEQ. ID NO.: 520)




IAGIGILAI
Pseudorabies gpGIN



(SEQ. ID NO.: 521)
455-463



LIVIGILIL
Adenovirus 3 E3



(SEQ. ID NO.: 522)
9 kD 30-38



LAGIGLIAA

S. Lincolnensis ImrA




(SEQ. ID NO.: 523)




VDGIGILTI
Yeast ysa-1 77-85



(SEQ. ID NO.: 524)




GAGIGVLTA

B. polymyxa,




(SEQ. ID NO.: 525)
βendoxylanase



157
149-157



AAGIGHQI

E. colimethionine




(SEQ. ID NO.: 526)
synthase 590-598



QAGIGILLA

E. colihypothetical




(SEQ. ID NO.: 527)
protein 4-12



KARDPHSGHFV
CDK4wl 22-32



(SEQ. ID NO.: 528)




KACDPI-ISGIIFV
CDK4-R24C 22-32



(SEQ. ID NO.: 529)




ACDPFISGHFV
CDK4-R24C 23-32



(SEQ. ID NO.: 530)




SLYNTVATL
HIV-I gag p17 77-85



(SEQ. ID NO.: 531)




ELVSEFSRV
HER-2, m > V



(SEQ. ID NO.: 532)
substituted 971-979



RGPGRAFVTI
HIV-I gp 160 315-329



(SEQ. ID NO.: 533)




HMWNFISGI
HCV NS4A 149-157



(SEQ. ID NO.: 534)




NLVPMVATVQ
HCMV pp65 495-504



(SEQ. ID NO.: 535)




GLHCYEQLV
HPV 6b E7 21-30



(SEQ. ID NO.: 536)




PLKQHFQIV
HPV 6b E7 47-55



(SEQ. ID NO.: 537)




LLDFVRFMGV
EBNA-6 284-293



(SEQ. ID NO.: 538)




AIMEKNIML
Influenza Alaska



(SEQ. ID NO.: 539)
NS 1 122-130



YLKTIQNSL

P. falciparum cp36 CSP




(SEQ. ID NO.: 540)




YLNKIQNSL

P. falciparum cp39 CSP




(SEQ. ID NO.: 541)




YMLDLQPETT
HPV 16 E7 11-20*



(SEQ. ID NO.: 542)




LLMGTLGIV
HPV16 E7 82-90**



(SEQ. ID NO.: 543)




TLGIVCPI
HPV 16 E7 86-93



(SEQ. ID NO.: 544)




TLTSCNTSV
HIV-1 gp120 197-205



(SEQ. ID NO.: 545)




KLPQLCTEL
HPV 16 E6 18-26



(SEQ. ID NO.: 546)




TIHDIILEC
HPV 16 E6 29-37



(SEQ. ID NO.: 547)




LGIVCPICS
HPV16 E7 87-95



(SEQ. ID NO.: 548)




VILGVLLLI
Melan A/Mart-1 35-43



(SEQ. ID NO.: 549)




ALMDKSLHV
Melan A/Mart-1 56-64



(SEQ. ID NO.: 550)




GILTVILGV
Melan A/Mart-1 31-39



(SEQ. ID NO.: 551)



T cell
MINAYLDKL

P. Falciparum



epitopes
(SEQ. ID NO.: 552)
STARP 523-531



AAGIGILTV
Melan A/Mart- 127-35



(SEQ. ID NO.: 553)




FLPSDFFPSV
HBV cAg 18-27



(SEQ. ID NO.: 554)



Motif
SVRDRLARL
EBNA-3 464-472


unknown
(SEQ. ID NO.: 555)



T cell




epitopes




T cell
AAGIGILTV
Melan A/Mart-1 27-35


epitopes
(SEQ. ID NO.: 556)




FAYDGKDYI
Human MHC I-ot 140-148



(SEQ. ID NO.: 557)



T cell
AAGIGILTV
Melan A/Mart-1 27-35


epitopes
(SEQ. ID NO.: 558)




FLPSDFFPSV
HBV cAg 18-27



(SEQ. ID NO.: 559)



Motif
AAGIGILTV
Meland A/Mart-1 27-35


unknown
(SEQ. ID NO.: 560)



T cell




epitopes





FLPSDFFPSV
HBV cAg 18-27



(SEQ. ID NO.: 561)




AAGIGILTV
Melan A/Mart-1 27-35



(SEQ. ID NO.: 562)




ALLAVGATK
Pme117 gp 100 17-25



(SEQ. ID NO.: 563)



T cell
RLRDLLLIVTR
HIV-1 gp41 768-778


epitopes
(SEQ. ID NO.: 564)




QVPLRPMTYK
HIV-1 nef 73-82



(SEQ. ID NO.: 565)




TVYYGVPVWK
HIV-1 gp120-36-45



(SEQ. ID NO.: 566)




RLRPGGKKK
HIV-1 gag p 17 20-29



(SEQ. ID NO.: 567)




ILRGSVAHK
Influenza NP 265-273



(SEQ. ID NO.: 568)




RLRAEAGVK
EBNA-3 603-611



(SEQ. ID NO.: 569)




RLRDLLLIVTR
HIV-1 gp41 770-780



(SEQ. ID NO.: 570)




VYYGVPVWK
HIV-I GP 120 38-46



(SEQ. ID NO.: 571)




RVCEKMALY
HCV NS5 575-583



(SEQ. ID NO.: 572)



Motif
KIFSEVTLK
Unknown; muta melanoma


unknown
(SEQ. ID NO.: 573)
peptide ted (p I 83L)


T cell

175-183


epitope





YVNVNMGLK*
HBV cAg 88-96



(SEQ. ID NO.: 574)



T cell
IVTDFSVIK
EBNA-4 416-424


epitopes
(SEQ. ID NO.: 575)




ELNEALELK
P53 343-351



(SEQ. ID NO.: 576)




VPLRPMTYK
HIV-1 NEF 74-82



(SEQ. ID NO.: 577)




AIFQSSMTK
HIV-I gag p24 325-333



(SEQ. ID NO.: 578)




QVPLRPMTYK
HIV-1 nef 73-82



(SEQ. ID NO.: 579)




TINYTIFK HCV
NSI 238-246



(SEQ. ID NO.: 580)




AAVDLSHFLKEK
HIV-1 nef 83-94



(SEQ. ID NO.: 581)




ACQGVGGPGGHK
HIV-1 II 1B p24 349-359



(SEQ. ID NO.: 582)



HLA-A24
SYLDSGIHF*
β-catenin, mutated



(SEQ. ID NO.: 583)
(proto-onocogen)




29-37


T cell
RYLKDQQLL
HIV GP 41 583-591


epitopes
(SEQ. ID NO.: 584)




AYGLDFYIL
P15 melanoma Ag 10-18



(SEQ. ID NO.: 585)




AFLPWHRLFL
Tyrosinase 206-215



(SEQ. ID NO.: 586)




AFLPWHRLF
Tyrosinase 206-214



(SEQ. ID NO.: 587)




RYSIFFDY
Ebna-3 246-253



(SEQ. ID NO.: 588)



T cell
ETINEEAAEW
HIV-1 gag p24 203-212


epitope
(SEQ. ID NO.: 589)



T cell
STLPETTVVRR
HBV cAg 141-151


epitopes
(SEQ. ID NO.: 590)




MSLQRQFLR
ORF 3P-gp75



(SEQ. ID NO.: 591)
294-321 (bp)



LLPGGRPYR
TRP (tyrosinase rel.)



(SEQ. ID NO.: 592)
197-205


T cell
IVGLNKIVR
HIV gag p24


epitope
(SEQ. ID NO.: 593)
267-267-275



AAGIGILTV
Melan A/Mart-127 35



(SEQ. ID NO.: 594)









Table 3 sets forth additional antigens useful in the invention that are available from the Ludwig Cancer Institute. The Table refers to patents in which the identified antigens can be found and as such are incorporated herein by reference. TRA refers to the tumor-related antigen and the LUD No. refers to the Ludwig Institute number.














TABLE 3






LUD

Date Patent
Peptide



TRA
No.
Patent No.
Issued
(Antigen)
HLA







MAGE-4
5293
5,405,940
11 Apr. 1995
EVDPASNTY
HLA-A1






(SEQ. ID NO.: 979)



MAGE-41
5293
5,405,940
11 Apr. 1995
EVDPTSNTY
HLA-A I






(SEQ ID NO: 595)



MAGE-5
5293
5,405,940
11 Apr. 1995
EADPTSNTY
HLA-A I






(SEQ ID NO: 596)



MAGE-51
5293
5,405,940
11 Apr. 1995
EADPTSNTY
HLA-A I






(SEQ ID NO: 597)



MAGE-6
5294
5,405,940
11 Apr. 1995
EVDPIGHVY
HLA-A1






(SEQ ID NO: 598)




5299.2
5,487,974
30 Jan. 1996
MLLAVLYCLL
HLA-A2






(SEQ ID NO: 599)




5360
5,530,096
25 Jun. 1996
MLLAVLYCL
HLA-B44






(SEQ ID NO: 600)



Tyrosinase
5360.1
5,519,117
21 May 1996
SEIWRDIDFA
HLA-B44






(SEQ ID NO: 601)







SEIWRDIDF







(SEQ ID NO: 602)



Tyrosinase
5431
5,774,316
28 Apr. 1998
XEIWRDIDF
HLA-B44






(SEQ ID NO: 603)



MAGE-2
5340
5,554,724
10 Sep. 1996
STLVEVTLGEV
HLA-A2






(SEQ ID NO: 604)







LVEVTLGEV







(SEQ ID NO: 605)







VIFSKASEYL







(SEQ ID NO: 606)







IIVLAIIAI







(SEQ ID NO: 607)







KIWEELSMLEV







(SEQ ID NO: 608)







LIETSYVKV







(SEQ ID NO: 609)




5327
5,585,461
17 Dec. 1996
FLWGPRALV
HLA-A2






(SEQ ID NO: 610)







TLVEVTLGEV







(SEQ ID NO: 611)







ALVETSYVKV







(SEQ ID NO: 612)



MAGE-3
5344
5,554,506
10 Sep. 1996
KIWEELSVL
HLA-A2






(SEQ ID NO: 613)



MAGE-3
5393
5,405,940
11 Apr. 1995
EVDPIGHLY
HLA-A1






(SEQ ID NO: 614)



MAGE
5293
5,405,940
11 Apr. 1995
EXDX5Y
HLA-A1






(SEQ. ID NO.: 615)







(but not EADPTGHSY)







(SEQ. ID NO.: 616)







E (A/V) D X5 Y







(SEQ. ID NO.: 617)







E (A/V) D P X4 Y







(SEQ. ID NO.: 618)







E (A/V) D P (I/A/T)







X3 Y







(SEQ. ID NO.: 619)







E (A/V) D P (I/A/T)







(G/S) X2 Y







(SEQ. ID NO.: 620)







E (A/V) D P (I/A/T)







(G/S) (H/N) X Y







(SEQ. ID NO.: 621)







E (A/V) DP (I/A/T)







(G/S) (H/N)







(L/T/V) Y







(SEQ. ID NO.: 622)



MAGE-1
5361
5,558,995
24 Sep. 1996
ELHSAYGEPRKLLTQD
HLA-C






(SEQ ID NO: 623)
Clone 10






EHSAYGEPRKLL







(SEQ ID NO: 624)







SAYGEPRKL







(SEQ ID NO: 625)



MAGE-1
5253.4
TBA
TBA
EADPTGHSY
HLA-A I






(SEQ ID NO: 626)



BAGE
5310.1
TBA
TBA
MAARAVFLALSAQLLQARLMKE
HLA-C






(SEQ ID NO: 627)
Clone 10






MAARAVFLALSAQLLQ
HLA-C






(SEQ ID NO: 628)
Clone 10






AARAVFLAL
HLA-C






(SEQ ID NO: 629)
Clone 10


GAGE
5323.2
5,648,226
15 Jul. 1997
YRPRPRRY
HLA-CW6






(SEQ. ID NO.: 630)






















TABLE 4










SEQ.





AA
MHC
T cell epitope MHC
ID



Source
Protein
Position
molecules
ligand (Antigen)
NO.:
Ref.







synthetic
synthetic
synthetic
HLA-A2
ALFAAAAAV
631
Parker, et al., “Scheme for ranking


peptides
peptides
peptides



potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GIFGGVGGV
632
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLDKGGGV
633
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGFGGV
634
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGAGV
635
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGEGV
636
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGFGV
637
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGGGL
638
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGGGV
639
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGVGV
640
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGVGGV
641
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGVGKV
642
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFKGVGGV
643
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLGGGGFGV
644
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLLGGGVGV
645
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLYGGGGGV
646
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GMFGGGGGV
647
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GMFGGVGGV
648
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GQFGGVGGV
649
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GVFGGVGGV
650
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






KLFGGGGGV
651
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






KLFGGVGGV
652
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






AILGFVFTL
653
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GAIGFVFTL
654
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GALGFVFTL
655
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GELGFVFTL
656
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GIAGFVFTL
657
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GIEGFVFTL
658
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILAFVFTL
659
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGAVFTL
660
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGEVFTL
661
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILFGAFTL
662
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGFEFTL
663
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGFKFTL
664
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGFVATL
665
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGFVETL
666
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGFVFAL
667
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGFVFEL
668
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGFVFKL
669
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGFVFTA
670
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGFVFTL
671
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGFVFVL
672
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGFVKTL
673
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILGKVFTL
674
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILKFVFTL
675
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GILPFVFTL
676
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GIVGFVFTL
677
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GKLGFVFTL
678
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLLGFVFTL
679
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GQLGFVFTL
680
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






KALGFVFTL
681
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






KILGFVFTL
682
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






KILGKVFTL
683
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






AILLGVFML
684
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






AIYKRWIIL
685
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






ALFFFDIDL
686
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






ATVELLSEL
687
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






CLFGYPVYV
688
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






FIFPNYTIV
689
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






IISLWDSQL
690
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






ILASLFAAV
691
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






ILESLFAAV
692
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






KLGEFFNQM
693
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






KLGEFYNQM
694
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






LLFGYPVYV
695
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






LLWKGEGAV
696
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






LMFGYPVYV
697
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






LNFGYPVYV
698
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






LQFGYPVYV
699
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






NIVAHTFKV
700
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






NLPMVATV
701
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






QMLLAIARL
702
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






QMWQARLTV
703
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






RLLQTGIHV
704
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






RLVNGSLAL
705
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






SLYNTVATL
706
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






TLNAWVKVV
707
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






WLYRETCNL
708
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






YLFKRMIDL
709
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GAFGGVGGV
710
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GAFGGVGGY
711
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GEFGGVGGV
712
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GGFGGVGGV
713
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GIFGGGGGV
714
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GIGGFGGGL
715
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GIGGGGGGL
716
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLDGGGGGV
717
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLDGKGGGV
718
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLDKKGGGV
719
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGFGF
720
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGFGG
721
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGFGN
722
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGFGS
723
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGGGI
724
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGGGM
725
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGGGT
726
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGGGY
727
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLGFGGGGV
728
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLGGFGGGV
729
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLGGGFGGV
730
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLGGGGGFV
731
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLGGGGGGY
732
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLGGGVGGV
733
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLLGGGGGV
734
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLPGGGGGV
735
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GNFGGVGGV
736
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GSFGGVGGV
737
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GTFGGVGGV
738
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






AGNSAYEYV
739
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFPGQFAY
740
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






HILLGVFML
741
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






ILESLFRAV
742
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






KKKYKLKHI
743
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






MLASIDLKY
744
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






MLERELVRK
745
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






KLFGFVFTV
746
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






ILDKKVEKV
747
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






ILKEPVHGV
748
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






ALFAAAAAY
749
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GIGFGGGGL
750
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GKFGGVGGV
751
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GLFGGGGGK
752
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






EILGFVFTL
753
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GIKGFVFTL
754
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






GQLGFVFTK
755
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






ILGFVFTLT
756
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






KILGFVFTK
757
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






KKLGFVFTL
758
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






KLFEKVYNY
759
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175






LRFGYPVYV
760
Parker, et al., “Scheme for ranking








potential HLA-A2 binding peptides based








on independent binding of individual peptide








side-chains,” J. Immunol. 152:163-175


Human
HSP60
140-148
HLA-B27
IRRGVMLAV
761
Rammensee et al. 1997








160




369-377

KRIQEIIEQ
762
Rammensee et al. 1997








160




469-477

KRTLKIPAM
763
Rammensee et al. 1997








160


Yersinia
HSP60
35-43

GRNVVLDKS
764
Rammensee et al. 1997








160




117-125

KRGIDKAVI
765
Rammensee et al. 1997








160




420-428

IRAASAITA
766
Rammensee et al. 1997








160



HSP60
284-292
HLA-
RRKAMFEDI
767
169





B*2705






P. falciparum

LSA-1
1850-  
HLA-
KPKDELDY
768
170




1857
B3501





Influenza

379-387
HLA-
LELRSRYWA
769
183


NP


B*4402






Tum-P35B
 4-13
HLA-Dd
GPPHSNNFGY
770
230


Rotavirus
VP7
33-40

IIYRFLLI
771
262



OGDH
104-112
H2-Ld
QLSPYPFDL
772
253



(F108Y)








TRP-2
181-188
p287
VYDFFVWL
773
284



DEAD box
547-554
p287
SNFVFAGI
774
283



p 68








Vector

p287
SVVEFSSL
775
260



“artefact”








Epiope

p287
AHYLFRNL
776
278



mimic of








tumor Ag








Epitope


THYLFRNL
777




mimic of








H-3








Epitope


LIVIYNTL
778
279



mimic of








H-3








miHAg″











LIYEFNTL
779







IPYIYNTL
780







IIYIYHRL
781







LIYIFNTL
782




HBV cAg
 93-100

MGLKFRQL
783
280


Human
autoantigen
51-58

IMIKFRNRL
784
281



LA







Mouse
UTY

H2Db
WMHHNMDLI
785
303



protein







Mouse
p53
232-240

KYMCNSSCM
786
302


MURINE
MDM2
441-449

GRPKNGCIV
787
277



Epitope


AQHPNAELL
788
278



mimic of








natural








MuLV
75-83

CCLCLTVFL
789
301



gag75K








P. falciparum

CSP
375-383
p290
YENDIEKK
790
315




371-379

DELDYENDI
791
315


HIV
−1RT
206-214

TEMEKEGKI
792
316


Rabies
NS
197-205

VEAEIAHQI
793
309, 310


Influenza A
NS1
152-160

EEGAIVGEI
794
304


Murine
SMCY

p291
TENSGKDI
795
317



MHC class
 3-11
p293
AMAPRTLLL
796
318



1 leader








ND1 alpha
 1-12
p293
FFINILTLLVP
797
323



ND Beta
 1-12
p293
FFINILTLLVP
798
323



ND alpha
 1-17

FFINILTLLVPILIAM
799
324



ND Beta
 1-17

FFINALTLLVPILIAM
800




COI
1-6

FINRW
801
325



mitochondrial








L.

LemA
1-6

IGWII
802
326



monocytogenes










SIV gag
179-190
Mamu-
EGCTPYDINQML
803
334



p11C

A*01






MAGE-3

HLA-A2
ALSRKVAEL
804
5,554,506






IMPKAGLLI
805







KIWEELSVL
806







ALVETSYVKV
807







Thr Leu Val Glu Val
808







Thr Leu Gly Glu Val








Ala Leu Ser Arg Lys
809







Val Ala Glu Leu








Ile Met Pro Lys Ala
810







Gly Leu Leu Ile








Lys Ile Trp Glu Glu
811







Leu Ser Val Leu








Ala Leu Val Glu Thr
812







Ser Tyr Val Lys Val





peptides

HLA-A2
Lys Gly Ile Leu Gly
813
5,989,565



which bind


Phe Val Phe Thr Leu





to MHCs


Thr Val








Gly Ile Ile Gly Phe
814







Val Phe Thr Ile








Gly Ile Ile Gly Phe
815







Val Phe Thr Leu








Gly Ile Leu Gly Phe
816







Val Phe Thr Leu








Gly Leu Leu Gly Phe
817







Val Phe Thr Leu








XXTVXXGVX, X =
818







Leu or Ile (6-37)








Ile Leu Thr Val Ile
819







Leu Gly Val Leu








Tyr Leu Glu Pro Gly
820







Pro Val Thr Ala








Gln Val Pro Leu Arg
821







Pro Met Thr Tyr Lys








Asp Gly Leu Ala Pro
822







Pro Gln His Leu Ile








Arg








Leu Leu Gly Arg Asn
823







Ser Phe Glu Val





Peptides

HLA-C
Glu His Ser Ala Tyr
824
5,558,995



from

clone 10
Gly Glu Pro Arg Lys





MAGE-1


Leu Leu Thr Gln Asp








Leu







HLA-C
Glu His Ser Ala Tyr
825






clone 10
Gly Glu Pro Arg Lys








Leu Leu







HLA-C
Ser Ala Tyr Gly Glu
826






clone 10
Pro Arg Lys Leu





GAGE

HLA-Cw6
Tyr Arg Pro Arg Pro
827
5,648,226






Arg Arg Tyr








Thr Tyr Arg Pro Arg
828







Pro Arg Arg Tyr








Tyr Arg Pro Arg Pro
829







Arg Arg Tyr Val








Thr Tyr Arg Pro Arg
830







Pro Arg Arg Tyr Val








Arg Pro Arg Pro Arg
831







Arg Tyr Val Glu








Met Ser Trp Arg Gly
832







Arg Ser Thr Tyr Arg








Pro Arg Pro Arg Arg








Thr Tyr Arg Pro Arg
833







Pro Arg Arg Tyr Val








Glu Pro Pro Glu Met








Ile





MAGE

HLA-A1,
Isolated nonapeptide
834
5,405,940





primarily
having Glu at its N








terminal, Tyr at its C-








terminal, and Asp at








the third residue from








its N terminal, with








the proviso that said








isolated nonapeptide








is not Glu Ala Asp








Pro Thr Gly His Ser








Tyr (SEQ ID NO: 1),








and wherein said








isolated nonapeptide








binds to a human








leukocyte antigen








molecule on a cell to








form a complex, said








complex provoking








lysis of said cell by a








cytolytic T cell








specific to said








complex







HLA-A1,
Glu Val Val Pro Ile
835






primarily
Ser His Leu Tyr







HLA-A1,
Glu Val Val Arg Ile
836






primarily
Gly His Leu Tyr







HLA-A1,
Glu Val Asp Pro Ile
837






primarily
Gly His Leu Tyr







HLA-A1,
Glu Val Asp Pro Ala
838






primarily
Ser Asn Thr Tyr







HLA-A1,
Glu Val Asp Pro Thr
839






primarily
Ser Asn Thr Tyr







HLA-A1,
Glu Ala Asp Pro Thr
840






primarily
Ser Asn Thr Tyr







HLA-A1,
Glu Val Asp Pro Ile
841






primarily
Gly His Val Tyr







HLA-A1,
GAAGTGGTCCCC
842






primarily
ATCAGCCACTTGTAC







HLA-A1,
GAAGTGGTCCGC
843






primarily
ATCGGCCACTTGTAC







HLA-A1,
GAAGTGGACCCC
844






primarily
ATCGGCCACTTGTAC







HLA-A1,
GAAGTGGACCCC
845






primarily
GCCAGCAACACCTAC







HLA-A1,
GAAGTGGACCCC
846






primarily
ACCAGCAACACCTAC







HLA-A1,
GAAGCGGACCCC
847






primarily
ACCAGCAACACCTAC







HLA-A1,
GAAGCGGACCCC
848






primarily
ACCAGCAACACCTAC







HLA-A1,
GAAGTGGACCCC
849






primarily
ATCGGCCACGTGTAC







HLA-A1,
Glu Ala Asp Pro Thr
850






primarily
Gly His Ser







HLA-A1,
Ala Asp Pro Trp Gly
851






primarily
His Ser Tyr





MAGE peptides

HLA-A2
Ser Thr Leu Val Glu
852
5,554,724






Val Thr Leu Gly Glu








Val








Leu Val Glu Val Thr
853







Leu Gly Glu Val








Lys Met Val Glu Leu
854







Val His Phe Leu








Val Ile Phe Ser Lys
855







Ala Ser Glu Tyr Leu








Tyr Leu Gln Leu Val
856







Phe Gly Ile Glu Val








Gln Leu Val Phe Gly
857







Ile Glu Val Val








Gln Leu Val Phe Gly
858







Ile Glu Val Val Glu








Val








Ile Ile Val Leu Ala
859







Ile Ile Ala Ile








Lys Ile Trp Glu Glu
860







Leu Ser Met Leu Glu








Val








Ala Leu Ile Glu Thr
861







Ser Tyr Val Lys Val








Leu Ile Glu Thr Ser
862







Tyr Val Lys Val








Gly Leu Glu Ala Arg
863







Gly Glu Ala Leu Gly








Leu








Gly Leu Glu Ala Arg
864







Gly Glu Ala Leu








Ala Leu Gly Leu Val
865







Gly Ala Gln Ala








Gly Leu Val Gly Ala
866







Gln Ala Pro Ala








Asp Leu Glu Ser Glu
867







Phe Gln Ala Ala








Asp Leu Glu Ser Glu
868







Phe Gln Ala Ala Ile








Ala Ile Ser Arg Lys
869







Met Val Glu Leu Val








Ala Ile Ser Arg Lys
870







Met Val Glu Leu








Lys Met Val Glu Leu
871







Val His Phe Leu Leu








Lys Met Val Glu Leu
872







Val His Phe Leu Leu








Leu








Leu Leu Leu Lys Tyr
873







Arg Ala Arg Glu Pro








Val








Leu Leu Lys Tyr Arg
874







Ala Arg Glu Pro Val








Val Leu Arg Asn Cys
875







Gln Asp Phe Phe Pro








Val








Tyr Leu Gln Leu Val
876







Phe Gly Ile Glu Val








Val








Gly Ile Glu Val Val
877







Glu Val Val Pro Ile








Pro Ile Ser His Leu
878







Tyr Ile Leu Val








His Leu Tyr Ile Leu
879







Val Thr Cys Leu








His Leu Tyr Ile Leu
880







Val Thr Cys Leu Gly








Leu








Tyr Ile Leu Val Thr
881







Cys Leu Gly Leu








Cys Leu Gly Leu Ser
882







Tyr Asp Gly Leu








Cys Leu Gly Leu Ser
883







Tyr Asp Gly Leu Leu








Val Met Pro Lys Thr
884







Gly Leu Leu Ile








Val Met Pro Lys Thr
885







Gly Leu Leu Ile Ile








Val Met Pro Lys Thr
886







Gly Leu eu Ile Ile








Val








Gly Leu Leu Ile Ile
887







Val Leu Ala Ile








Gly Leu Leu Ile Ile
888







Val Leu Ala Ile Ile








Gly Leu Leu Ile Ile
889







Val Leu Ala Ile Ile








Ala








Leu Leu Ile Ile Val
890







Leu Ala Ile Ile








Leu Leu Ile Ile Val
891







Leu Ala Ile Ile Ala








Leu Leu Ile Ile Val
892







Leu Ala Ile Ile Ala








Ile








Leu Ile Ile Val Leu
893







Ala Ile Ile Ala








Leu Ile Ile Val Leu
894







Ala Ile Ile Ala Ile








Ile Ile Ala Ile Glu
895







Gly Asp Cys Ala








Lys Ile Trp Glu Glu
896







Leu Ser Met Leu








Leu Met Gln Asp Leu
897







Val Gln Glu Asn Tyr








Leu








Phe Leu Trp Gly Pro
898







Arg Ala Leu Ile








Leu Ile Glu Thr Ser
899







Tyr Val Lys Val








Ala Leu Ile Glu Thr
900







Ser Tyr Val Lys Val








Leu








Thr Leu Lys Ile Gly
901







Gly Glu Pro His Ile








His Ile Ser Tyr Pro
902







Pro Leu His Glu Arg








Ala








Gln Thr Ala Ser Ser
903







Ser Ser Thr Leu








Gln Thr Ala Ser Ser
904







Ser Ser Thr Leu Val








Val Thr Leu Gly Glu
905







Val Pro Ala Ala








Val Thr Lys Ala Glu
906







Met Leu Glu Ser Val








Val Thr Lys Ala Glu
907







Met Leu Glu Ser Val








Leu








Val Thr Cys Leu Gly
908







Leu Ser Tyr Asp Gly








Leu








Lys Thr Gly Leu Leu
909







Ile Ile Val Leu








Lys Thr Gly Leu Leu
910







Ile Ile Val Leu Ala








Lys Thr Gly Leu Leu
911







Ile Ile Val Leu Ala








Ile








His Thr Leu Lys Ile
912







Gly Gly Glu Pro His








Ile








Met Leu Asp Leu Gln
913







Pro Glu Thr Thr





Mage-3 peptides

HLA-A2
Gly Leu Glu Ala Arg
914
5,585,461






Gly Glu Ala Leu








Ala Leu Ser Arg Lys
915







Val Ala Glu Leu








Phe Leu Trp Gly Pro
916







Arg Ala Leu Val








Thr Leu Val Glu Val
917







Thr Leu Gly Glu Val








Ala Leu Ser Arg Lys
918







Val Ala Glu Leu Val








Ala Leu Val Glu Thr
919







Ser Tyr Val Lys Val





Tyrosinase

HLA-A2
Tyr Met Asn Gly Thr
920
5,487,974






Met Ser Gln Val








Met Leu Leu Ala Val
921







Leu Tyr Cys Leu Leu





Tyrosinase

HLA-A2
Met Leu Leu Ala Val
922
5,530,096






Leu Tyr Cys Leu








Leu Leu Ala Val Leu
923







Tyr Cys Leu Leu





Tyrosinase

HLA-A2
Ser Glu Ile Trp Arg
924
5,519,117





and HLA-B44
Asp Ile Asp Phe Ala








His Glu Ala







HLA-A2
Ser Glu Ile Trp Arg
925






and HLA-B44
Asp Ile Asp Phe







HLA-A2
Glu Glu Asn Leu Leu
926






and HLA-B44
Asp Phe Val Arg Phe





Melan


EAAGIGILTV
927
Jäger, E. et al. Granulocyte-



A/MART-1




macrophage-colony-stimulating Factor








Enhances Immune Responses To








Melanoma-′associated Peptides in vivo








Int. J Cancer 67, 54-62 (1996)



Tyrosinase


MLLAVLYCL
928
Jäger, E. et al. Granulocyte-








macrophage-colony-stimulating Factor








Enhances Immune Responses To








Melanoma-′associated Peptides in vivo








Int. J Cancer 67, 54-62 (1996)






YMDGTMSQV
929
Jäger, E. et al. Granulocyte-








macrophage-colony-stimulating Factor








Enhances Immune Responses To








Melanoma-′associated Peptides in vivo








Int. J Cancer 67, 54-62 (1996)



gp100/Pme 117


YLEPGPVTA
930
Jäger, E. et al. Granulocyte-








macrophage-colony-stimulating Factor








Enhances Immune Responses To








Melanoma-′associated Peptides in vivo








Int. J Cancer 67, 54-62 (1996)






LLDGTATLRL
931
Jäger, E. et al. Granulocyte-








macrophage-colony-stimulating Factor








Enhances Immune Responses To








Melanoma-′associated Peptides in vivo








Int. J Cancer 67, 54-62 (1996)



Influenza


GILGFVFTL
932
Jäger, E. et al. Granulocyte-



matrix




macrophage-colony-stimulating Factor








Enhances Immune Responses To








Melanoma-′associated Peptides in vivo








Int. J Cancer 67, 54-62 (1996)



MAGE-1


EADPTGHSY
933
Jäger, E. et al. Granulocyte-








macrophage-colony-stimulating Factor








Enhances Immune Responses To








Melanoma-′associated Peptides in vivo








Int. J Cancer 67, 54-62 (1996)








Jäger, E. et al. Granulocyte-








macrophage-colony-stimulating Factor








Enhances Immune Responses To








Melanoma-′associated Peptides in vivo








Int. J Cancer 67, 54-62 (1996)



MAGE-1

HLA-A1
EADPTGHSY
934
DIRECTLY FROM








DAVID'S LIST



BAGE

HLA-C
MAARAVFLALSA
935
DIRECTLY FROM






QLLQARLMKE

DAVID'S LIST






MAARAVFLALSA
936
DIRECTLY FROM






QLLQ

DAVID'S LIST






AARAVFLAL
937
DIRECTLY FROM








DAVID'S LIST


Influenza
PR8 NP
147-154
Kd
IYQRIRALV
938
Falk et al., Allele-specific motifs








revealed by sequencing of self-








peptides eluted from MHC molecules


SELF
P815


SYFPEITHI
939
Falk et al., Allele-specific motifs


PEPTIDE





revealed by sequencing of self-








peptides eluted from MHC molecules


Influenza
Jap HA


IYATVAGSL
940
Falk et al., Allele-specific motifs



523-549




revealed by sequencing of self-








peptides eluted from MHC molecules



Jap HA


VYQILAIYA
941
Falk et al., Allele-specific motifs



523-549




revealed by sequencing of self-








peptides eluted from MHC molecules



Jap HA


IYSTVASSL
942
Falk et al., Allele-specific motifs



523-549




revealed by sequencing of self-








peptides eluted from MHC molecules



JAP HA


LYQNVGTYV
943
Falk et al., Allele-specific motifs



202-221




revealed by sequencing of self-








peptides eluted from MHC molecules



HLA-A24


RYLENQKRT
944
Falk et al., Allele-specific motifs








revealed by sequencing of self-








peptides eluted from MHC molecules



HLA-Cw3


RYLKNGKET
945
Falk et al., Allele-specific motifs








revealed by sequencing of self-








peptides eluted from MHC molecules



P815


KYQAVTTTL
946
Falk et al., Allele-specific motifs








revealed by sequencing of self-








peptides eluted from MHC molecules



Plasmodium

CSP


SYIPSAEKI
947
Falk et al., Allele-specific motifs



berghen






revealed by sequencing of self-








peptides eluted from MHC molecules



Plasmodium

CSP


SYVPSAFQI
948
Falk et al., Allele-specific motifs



yoelli






revealed by sequencing of self-








peptides eluted from MHC molecules


Vesicular
NP 52-59

Kb
RGYVYQGL
949
Falk et al., Allele-specific motifs


stomatitis





revealed by sequencing of self-


viruse





peptides eluted from MHC molecules


Ovalbumin



SIINFEKL
950
Falk et al., Allele-specific motifs








revealed by sequencing of self-








peptides eluted from MHC molecules


Sandal
NP 321-


APGNYPAL
951
Falk et al., Allele-specific motifs


Virus
332




revealed by sequencing of self-








peptides eluted from MHC molecules






VPYGSFKHV
952
Morel et al., Processing of some








antigens by the standard proteasome








but not by the immunoproteasome








results in poor presentation by








dendritic cells, Immunity, vol.








12:107-117, 2000.







MOTIFS













influenza
PR8 NP

Kd
TYQRTRALV
953
5,747,269





restricted








peptide








motif





self peptide
P815

Kd
SYFPEITHI
954






restricted








peptide








motif





influenza
JAP HA

Kd
IYATVAGSL
955






restricted








peptide








motif





influenza
JAP HA

Kd
VYQILAIYA
956






restricted








peptide








motif





influenza
PR8 HA

Kd
IYSTVASSL
957






restricted








peptide








motif





influenza
JAP HA

Kd
LYQNVGTYV
958






restricted








peptide








motif








HLA-A24
RYLENGKETL
959






HLA-Cw3
RYLKNGKETL
960




P815


KYQAVTTTL
961




tumour








antigen








Plasmodium

CSP


SYIPSAEKI
962




berghei










Plasmodium

CSP


SYVPSAEQI
963




yoeli









influenza
NP

Db-
ASNENMETM
964






restricted








peptide








motif





adenovirus
E1A

Db-
SGPSNTPPEI
965






restricted








peptide








motif





lymphocytic


Db-
SGVENPGGYCL
966



choriomeningitis


restricted








peptide








motif





simian
40 T

Db-
SAINNY . . .
967



virus


restricted








peptide








motif





HIV
reverse

HLA-A2.1-
ILKEPVHGV
968




transcriptase

restricted








peptide








motif






influenza

HLA-A2.1-
GILGFVFTL
969




matrix

restricted






protein

peptide








motif





influenza
influenza

HLA-A2.1-
ILGFVFTLTV
970




matrix

restricted






protein

peptide








motif





HIV
Gag


FLQSRPEPT
971




protein







HIV
Gag


AMQMLKE . . .
972




protein







HIV
Gag


PLAPGQMRE
973




protein







HIV
Gag


QMKDCTERQ
974




protein










HLA-A*0205-
VYGVIQK
975






restricted








peptide








motif

















TABLE 5







SEQ. ID NO.: 976
VSV-NP peptide (49-62)





SEQ. ID NO.: 977
LCMV-NP peptide (118-132)





SEQ. ID NO.: 978
LCMV glycoprotein peptide. 33-41









Embodiments of the present invention provide polypeptide compositions, including vaccines, therapeutics, diagnostics, pharmacological and pharmaceutical compositions. The various compositions include newly identified epitopes of TAAs, as well as variants of these epitopes. Other embodiments of the invention provide polynucleotides encoding the polypeptide epitopes of the invention. The invention further provides vectors for expression of the polypeptide epitopes for purification. In addition, the invention provides vectors for the expression of the polypeptide epitopes in an APC for use as an anti-tumor vaccine. Any of the epitopes or antigens, or nucleic acids encoding the same, from Appendix A can be used. Other embodiments relate to methods of making and using the various compositions.


A general architecture for a class I MHC-binding epitope can be described, and has been reviewed more extensively in Madden, D.R. Annu. Rev. Immunol. 13:587-622, 1995. Much of the binding energy arises from main chain contacts between conserved residues in the MHC molecule and the N- and C-termini of the peptide. Additional main chain contacts are made but vary among MHC alleles. Sequence specificity is conferred by side chain contacts of so-called anchor residues with pockets that, again, vary among MHC alleles. Anchor residues can be divided into primary and secondary. Primary anchor positions exhibit strong preferences for relatively well-defined sets of amino acid residues. Secondary positions show weaker and/or less well-defined preferences that can often be better described in terms of less favored, rather than more favored, residues. Additionally, residues in some secondary anchor positions are not always positioned to contact the pocket on the MHC molecule at all. Thus, a subset of peptides exists that bind to a particular MHC molecule and have a side chain-pocket contact at the position in question and another subset exists that show binding to the same MHC molecule that does not depend on the conformation the peptide assumes in the peptide-binding groove of the MHC molecule. The C-terminal residue (P?;omega) is preferably a primary anchor residue. For many of the better studied HLA molecules (e.g. A2, A68, B27, B7, B35, and B53) the second position (P2) is also an anchor residue. However, central anchor residues have also been observed including P3 and P5 in HLA-B8, as well as P5 and P? (omega)-3 in the murine MHC molecules H-2Db and H-2Kb, respectively. Since more stable binding will generally improve immunogenicity, anchor residues are preferably conserved or optimized in the design of variants, regardless of their position.


Because the anchor residues are generally located near the ends of the epitope, the peptide can buckle upward out of the peptide-binding groove allowing some variation in length. Epitopes ranging from 8-11 amino acids have been found for HLA-A68, and up to 13 amino acids for HLA-A2. In addition to length variation between the anchor positions, single residue truncations and extensions have been reported and the N- and C-termini, respectively. Of the non-anchor residues, some point up out of the groove, making no contact with the MHC molecule but being available to contact the TCR, very often P1, P4, and P? (omega)-1 for HLA-A2. Others of the non-anchor residues can become interposed between the upper edges of the peptide-binding groove and the TCR, contacting both. The exact positioning of these side chain residues, and thus their effects on binding, MHC fine conformation, and ultimately immunogenicity, are highly sequence dependent. For an epitope to be highly immunogenic it must not only promote stable enough TCR binding for activation to occur, but the TCR must also have a high enough off-rate that multiple TCR molecules can interact sequentially with the same peptide-MHC complex (Kalergis, A.M. et al., Nature Immunol. 2:229-234, 2001). Thus, without further information about the ternary complex, both conservative and non-conservative substitutions at these positions merit consideration when designing variants.


The polypeptide epitope variants can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations. Variants can be derived from substitution, deletion or insertion of one or more amino acids as compared with the native sequence. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a threonine with a serine, for example. Such replacements are referred to as conservative amino acid replacements, and all appropriate conservative amino acid replacements are considered to be embodiments of one invention. Insertions or deletions can optionally be in the range of about 1 to 4, preferably 1 to 2, amino acids. It is generally preferable to maintain the “anchor positions” of the peptide which are responsible for binding to the MHC molecule in question. Indeed, immunogenicity of peptides can be improved in many cases by substituting more preferred residues at the anchor positions (Franco, et al., Nature Immunology, 1(2):145-150, 2000). Immunogenicity of a peptide can also often be improved by substituting bulkier amino acids for small amino acids found in non-anchor positions while maintaining sufficient cross-reactivity with the original epitope to constitute a useful vaccine. The variation allowed can be determined by routine insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the polypeptide epitope. Because the polypeptide epitope is often 9 amino acids, the substitutions preferably are made to the shortest active epitope, for example, an epitope of 9 amino acids.


Variants can also be made by adding any sequence onto the N-terminus of the polypeptide epitope variant. Such N-terminal additions can be from 1 amino acid up to at least 25 amino acids. Because peptide epitopes are often trimmed by N-terminal exopeptidases active in the pAPC, it is understood that variations in the added sequence can have no effect on the activity of the epitope. In preferred embodiments, the amino acid residues between the last upstream proteasomal cleavage site and the N-terminus of the MHC epitope do not include a proline residue. Serwold, T. at al., Nature Immunol. 2:644-651, 2001. Accordingly, effective epitopes can be generated from precursors larger than the preferred 9-mer class I motif.


Generally, peptides are useful to the extent that they correspond to epitopes actually displayed by MHC I on the surface of a target cell or a pACP. A single peptide can have varying affinities for different MHC molecules, binding some well, others adequately, and still others not appreciably (Appendix B). MHC alleles have traditionally been grouped according to serologic reactivity which does not reflect the structure of the peptide-binding groove, which can differ among different alleles of the same type. Similarly, binding properties can be shared across types; groups based on shared binding properties have been termed supertypes. There are numerous alleles of MHC I in the human population; epitopes specific to certain alleles can be selected based on the genotype of the patient.


Still further embodiments are directed to methods, uses, therapies and compositions related to epitopes with specificity for MHC, including, for example, those listed in Tables 6-10. Other embodiments include one or more of the MHCs listed in Tables 6-10, including combinations of the same, while other embodiments specifically exclude any one or more of the MHCs or combinations thereof. Tables 8-10 include frequencies for the listed HLA antigens.









TABLE 6





Class I MHC Molecules

















Class I







Human



HLA-A1



HLA-A*0101



HLA-A*0201



HLA-A*0202



HLA-A*0203



HLA-A*0204



HLA-A*0205



HLA-A*0206



HLA-A*0207



HLA-A*0209



HLA-A*0214



HLA-A3



HLA-A*0301



HLA-A*1101



HLA-A23



HLA-A24



HLA-A25



HLA-A*2902



HLA-A*3101



HLA-A*3302



HLA-A*6801



HLA-A*6901



HLA-B7



HLA-B*0702



HLA-B*0703



HLA-B*0704



HLA-B*0705



HLA-B8



HLA-B13



HLA-B14



HLA-B*1501 (B62)



HLA-B17



HLA-B18



HLA-B22



HLA-B27



HLA-B*2702



HLA-B*2704



HLA-B*2705



HLA-B*2709



HLA-B35



HLA-B*3501



HLA-B*3502



HLA-B*3701



HLA-B*3801



HLA-B*39011



HLA-B*3902



HLA-B40



HLA-B*40012 (B60)



HLA-B*4006 (B61)



HLA-B44



HLA-B*4402



HLA-B*4403



HLA-B*4501



HLA-B*4601



HLA-B51



HLA-B*5101



HLA-B*5102



HLA-B*5103



HLA-B*5201



HLA-B*5301



HLA-B*5401



HLA-B*5501



HLA-B*5502



HLA-B*5601



HLA-B*5801



HLA-B*6701



HLA-B*7301



HLA-B*7801



HLA-Cw*0102



HLA-Cw*0301



HLA-Cw*0304



HLA-Cw*0401



HLA-Cw*0601



HLA-Cw*0602



HLA-Cw*0702



HLA-Cw8



HLA-Cw*1601M



HLA-G



Murine



H2-Kd



H2-Dd



H2-Ld



H2-Kb



H2-Db



H2-Kk



H2-Kkm1



Qa-1a



Qa-2



H2-M3



Rat



RT1.Aa



RT1.A1



Bovine



Bota-A11



Bota-A20



Chicken



B-F4



B-F12



B-F15



B-F19



Chimpanzee



Patr-A*04



Patr-A*11



Patr-B*01



Patr-B*13



Patr-B*16



Baboon



Papa-A*06



Macaque



Mamu-A*01



Swine



SLA (haplotype d/d)



Virus homolog



hCMV class I homolog UL18

















TABLE 7







Class I MHC Molecules









Class I







Human



HLA-A1



HLA-A*0101



HLA-A*0201



HLA-A*0202



HLA-A*0204



HLA-A*0205



HLA-A*0206



HLA-A*0207



HLA-A*0214



HLA-A3



HLA-A*1101



HLA-A24



HLA-A*2902



HLA-A*3101



HLA-A*3302



HLA-A*6801



HLA-A*6901



HLA-B7



HLA-B*0702



HLA-B*0703



HLA-B*0704



HLA-B*0705



HLA-B8



HLA-B14



HLA-B*1501 (B62)



HLA-B27



HLA-B*2702



HLA-B*2705



HLA-B35



HLA-B*3501



HLA-B*3502



HLA-B*3701



HLA-B*3801



HLA-B*39011



HLA-B*3902



HLA-B40



HLA-B*40012 (B60)



HLA-B*4006 (B61)



HLA-B44



HLA-B*4402



HLA-B*4403



HLA-B*4601



HLA-B51



HLA-B*5101



HLA-B*5102



HLA-B*5103



HLA-B*5201



HLA-B*5301



HLA-B*5401



HLA-B*5501



HLA-B*5502



HLA-B*5601



HLA-B*5801



HLA-B*6701



HLA-B*7301



HLA-B*7801



HLA-Cw*0102



HLA-Cw*0301



HLA-Cw*0304



HLA-Cw*0401



HLA-Cw*0601



HLA-Cw*0602



HLA-Cw*0702



HLA-G



Murine



H2-Kd



H2-Dd



H2-Ld



H2-Kb



H2-Db



H2-Kk



H2-Kkml



Qa-2



Rat



RT1.Aa



RT1.A1



Bovine



Bota-A11



Bota-A20



Chicken



B-F4



B-F12



B-F15



B-F19



Virus homolog



hCMV class I homolog UL18

















TABLE 8







Estimated gene frequencies of HLA-A antigens













CAU
AFR
ASI
LAT
NAT

















Antigen
Gfa
SEb
Gf
SE
Gf
SE
Gf
SE
Gf
SE




















A1
15.1843
0.0489
5.7256
0.0771
4.4818
0.0846
7.4007
0.0978
12.0316
0.2533


A2
28.6535
0.0619
18.8849
0.1317
24.6352
0.1794
28.1198
0.1700
29.3408
0.3585


A3
13.3890
0.0463
8.4406
0.0925
2.6454
0.0655
8.0789
0.1019
11.0293
0.2437


A28
4.4652
0.0280
9.9269
0.0997
1.7657
0.0537
8.9446
0.1067
5.3856
0.1750


A36
0.0221
0.0020
1.8836
0.0448
0.0148
0.0049
0.1584
0.0148
0.1545
0.0303


A23
1.8287
0.0181
10.2086
0.1010
0.3256
0.0231
2.9269
0.0628
1.9903
0.1080


A24
9.3251
0.0395
2.9668
0.0560
22.0391
0.1722
13.2610
0.1271
12.6613
0.2590


A9 unsplit
0.0809
0.0038
0.0367
0.0063
0.0858
0.0119
0.0537
0.0086
0.0356
0.0145


A9 total
11.2347
0.0429
13.2121
0.1128
22.4505
0.1733
16.2416
0.1382
14.6872
0.2756


A25
2.1157
0.0195
0.4329
0.0216
0.0990
0.0128
1.1937
0.0404
1.4520
0.0924


A26
3.8795
0.0262
2.8284
0.0547
4.6628
0.0862
3.2612
0.0662
2.4292
0.1191


A34
0.1508
0.0052
3.5228
0.0610
1.3529
0.0470
0.4928
0.0260
0.3150
0.0432


A43
0.0018
0.0006
0.0334
0.0060
0.0231
0.0062
0.0055
0.0028
0.0059
0.0059


A66
0.0173
0.0018
0.2233
0.0155
0.0478
0.0089
0.0399
0.0074
0.0534
0.0178


A10 unsplit
0.0790
0.0038
0.0939
0.0101
0.1255
0.0144
0.0647
0.0094
0.0298
0.0133


A10 total
6.2441
0.0328
7.1348
0.0850
6.3111
0.0993
5.0578
0.0816
4.2853
0.1565


A29
3.5796
0.0252
3.2071
0.0582
1.1233
0.0429
4.5156
0.0774
3.4345
0.1410


A30
2.5067
0.0212
13.0969
0.1129
2.2025
0.0598
4.4873
0.0772
2.5314
0.1215


A31
2.7386
0.0221
1.6556
0.0420
3.6005
0.0761
4.8328
0.0800
6.0881
0.1855


A32
3.6956
0.0256
1.5384
0.0405
1.0331
0.0411
2.7064
0.0604
2.5521
0.1220


A33
1.2080
0.0148
6.5607
0.0822
9.2701
0.1191
2.6593
0.0599
1.0754
0.0796


A74
0.0277
0.0022
1.9949
0.0461
0.0561
0.0096
0.2027
0.0167
0.1068
0.0252


A19 unsplit
0.0567
0.0032
0.2057
0.0149
0.0990
0.0128
0.1211
0.0129
0.0475
0.0168


A19 total
13.8129
0.0468
28.2593
0.1504
17.3846
0.1555
19.5252
0.1481
15.8358
0.2832


AX
0.8204
0.0297
4.9506
0.0963
2.9916
0.1177
1.6332
0.0878
1.8454
0.1925






aGene frequency.




bStandard error.














TABLE 9







Estimated gene frequencies for HLA-B antigens













CAU
AFR
ASI
LAT
NAT

















Antigen
Gfa
SEb
Gf
SE
Gf
SE
Gf
SE
Gf
SE




















B7
12.1782
0.0445
10.5960
0.1024
4.2691
0.0827
6.4477
0.0918
10.9845 
0.2432


B8
9.4077
0.0397
3.8315
0.0634
1.3322
0.0467
3.8225
0.0715
8.5789
0.2176


B13
2.3061
0.0203
0.8103
0.0295
4.9222
0.0886
1.2699
0.0416
1.7495
0.1013


B14
4.3481
0.0277
3.0331
0.0566
0.5004
0.0287
5.4166
0.0846
2.9823
0.1316


B18
4.7980
0.0290
3.2057
0.0582
1.1246
0.0429
4.2349
0.0752
3.3422
0.1391


B27
4.3831
0.0278
1.2918
0.0372
2.2355
0.0603
2.3724
0.0567
5.1970
0.1721


B35
9.6614
0.0402
8.5172
0.0927
8.1203
0.1122
14.6516
0.1329
10.1198 
0.2345


B37
1.4032
0.0159
0.5916
0.0252
1.2327
0.0449
0.7807
0.0327
0.9755
0.0759


B41
0.9211
0.0129
0.8183
0.0296
0.1303
0.0147
1.2818
0.0418
0.4766
0.0531


B42
0.0608
0.0033
5.6991
0.0768
0.0841
0.0118
0.5866
0.0284
0.2856
0.0411


B46
0.0099
0.0013
0.0151
0.0040
4.9292
0.0886
0.0234
0.0057
0.0238
0.0119


B47
0.2069
0.0061
0.1305
0.0119
0.0956
0.0126
0.1832
0.0159
0.2139
0.0356


B48
0.0865
0.0040
0.1316
0.0119
2.0276
0.0575
1.5915
0.0466
1.0267
0.0778


B53
0.4620
0.0092
10.9529
0.1039
0.4315
0.0266
1.6982
0.0481
1.0804
0.0798


B59
0.0020
0.0006
0.0032
0.0019
0.4277
0.0265
0.0055
0.0028
0c   



B67
0.0040
0.0009
0.0086
0.0030
0.2276
0.0194
0.0055
0.0028
0.0059
0.0059


B70
0.3270
0.0077
7.3571
0.0866
0.8901
0.0382
1.9266
0.0512
0.6901
0.0639


B73
0.0108
0.0014
0.0032
0.0019
0.0132
0.0047
0.0261
0.0060
0c   



B51
5.4215
0.0307
2.5980
0.0525
7.4751
0.1080
6.8147
0.0943
6.9077
0.1968


B52
0.9658
0.0132
1.3712
0.0383
3.5121
0.0752
2.2447
0.0552
0.6960
0.0641


B5 unsplit
0.1565
0.0053
0.1522
0.0128
0.1288
0.0146
0.1546
0.0146
0.1307
0.0278


B5 total
6.5438
0.0435
4.1214
0.0747
11.1160
0.1504
9.2141
0.1324
7.7344
0.2784


B44
13.4838
0.0465
7.0137
0.0847
5.6807
0.0948
9.9253
0.1121
11.8024 
0.2511


B45
0.5771
0.0102
4.8069
0.0708
0.1816
0.0173
1.8812
0.0506
0.7603
0.0670


B12 unsplit
0.0788
0.0038
0.0280
0.0055
0.0049
0.0029
0.0193
0.0051
0.0654
0.0197


B12 total
14.1440
0.0474
11.8486
0.1072
5.8673
0.0963
11.8258
0.1210
12.6281
0.2584


B62
5.9117
0.0320
1.5267
0.0404
9.2249
0.1190
4.1825
0.0747
6.9421
0.1973











0.3738



B63
0.4302
0.0088
1.8865
0.0448
0.4438
0.0270
0.8083
0.0333
0.0356
0.0471


B75
0.0104
0.0014
0.0226
0.0049
1.9673
0.0566
0.1101
0.0123
0   
0.0145


B76
0.0026
0.0007
0.0065
0.0026
0.0874
0.0120
0.0055
0.0028
0c   



B77
0.0057
0.0010
0.0119
0.0036
0.0577
0.0098
0.0083
0.0034
0.0059
0.0059


B15 unsplit
0.1305
0.0049
0.0691
0.0086
0.4301
0.0266
0.1820
0.0158
0.0715
0.0206


B15 total
6.4910
0.0334
3.5232
0.0608
12.2112
0.1344
5.2967
0.0835
7.4290
0.2035


B38
2.4413
0.0209
0.3323
0.0189
3.2818
0.0728
1.9652
0.0517
1.1017
0.0806


B39
1.9614
0.0188
1.2893
0.0371
2.0352
0.0576
6.3040
0.0909
4.5527
0.1615


B16 unsplit
0.0638
0.0034
0.0237
0.0051
0.0644
0.0103
0.1226
0.0130
0.0593
0.0188


B16 total
4.4667
0.0280
1.6453
0.0419
5.3814
0.0921
8.3917
0.1036
5.7137
0.1797


B57
3.5955
0.0252
5.6746
0.0766
2.5782
0.0647
2.1800
0.0544
2.7265
0.1260


B58
0.7152
0.0114
5.9546
0.0784
4.0189
0.0803
1.2481
0.0413
0.9398
0.0745


B17 unsplit
0.2845
0.0072
0.3248
0.0187
0.3751
0.0248
0.1446
0.0141
0.2674
0.0398


B17 total
4.5952
0.0284
11.9540
0.1076
6.9722
0.1041
3.5727
0.0691
3.9338
0.1503


B49
1.6452
0.0172
2.6286
0.0528
0.2440
0.0200
2.3353
0.0562
1.5462
0.0953


B50
1.0580
0.0138
0.8636
0.0304
0.4421
0.0270
1.8883
0.0507
0.7862
0.0681


B21 unsplit
0.0702
0.0036
0.0270
0.0054
0.0132
0.0047
0.0771
0.0103
0.0356
0.0145


B21 total
2.7733
0.0222
3.5192
0.0608
0.6993
0.0339
4.3007
0.0755
2.3680
0.1174


B54
0.0124
0.0015
0.0183
0.0044
2.6873
0.0660
0.0289
0.0063
0.0534
0.0178


B55
1.9046
0.0185
0.4895
0.0229
2.2444
0.0604
0.9515
0.0361
1.4054
0.0909


B56
0.5527
0.0100
0.2686
0.0170
0.8260
0.0368
0.3596
0.0222
0.3387
0.0448


B22 unsplit
0.1682
0.0055
0.0496
0.0073
0.2730
0.0212
0.0372
0.0071
0.1246
0.0272


B22 total
2.0852
0.0217
0.8261
0.0297
6.0307
0.0971
1.3771
0.0433
1.9221
0.1060


B60
5.2222
0.0302
1.5299
0.0404
8.3254
0.1135
2.2538
0.0553
5.7218
0.1801


B61
1.1916
0.0147
0.4709
0.0225
6.2072
0.0989
4.6691
0.0788
2.6023
0.1231


B40 unsplit
0.2696
0.0070
0.0388
0.0065
0.3205
0.0230
0.2473
0.0184
0.2271
0.0367


B40 total
6.6834
0.0338
2.0396
0.0465
14.8531
0.1462
7.1702
0.0963
8.5512
0.2168


BX
1.0922
0.0252
3.5258
0.0802
3.8749
0.0988
2.5266
0.0807
1.9867
0.1634






aGene frequency.




bStandard error.




cThe observed gene count was zero.














TABLE 10







Estimated gene frequencies of HLA-DR antigens













CAU
AFR
ASI
LAT
NAT

















Antigen
Gfa
SEb
Gf
SE
Gf
SE
Gf
SE
Gf
SE




















DR1
10.2279
0.0413
6.8200
0.0832
3.4628
0.0747
7.9859
0.1013
8.2512
0.2139


DR2
15.2408
0.0491
16.2373
0.1222
18.6162
0.1608
11.2389
0.1182
15.3932
0.2818


DR3
10.8708
0.0424
13.3080
0.1124
4.7223
0.0867
7.8998
0.1008
10.2549
0.2361


DR4
16.7589
0.0511
5.7084
0.0765
15.4623
0.1490
20.5373
0.1520
19.8264
0.3123


DR6
14.3937
0.0479
18.6117
0.1291
13.4471
0.1404
17.0265
0.1411
14.8021
0.2772


DR7
13.2807
0.0463
10.1317
0.0997
6.9270
0.1040
10.6726
0.1155
10.4219
0.2378


DR8
2.8820
0.0227
6.2673
0.0800
6.5413
0.1013
9.7731
0.1110
6.0059
0.1844


DR9
1.0616
0.0139
2.9646
0.0559
9.7527
0.1218
1.0712
0.0383
2.8662
0.1291


DR10
1.4790
0.0163
2.0397
0.0465
2.2304
0.0602
1.8044
0.0495
1.0896
0.0801


DR11
9.3180
0.0396
10.6151
0.1018
4.7375
0.0869
7.0411
0.0955
5.3152
0.1740


DR12
1.9070
0.0185
4.1152
0.0655
10.1365
0.1239
1.7244
0.0484
2.0132
0.1086


DR5 unsplit
1.2199
0.0149
2.2957
0.0493
1.4118
0.0480
1.8225
0.0498
1.6769
0.0992


DR5 total
12.4449
0.0045
17.0260
0.1243
16.2858
0.1516
10.5880
0.1148
9.0052
0.2218


DRX
1.3598
0.0342
0.8853
0.0760
2.5521
0.1089
1.4023
0.0930
2.0834
0.2037






aGene frequency.




bStandard error.







It can be desirable to express housekeeping peptides in the context of a larger protein. Processing can be detected even when a small number of amino acids are present beyond the terminus of an epitope. Small peptide hormones are usually proteolytically processed from longer translation products, often in the size range of approximately 60-120 amino acids. This fact has led some to assume that this is the minimum size that can be efficiently translated. In some embodiments, the housekeeping peptide can be embedded in a translation product of at least about 60 amino acids, in others 70, 80, 90 amino acids, and in still others 100, 110 or 120 amino acids, for example. In other embodiments the housekeeping peptide can be embedded in a translation product of at least about 50, 30, or 15 amino acids.


Due to differential proteasomal processing, the immunoproteasome of the pAPC produces peptides that are different from those produced by the housekeeping proteasome in peripheral body cells. Thus, in expressing a housekeeping peptide in the context of a larger protein, it is preferably expressed in the pAPC in a context other than its full-length native sequence, because, as a housekeeping epitope, it is generally only efficiently processed from the native protein by the housekeeping proteasome, which is not active in the pAPC. In order to encode the housekeeping epitope in a DNA sequence encoding a larger polypeptide, it is useful to find flanking areas on either side of the sequence encoding the epitope that permit appropriate cleavage by the immunoproteasome in order to liberate that housekeeping epitope. Such a sequence promoting appropriate processing is referred to hereinafter as having substrate or liberation sequence function. Altering flanking amino acid residues at the N-terminus and C-terminus of the desired housekeeping epitope can facilitate appropriate cleavage and generation of the housekeeping epitope in the pAPC. Sequences embedding housekeeping epitopes can be designed de novo and screened to determine which can be successfully processed by immunoproteasomes to liberate housekeeping epitopes.


Alternatively, another strategy is very effective for identifying sequences allowing production of housekeeping epitopes in APC. A contiguous sequence of amino acids can be generated from head to tail arrangement of one or more housekeeping epitopes. A construct expressing this sequence is used to immunize an animal, and the resulting T cell response is evaluated to determine its specificity to one or more of the epitopes in the array. These immune responses indicate housekeeping epitopes that are processed in the pAPC effectively. The necessary flanking areas around this epitope are thereby defined. The use of flanking regions of about 4-6 amino acids on either side of the desired peptide can provide the necessary information to facilitate proteasome processing of the housekeeping epitope by the immunoproteasome. Therefore, a substrate or liberation sequence of approximately 16-22 amino acids can be inserted into, or fused to, any protein sequence effectively to result in that housekeeping epitope being produced in an APC. In some embodiments, a broader context of a substrate sequence can also influence processing. In such embodiments, comparisons of a liberaton sequence in a variety of contexts can be useful in further optimizing a particular substrate sequence. In alternate embodiments the whole head-to-tail array of epitopes, or just the epitopes immediately adjacent to the correctly processed housekeeping epitope can be similarly transferred from a test construct to a vaccine vector.


In a preferred embodiment, the housekeeping epitopes can be embedded between known immune epitopes, or segments of such, thereby providing an appropriate context for processing. The abutment of housekeeping and immune epitopes can generate the necessary context to enable the immunoproteasome to liberate the housekeeping epitope, or a larger fragment, preferably including a correct C-terminus. It can be useful to screen constructs to verify that the desired epitope is produced. The abutment of housekeeping epitopes can generate a site cleavable by the immunoproteasome. Some embodiments of the invention employ known epitopes to flank housekeeping epitopes in test substrates; in others, screening as described below is used, whether the flanking regions are arbitrary sequences or mutants of the natural flanking sequence, and whether or not knowledge of proteasomal cleavage preferences are used in designing the substrates.


Cleavage at the mature N-terminus of the epitope, while advantageous, is not required, since a variety of N-terminal trimming activities exist in the cell that can generate the mature N-terminus of the epitope subsequent to proteasomal processing. It is preferred that such N-terminal extension be less than about 25 amino acids in length and it is further preferred that the extension have few or no proline residues. Preferably, in screening, consideration is given not only to cleavage at the ends of the epitope (or at least at its C-terminus), but consideration also can be given to ensure limited cleavage within the epitope.


Shotgun approaches can be used in designing test substrates and can increase the efficiency of screening. In one embodiment multiple epitopes can be assembled one after the other, with individual epitopes possibly appearing more than once. The substrate can be screened to determine which epitopes can be produced. In the case where a particular epitope is of concern, a substrate can be designed in which it appears in multiple different contexts. When a single epitope appearing in more than one context is liberated from the substrate additional secondary test substrates, in which individual instances of the epitope are removed, disabled, or are unique, can be used to determine which are being liberated and truly confer substrate or liberation sequence function.


Several readily practicable screens exist. A preferred in vitro screen utilizes proteasomal digestion analysis, using purified immunoproteasomes, to determine if the desired housekeeping epitope can be liberated from a synthetic peptide embodying the sequence in question. The position of the cleavages obtained can be determined by techniques such as mass spectrometry, HPLC, and N-terminal pool sequencing; as described in greater detail in U.S. patent application Ser. Nos. 09/561,074, 09/560,465 and 10/117,937, and Provisional U.S. Patent Application Nos. 60/282,211, 60/337,017, and 60/363,210, which were all cited and incorporated by reference above.


Alternatively, in vivo and cell-based screens such as immunization or target sensitization can be employed. For immunization a nucleic acid construct capable of expressing the sequence in question is used. Harvested CTL can be tested for their ability to recognize target cells presenting the housekeeping epitope in question. Such targets cells are most readily obtained by pulsing cells expressing the appropriate MHC molecule with synthetic peptide embodying the mature housekeeping epitope. Alternatively, immunization can be carried out using cells known to express housekeeping proteasome and the antigen from which the housekeeping epitope is derived, either endogenously or through genetic engineering. To use target sensitization as a screen, CTL, or preferably a CTL clone, that recognizes the housekeeping epitope can be used. In this case it is the target cell that expresses the embedded housekeeping epitope (instead of the pAPC during immunization) and it must express immunoproteasome. Generally, the cell or target cell can be transformed with an appropriate nucleic acid construct to confer expression of the embedded housekeeping epitope. Loading with a synthetic peptide embodying the embedded epitope using peptide loaded liposomes, or complexed with cationic lipid protein transfer reagents such as BIOPORTER™ (Gene Therapy Systems, San Diego, Calif.), represents an alternative.


Once sequences with substrate or liberation sequence function are identified they can be encoded in nucleic acid vectors, chemically synthesized, or produced recombinantly. In any of these forms they can be incorporated into immunogenic compositions. Such compositions can be used in vitro in vaccine development or in the generation or expansion of CTL to be used in adoptive immunotherapy. In vivo they can be used to induce, amplify or sustain and active immune response. The uptake of polypeptides for processing and presentation can be greatly enhanced by packaging with cationic lipid, the addition of a tract of cationic amino acids such as poly-L-lysine (Ryser, H. J. et al., J. Cell Physiol. 113:167-178, 1982; Shen, W. C. & Ryser, H. J., Proc. Natl. Aced. Sci. USA 75:1872-1876, 1978), the incorporation into branched structures with importation signals (Sheldon, K. et al., Proc. Natl. Aced. Sci. USA 92:2056-2060, 1995), or mixture with or fusion to polypeptides with protein transfer function including peptide carriers such as pep-1 (Morris, M. C., et al., Nat. Biotech. 19:1173-1176, 2001), the PreS2 translocation motif of hepatitis B virus surface antigen, VP22 of herpes viruses, and HIV-TAT protein (Oess, S. & Hildt, E., Gene Ther. 7:750-758, 2000; Ford, K. G., et al., Gene Ther. 8:1-4, 2001; Hung, C. F. et al., J. Virol. 76:2676-2682, 2002; Oliveira, S. C., et a;. Hum. Gene Ther. 12:1353-1359, 2001; Normand, N. et al., J. Biol. Chem. 276:15042-15050, 2001; Schwartz, J. J. & Zhang, S., Curr. Opin. Mol. Ther. 2:162-167, 2000; Elliot G., 7 Hare, P. Cell 88:223-233, 1997), among other methodologies. Particularly for fusion proteins the immunogen can be produced in culture and the purified protein administered or, in the alternative, the nucleic acid vector can be administered so that the immunogen is produced and secreted by cells transformed in vivo. In either scenario the transport function of the fusion protein facilitates uptake by pAPC.


EXAMPLES
Example 1

A recombinant DNA plasmid vaccine, pMA2M, which encodes one polypeptide with an HLA A2-specific CTL epitope ELAGIGILTV (SEQ ID NO. 1) from melan-A (26-35A27L), and a portion (amino acids 31-96) of melan-A (SEQ ID NO. 2) including the epitope clusters at amino acids 31-48 and 56-69, was constructed. These clusters were previously disclosed in U.S. patent application Ser. No. 09/561,571 entitled EPITOPE CLUSTERS incorporated by reference above. Flanking the defined melan-A CTL epitope are short amino acid sequences derived from human tyrosinase (SEQ ID NO. 3) to facilitate liberation of the melan-A housekeeping epitope by processing by the immunoproteasome. In addition, these amino acid sequences represent potential CTL epitopes themselves. The cDNA sequence for the polypeptide in the plasmid is under the control of promoter/enhancer sequence from cytomegalovirus (CMVp) (see FIG. 1), which allows efficient transcription of messenger for the polypeptide upon uptake by APCs. The bovine growth hormone polyadenylation signal (BGH polyA) at the 3′ end of the encoding sequence provides a signal for polyadenylation of the messenger to increase its stability as well as for translocation out of nucleus into the cytoplasm for translation. To facilitate plasmid transport into the nucleus after uptake, a nuclear import sequence (NIS) from simian virus 40 (SV40) has been inserted in the plasmid backbone. The plasmid carries two copies of a CpG immunostimulatory motif, one in the NIS sequence and one in the plasmid backbone. Lastly, two prokaryotic genetic elements in the plasmid are responsible for amplification in E. coli, the kanamycin resistance gene (Kan R) and the pMB1 bacterial origin of replication.


SUBSTRATE or LIBERATION Sequence


The amino acid sequence of the encoded polypeptide (94 amino acid residues in length) (SEQ ID NO. 4) containing a 28 amino acid substrate or liberation sequence at its N-terminus (SEQ ID NO. 5) is given below:










MLLAVLYCL-ELAGIGTLTV-YMDGTMSQV-



GILTVILGVLLLIGCWYCRRRNGYRALMDKSLHVGTQCALTRRCPQEGFDHRDSKVSLQ


EKNCEPV






The first 9 amino acid residues are derived from tyrosinase1-9 (SEQ ID NO. 6), the next ten constitute melan-A (26-35A27L) (SEQ ID NO. 1), and amino acid residues 20 to 28 are derived from tyrosinase369-377 (SEQ ID NO. 7). These two tyrosinase nonamer sequences both represent potential HLA A2-specific CTL epitopes. Amino acid residues 10-19 constitute melan-A (26-35A27L) an analog of an HLA A2-specific CTL epitope from melan-A, EAAGIGILTV (SEQ ID NO. 8), with an elevated potency in inducing CTL responses during in vitro immunization of human PBMC and in vivo immunization in mice. The segment of melan-A constituting the rest of the polypeptide (amino acid residues 29 to 94) contain a number of predicted HLA A2-specific epitopes, including the epitope clusters cited above, and thus can be useful in generating a response to immune epitopes as described at length in the patent applications ‘Epitope Synchronization in Antigen Presenting Cells’ and ‘Epitope Clusters’ cited and incorporated by reference above. This region was also included to overcome any difficulties that can be associated with the expression of shorter sequences. A drawing of pMA2M is shown in FIG. 1.


Plasmid Construction


A pair of long complementary oligonucleotides was synthesized which encoded the first 30 amino acid residues. In addition, upon annealing, these oligonucleotides generated the cohensive ends of Afl II at the 5′ end and that of EcoR I at the 3′ end. The melan A31-96 region was amplified with PCR using oligonucleotides carrying restriction sites for EcoR I at the 5′ end and Not I at the 3′ end. The PCR product was digested with EcoR I and Not I and ligated into the vector backbone, described in Example 1, that had been digested with Afl II and Not I, along with the annealed oligonucleotides encoding the amino terminal region in a three-fragment ligation. The entire coding sequence was verified by DNA sequencing. The sequence of the entire insert, from the Afl II site at the 5′ end to the Not I site at the 3′ end is disclosed as SEQ ID NO. 9. Nucleotides 12-293 encode the polypeptide.


Example 2

Three vectors containing melan-A (26-35A27L) (SEQ ID NO. 1) as an embedded housekeeping epitope were tested for their ability to induce a CTL response to this epitope in HLA-A2 transgenic HHD mice (Pascolo et al. J Exp. Med. 185:2043-2051, 1997). One of the vectors was pMA2M described above (called pVAXM3 in FIG. 3). In pVAXM2 the same basic group of 3 epitopes was repeated several times with the flanking epitopes truncated by differing degrees in the various repeats of the array. Specifically the cassette consisted of:










M-Tyr(5-9)-ELA-Tyr(369-373)-
(SEQ ID NO. 10)


Tyr(4-9)-ELA-Tyr(369-374)-Tyr



(3-9)-ELA-Tyr(369-375)-Tyr(2-



9)-ELA







where ELA represents melan-A (26-35A27L) (SEQ ID NO. 1). This cassette was inserted in the same plasmid backbone as used for pVAXM3. The third, pVAXM1 is identical to pVAXM2 except that the epitope array is followed by an IRES (internal ribosome entry site for encephalomyocarditis virus) linked to a reading frame encoding melan-A 31-70.


Four groups of three HHD A2.1 mice were injected intranodally in surgically exposed inguinal lymph nodes with 25 μl of 1 mg/ml plasmid DNA in PBS on days 0, 3, and 6, each group receiving one of the three vectors or PBS alone. On day 14 the spleens were harvested and restimulated in vitro one time with 3-day LPS blasts pulsed with peptide (melan-A (26-35A27L)(SEQ ID NO. 1)). The in vitro cultures were supplemented with Rat T-Stim (Collaborative Biomedical Products) on the 3rd day and assayed for cytolytic activity on the 7th day using a standard 51Cr-release assay. FIGS. 2 to 5 show % specific lysis obtained using the cells immunized with PBS, pVAXM1, pVAXM2, and pVAXM3, respectively on T2 target cells and T2 target cells pulsed with melan-A (26-35A27L) (ELA) (SEQ ID NO. 1). All three vectors generated strong CTL responses. These data indicated that the plasmids have been taken up by APCs, the encoded polypeptide has been synthesized and proteolytically processed to produce the decamer epitope in question (that is, it had substrate or liberation sequence function), and that the epitope became HLA-A2 bound for presentation. Also, an isolated variant of pVAXM2, that terminates after the 55th amino acid, worked similarly well as the full length version (data not shown). Whether other potential epitopes within the expression cassette can also be produced and be active in inducing CTL responses can be determined by testing for CTL activity against target cells pulsed with corresponding synthetic peptides.


Example 3

An NY-ESO-1 (SEQ ID NO. 11) SUBSTRATE/LIBERATION Sequence


Six other epitope arrays were tested leading to the identification of a substrate/liberation sequence for the housekeeping epitope NY-ESO-1157-165 (SEQ ID NO. 12). The component epitopes of the arrays were:











SSX-241-49: KASEKTFYV
Array 
(SEQ ID NO. 13)



element A






NY-ESO-1157-165: SLLMWITQC
Array 
(SEQ ID NO. 12)



element B






NY-ESO-1163-171: TQCFLPVFL
Array 
(SEQ ID NO. 14)



element C






PSMA288-297: GLPSIPVHPI
Array 
(SEQ ID NO. 15)



element D






TYR4-9: AVLYCL
Array 
(SEQ ID NO. 16)



element E







The six arrays had the following arrangements of elements after starting with an initiator methionine:












pVAX-PC-A:
B-A-D-D-A-B-A-A






pVAX-PC-B:
D-A-B-A-A-D-B-A






pVAX-PC-C:
E-A-D-B-A-B-E-A-A






pVAX-BC-A:
B-A-C-B-A-A-C-A






pVAX-BC-B:
C-A-B-C-A-A-B-A






pVAX-BC-C:
E-A-A-B-C-B-A-A






These arrays were inserted into the same vector backbone described in the examples above. The plasmid vectors were used to immunize mice essentially as described in Example 2 and the resulting CTL were tested for their ability to specifically lyse target cells pulsed with the peptide NY-ESO-1 157-165, corresponding to element B above. Both pVAX-PC-A and pVAX-BC-A were found to induce specific lytic activity. Comparing the contexts of the epitope (element B) in the various arrays, and particularly between pVAX-PC-A and pVAX-BC-A, between pVAX-PC-A and pVAX-PC-B, and between pVAX-BC-A and pVAX-BC-C, it was concluded that it was the first occurrence of the epitope in pVAX-PC-A and pVAX-BC-A that was being correctly processed and presented. In other words an initiator methionine followed by elements B-A constitute a substrate/liberation sequence for the presentation of element B. On this basis a new expression cassette for use as a vaccine was constructed encoding the following elements:


An initiator methionine,


NY-ESO-1157-165 (bold)—a housekeeping epitope,


SSX241-49 (italic)—providing appropriate context for processing, and


NY-ESO-177-180—to avoid “short sequence” problems and provide immune epitopes.


Thus the construct encodes the amino acid sequence:


M-SLLMWITQC-KASEKIFYV-RCGARGPESRLLEFYLAMPFATPMEAELARRSLAQDAPPLPVPGVLLKEFTVSGNILTIRL TAADHRQLQLSISSCLQQLSLLMWITQCFLPVFLAQPPSGQRR (SEQ ID NO. 17) and MSLLMWITQCKASEKIFYV (SEQ ID NO. 18) constitutes the liberation or substrate sequence. A polynucleotide encoding SEQ ID NO. 17 (SEQ ID NO. 19: nucleotides 12-380) was inserted into the same plasmid backbone as used for pMA2M generating the plasmid pN157.


Example 4

A construct similar to pN157 containing the whole epitope array from pVAX-PC-A was also made and designated pBPL. Thus the encoded amino acid sequence in pBPL is:











M-SLLMWITQC-KASEKIFYV-GLPSIPVHPI-GLPSIPVHPI-KASEKIFYV-SLLMWITQC-
(SEQ ID NO. 20)



KASEKIFYV-KASEKIFYV-



RCGARGPESRLLEFYLAMPFATPMEAELARRSLAQDAPPLPVPGVLLKEFTVSGNILTIRL



TAADHRQLQLSISSCLQQLSLLMWITQCFLPVFLAQPPSGQRR.







SEQ ID NO. 21 is the polynucleotide encoding SEQ ID NO. 20 used in pBPL.


A portion of SEQ ID NO. 20, IKASEKIFYVSLLMWITQCKASEKIFYVK (SEQ ID NO. 22) was made as a synthetic peptide and subjected to in vitro proteasomal digestion analysis with human immunoproteasome, utilizing both mass spectrometry and N-terminal pool sequencing. The identification of a cleavage after the C residue indicates that this segment of the construct can function as a substrate or liberation sequence for NY-ESO-1157-165 (SEQ ID NO. 12) epitope (see FIG. 6). FIG. 7 shows the differential processing of the SLLMWITQC epitope (SEQ ID NO. 12) in its native context where the cleavage following the C is more efficiently produced by housekeeping than immunoproteasome. The immunoproteasome also produces a major cleavage internal to the epitope, between the T and the Q when the epitope is in its native context, but not in the context of SEQ ID NO. 22 (compare FIG. 6 and 7).


Example 5

Screening of further epitope arrays led to the identification of constructs promoting the expression of the epitope SSX-241-49 (SEQ ID NO. 13). In addition to some of the array elements defined in Example 3, the following additional elements were also used:













SSX-457-65:





VMTKLGFKV
Array element F.
(SEQ ID NO. 23)






PSMA730-739:





RQIYVAAFTV
Array element G.
(SEQ ID NO. 24) 






A construct, denoted CTLA02, encoding an initiator methionine and the array F-A-G-D-C-F-G-A, was found to successfully immunize HLA-A2 transgenic mice to generate a CTL response recognizing the peptide SSX-241-49 (SEQ ID NO. 13).


As described above, it can be desirable to combine a sequence with substrate or liberation sequence function with one that can be processed into immune epitopes. Thus SSX-215-183 (SEQ ID NO. 25) was combined with all or part of the array as follows:












CTLS1:




F-A-G-D-C-F-G-A-SSX-215-183 
(SEQ ID NO. 26)






CTLS2:




SSX-215-183-F-A-G-D-C-F-G-A
(SEQ ID NO. 27)






CTLS3:




F-A-G-D-SSX-215-183 
(SEQ ID NO. 28)






CTLS4:




SSX-215-183-C-F-G-A
(SEQ ID NO. 29).






All of the constructs except CTLS3 were able to induce CTL recognizing the peptide SSX-241-49 (SEQ ID NO. 13). CTLS3 was the only one of these four constructs which did not include the second element A from CTLA02 suggesting that it was this second occurrence of the element that provided substrate or liberation sequence function. In CTLS2 and CTLS4 the A element is at the C-terminal end of the array, as in CTLA02. In CTLS1 the A element is immediately followed by the SSX-215-183 segment which begins with an alanine, a residue often found after proteasomal cleavage sites (Toes, R. E. M., et al., J. Exp. Med. 194:1-12, 2001). SEQ ID NO. 30 is the polynucleotide sequence encoding SEQ ID NO. 26 used in CTLS1, also called pCBP.


A portion of CTLS1 (SEQ ID NO. 26), encompassing array elements F-A-SSX-215-23 with the sequence RQIYVAAFTV-KASEKIFYV-AQIPEKIQK (SEQ ID NO. 31), was made as a synthetic peptide and subjected to in vitro proteasomal digestion analysis with human immunoproteasome, utilizing both mass spectrometry and N-terminal pool sequencing. The observation that the C-terminus of the SSX-241-49 epitope (SEQ ID NO. 13) was generated (see FIG. 8) provided further evidence in support of substrate or liberation sequence function. The data in FIG. 9 showed the differential processing of the SSX-241-49 epitope, KASEKIFYV (SEQ ID NO. 13), in its native context, where the cleavage following the V was the predominant cleavage produced by housekeeping proteasome, while the immunoproteasome had several major cleavage sites elsewhere in the sequence. By moving this epitope into the context provided by SEQ ID NO. 31 the desired cleavage became a major one and its relative frequency compared to other immunoproteasome cleavages was increased (compare FIGS. 8 and 9). The data in FIG. 8B also showed the similarity in specificity of mouse and human immunoproteasome lending support to the usefulness of the transgenic mouse model to predict human antigen processing.


Example 6

Screening also revealed substrate or liberation sequence function for a tyrosinase epitope, Tyr207-215 (SEQ ID NO. 32), as part of an array consisting of the sequence [Tyr1-17-Tyr207-215]4, [MLLAVLYCLLWSFQTSA-FLPWHRLFL]4, (SEQ ID NO. 33). The same vector backbone described above was used to express this array. This array differs from those of the other examples in that the Tyr1-17 segment, which was included as a source of immune epitopes, is used as a repeated element of the array. This is in contrast with the pattern shown in the other examples where sequence included as a source of immune epitopes and/or length occurred a single time at the beginning or end of the array, the remainder of which was made up of individual epitopes or shorter sequences.


Plasmid Construction


The polynucleotide encoding SEQ ID NO. 33 was generated by assembly of annealed synthetic oligonucleotides. Four pairs of complementary oligonucleotides were synthesized which span the entire coding sequence with cohesive ends of the restriction sites of Afl II and EcoR I at either terminus. Each complementary pair of oligonucleotides were first annealed, the resultant DNA fragments were ligated stepwise, and the assembled DNA fragment was inserted into the same vector backbone described above pre-digested with Afl II/EcoR I. The construct was called CTLT2/pMEL and SEQ ID NO. 34 is the polynucleotide sequence used to encode SEQ ID NO. 33.


Example 7

Administration of a DNA Plasmid Formulation of a Immunotherapeutic for Melanoma to Humans


An MA2M melanoma vaccine with a sequence as described in Example 1 above, was formulated in 1% Benzyl alcohol, 1% ethyl alcohol, 0.5 mM EDTA, citrate-phosphate, pH 7.6. Aliquots of 200, 400, and 600 μg DNA/ml were prepared for loading into MINIMED 407C infusion pumps. The catheter of a SILHOUETTE infusion set was placed into an inguinal lymph node visualized by ultrasound imaging. The pump and infusion set assembly was originally designed for the delivery of insulin to diabetics. The usual 17 mm catheter was substituted with a 31 mm catheter for this application. The infusion set was kept patent for 4 days (approximately 96 hours) with an infusion rate of about 25 μl/hour resulting in a total infused volume of approximately 2.4 ml. Thus the total administered dose per infusion was approximately 500, and 1000 μg; and can be 1500 μg, respectively, for the three concentrations described above. Following an infusion, subjects were given a 10 day rest period before starting a subsequent infusion. Given the continued residency of plasmid DNA in the lymph node after administration and the usual kinetics of CTL response following disappearance of antigen, this schedule will be sufficient to maintain the immunologic CTL response.


Example 8

SEQ ID NO. 22 is made as a synthetic peptide and packaged with a cationic lipid protein transfer reagent. The composition is infused directly into the inguinal lymph node (see example 7) at a rate of 200 to 600 μg of peptide per day for seven days, followed by seven days rest. An initial treatment of 3-8 cycles are conducted.


Example 9

A fusion protein is made by adding SEQ ID NO. 34 to the 3′ end of a nucleotide sequence encoding herpes simplex virus 1 VP22 (SEQ ID NO. 42) in an appropriate mammalian expression vector; the vector used above is suitable. The vector is used to transform HEK 293 cells and 48 to 72 hours later the cells are pelleted, lysed and a soluble extract prepared. The fusion protein is purified by affinity chromatagraphy using an anti-VP22 monoclonal antibody. The purified fusion protein is administered intranodally at a rate of 10 to 100 μg per day for seven days, followed by seven days rest. An initial treatment of 3-8 cycles are conducted.


All references mentioned herein are hereby incorporated by reference in their entirety. Further, the present invention can utilize various aspects of the following, which are all incorporated by reference in their entirety: U.S. patent application Ser. No. 09/380,534, filed on Sep. 1, 1999, entitled A METHOD OF INDUCING A CTL RESPONSE; Ser. No. 09/776,232, filed on Feb. 2, 2001, entitled METHOD OF INDUCING A CTL RESPONSE; Ser. No. 09/715,835, filed on Nov. 16, 2000, entitled AVOIDANCE OF UNDESIRABLE REPLICATION INTERMEDIATES IN PLASMID PROPOGATION; Ser. No. 09/999,186, filed on Nov. 7, 2001, entitled METHODS OF COMMERCIALIZING AN ANTIGEN; and Provisional U.S. Patent Application No. 60/274,063, filed on Mar. 7, 2001, entitled ANTI-NEOVASCULAR VACCINES FOR CANCER.









TABLE 11





Partial listing of SEQ ID NOS.

















1
ELAGIGILTV
melan-A 26-3 5 (A27L)


2
Melan-A protein
Accession number: NP 005502


3
Tyrosinase protein
Accession number: P14679


4
MLLAVLYCLELAGIGILTVYMDGTMSQVG
pMA2M expression product



ILTVILGVLLLIGCWYCRRRNGYRALMDK




SLHVGTQCALTRRCPQEGFDHRDSKVSLQ




EKNCEPV



5
MLLAVLYCLELAGIGILTVYMDGTMSQV
Liberation or substrate sequence for SEQ ID NO. 1




from pMA2M


6
MLLAVLYCL
tyrosinase 1-9


7
YMDGTMSQV
tyrosinase 369-377


8
EAAGIGILTV
melan-A 26-35


9
cttaagccaccatgttactagctgttttgtactgcctggaact
pMA2M insert



agcagggatcggcatattgacagtgtatatgga




tggaacaatgtcccaggtaggaattctgacagtgatcctggga




gtcttactgctcatcggctgttggtattgtaga




agacgaaatggatacagagccttgatggataaaagtcttcatg




ttggcactcaatgtgccttaacaagaagatgcc




cacaagaagggtttgatcatcgggacagcaaagtgtctcttca




agagaaaaactgtgaacctgtgtagtgagcggc




cgc



10
MVLYCLELAGIGILTVYMDGTAVLYCLEL
Epitope array from pVAXM2 and



AGIGILTVYMDGTMLAVLYCLELAGIGILT
pVAXM1



VYMDGTMSLLAVLYCLELAGIGILTV



11
NY-ESO-1 protein
Accession number: P78358


12
SLLMWITQC
NY-ESO-1 157-165


13
KASEKIFYV
SSX-2 41-49


14
TQCFLPVFL
NY-ESO-1 163-171


15
GLPSIPVHPI
PSMA 288-297


16
AVLYCL
tyrosinase 4-9


17
MSLLMWITQCKASEKIFYVRCGARGPESR
pN157 expression product



LLEFYLAMPFATPMEAELARRSLAQDAPP




LPVPGVLLKEFTVSGNTLTTRLTAADHRQL




QLSISSCLQQLSLLMWITQCFLPVFLAQPPS




GQRR



18
MSLLMWITQCKASEKTFYV
liberation or substrate sequence for SEQ NO. 12




from pN157


19
cttaagccaccatgtccctgttgatgtggatcacgcagtgcaa
Insert for pN157



agcttcggagaaaatcttctacgtacggtgcgg




tgccagggggccggagagccgcctgcttgagttctacctcgcc




atgcctttcgcgacacccatggaagcagagctg




gcccgcaggagcctggcccaggatgccccaccgcttcccgtgc




caggggtgcttctgaaggagttcactgtgtccg




gcaacatactgactatccgactgactgctgcagaccaccgcca




actgcagctctccatcagctcctgtctccagca




gctttccctgttgatgtggatcacgcagtgctttctgcccgtg




tttttggctcagcctccctcagggcagaggcgc




tagtgagaattc



20
MSLLMWITQCKASEKIFYVGLPSIPVHPIGL
pBPL expression product



PSIPVHPIKASEKTFYVSLLMWITQCKASEK




IFYVKASEKIFYVRCGARGPESRLLEFYLA




MPFATPMEAELARRSLAQDAPPLPVPGVL




LKEFTVSGNILTIRLTAADHRQLQLSISSCL




QQLSLLMWITQCFLPVFLAQPPSGQRR



21
atgtccctgttgatgtggatcacgcaqtgcaaagcttcggaga
pBPL insert coding region



aaatcttctatgtgggtcttccaagtattcctg




ttcatccaattggtcttccaagtattcctgttcatccaattaa




agcttcggagaaaatcttctatgtgtccctgtt




gatgtggatcacgcagtgcaaagcttcggagaaaatcttctat




gtgaaagcttcggagaaaatcttctacgtacqg




tgcggtgccagggggccggagagccgcctgcttgagttctacc




tcgccatgcctttcgcgacacccatggaagcag




agctggcccgcaggagcctggcccaggatgccccaccgcttcc




cgtgccaggggtgcttctgaaggagttcactgt




gtccggcaacatactgactatccgactgactgctgcagaccac




cgccaactgcagctctccatcagctcctgtctc




cagcagctttccctgttgatgtggatcacgcagtgctttctgc




ccgtgtttttggctcagcctccctcagggcaga




ggcgctagtga



22
IKASEKIFYVSLLMWITQCKASEKIIFYVK
Substrate in FIG. 6


23
VMTKLGFKV
SSX-457-65


24
RQLYVAAFTV
PSMA730-739


25
AQTPEKIQKAFDDIAKYFSKEEWEKMKAS
SSX-215-183



EKIFYVYMKRKYEAMTKLGFKATLPPFMC




NKRAEDFQGNDLDNDPNRGNQVERPQMT




FGRLQGISPKIMPKKPAEEGNDSEEVPEAS




GPQNDGKELCPPGKIPTTSEKIHERSGPKRG




EHAWTHRLRERKQLVIYEEISDP



26
MVMTKLGFKVKASEKJIFYVRQJYVAAFTV
CTLS1/pCBP expression product



GLPSIPVHPITQCFLPVFLVMTKLGFKVRQI




YVAETVKASEKJFYVAQTPEKIQKAFDDI




AKYFSKEEWEKMKASEKIFYVYMKRKYE




AMTKLGFKATLPPFMCNKRAEDFQGNDL




DNDPNRGNQVERPQMTFGRLQGISPKIMP




KKPAEEGNDSEEVPEASGPQNDGKELCPP




GKPTTSEKIHERSGPKRGEHAWTHRLRER




KQLVTYEEISDP



27
MAQIPEKIQKAFDDIAKYFSKEEWEKMKA
CTLS2 expression product



SEKIFYVYMKRKYEAMTKLGFKATLPPFM




CNKRAEDFQGNDLDNDPNRGNQVERPQM




TFGRLQGISPKIMPKKPAEEGNPSEEVPEA




SGPQNDGKELCPPGKPTTSEKIHERSGPKR




GEHAWTHRLRERKQLVIYEEISDPVMTKL




GFKVKASEKIFYVRQIYVAAFTVGLPSIIW




HPITQCFLPVFLVMTKLGFKVRQIYVAAFT




VKASEKIFYV



28
MVMTKLGFKVKASEKIFYVRQIYVAAFTV
CTLS3 expression product



GLPSIPVHPIAQTPEKIQKAFDDIAKYFSKEE




WEKMKASEKIFYVYMKRKYEAMTKLGF




KATLPPFMCNKRAEDFQGNDLDNDPNRG




NQVERPQMTFGRLQGISPKIMPKKPAEEG




NDSEEVPEASGPQNDGKELCPPGKPTTSE




KIHERSGPKRGEHAWTHRLRERKQLVJYE




EISDP



29
MAQIPEKIQKAFDDIAKYFSKEEWEKMKA
CTLS4 expression product



SEKIFYVYMKRKYEAMTKLGFKATLPPFM




CNKRAEDFQGNPLDNDPNRGNQVERPQM




TFGRLQGISPKIMPKKPAEEGNDSEEVPEA




SGPQNDGKELCPPGKPTTSEKIHERSGPKR




GEHAWTHRLRERKQLVLYEEISDPTQCFLP




VFLVMTKLGFKVRQIYVAAFTVKASEKIF




YV



30
atggtcatgactaaactaggtttcaaggtcaaagcttcggaga
pcBP insert coding region



aaatcttctatgtgagacagatttatgttgcag




ccttcacagtgggtcttccaagtattcctgttcatccaattac




gcagtgctttctgcccgtgtttttggtcatgac




taaactaggtttcaaggtcagacagatttatgttgcagccttc




acagtgaaagcttcggagaaaatcttctacgta




gctcaaataccagagaagatccaaaaggccttcgatgatattg




ccaaatacttctctaaggaagagtgggaaaaga




tgaaagcctcggagaaaatcttctatgtgtatatgaagagaaa




gtatgaggctatgactaaactaggtttcaaggc




caccctcccacctttcatgtgtaataaacgggccgaagacttc




caggggaatgatttggataatgaccctaaccgt




gggaatcaggttgaacgtcctcagatgactttcggcaggctcc




agggaatctccccgaagatcatgcccaagaagc




cagcagaggaaggaaatgattcggaggaagtgccagaagcatc




tggcccacaaaatgatgggaaagagctgtgccc




cccgggaaaaccaactacctctgagaagattcacgagagatct




ggacccaaaaggggggaacatgcctggacccac




agactgcgtgagagaaaacagctggtgatttatgaagagatca




gcgacccttagtga



31
RQIYVAAFTVKASEKTFYVAQIPEKIQK
FIG. 8 substrate/CTLS1-2


32
FLPWHRLFL
TYR207-215


33
MLLAVLYCLLWSFQTSAFLPWHRLFLMLL
CTLT2/pMEL expression product



AVLYCLLWSFQTSAFLPWHRLFLMLLAVL




YCLLWSFQTSAFLPWHRLFLMLLAVLYCL




LWSFQTSAFLPWHRLFL



34
atgctcctggctgttttgtactgcctgctgtggagtttccaga
CTLT2/pMEL insert coding region



cctccgcttttctgccttggcatagactcttct




tgatgctcctggctgttttgtactgcctgctgtggagtttcca




gacctccgcttttctgccttggcatagactctt




cttgatgctcctggctgttttgtactgcctgctgtggagtttc




cagacctccgcttttctgccttggcatagactc




ttcttgatgctcctggctgttttgtactgcctgctgtggagtt




tccagacctccgcttttctgccttggcatagac




tcttcttgtagtga



35
MELAN-A cDNA
Accession number: NM_005511


36
Tyrosinase cDNA
Accession number: NM_000372


37
NY-ESO-1 cDNA
Accession number: U87459


38
PSMA protein
Accession number: NP_004467


39
PSMA cDNA
Accession number: NM_004476


40
SSX-2 protein
Accession number: NP_003138


41
SSX-2 cDNA
Accession number: NM_003147


42
atgacctctcgccgctccgtgaagtcgggtccgcgggaggttccg
From accession number: D10879



cgcgatgagtacgaggatctgtactacaccccgtcttcaggtatgg
Herpes Simplex virus 1 UL49 coding



cgagtcccgatagtccgcctgacacctcccgccgtggcgccctac
sequence (VP22)



agacacgctcgcgccagaggggcgaggtccgtttcgtccagtac




gacgagtcggattatgccctctacgggggctcgtcatccgaagac




gacgaacacccggaggtcccccggacgcggcgtcccgtttccgg




ggcggttttgtccggcccggggcctgcgcgggcgcctccgccac




ccgctgggtccggaggggccggacgcacacccaccaccgcccc




ccgggccccccgaacccagcgggtggcgactaaggcccccgcg




gccccggcggcggagaccacccgcggcaggaaatcggcccag




ccagaatccgccgcactcccagacgcccccgcgtcgacggcgc




caacccgatccaagacacccgcgcaggggctggccagaaagct




gcactttagcaccgcccccccaaaccccgacgcgccatggaccc




cccgggtggccggctttaacaagcgcgtcttctgcgccgcggtcg




ggcgcctggcggccatgcatgcccggatggcggcggtccagctc




tgggacatgtcgcgtccgcgcacagacgaagacctcaacgaact




ccttggcatcaccaccatccgcgtgacggtctgcgagggcaaaaa




cctgcttcagcgcgccaacgagttggtgaatccagacgtggtgca




ggacgtcgacgcggccacggcgactcgagggcgttctgcggcgt




cgcgccccaccgagcgacctcgagccccagcccgctccgcttct




cgccccagacggcccgtcgag



43
MTSRRSVKSGPREVPRDEYEDLYYTPSSG
Accession number: P10233



MASPDSPPDTSRRGALFTQTRSRQRGEVR
Herpes Simplex virus 1 UL49/VP22



FVQYDESDYALYGGSSSEDDEHPEVPRTR
protein sequence



RPVSGAVLSGPGPARAPPPFTPAGSGGAG




RTPTTAPRAPRTQRVATKAPAAPAAETTR




GRKSAQPESAALPDAPASTAPTFTRSKTPA




QGLARKLHFSTAPPNPDAPWTPRVAGFNK




RVFCAAVGRLAAMHARMAAVQLWDFTM




SRPRTDEDLNELLGITTIRVTVCEGKNLLQ




RANELVNPDVVQDVDAATATRGRSAASR




FTPTERPRAPARSASRPRRPVE










Melan-A mRNA Sequence
  • LOCUS NM005511 1524 bp mRNA PRI 14-OCT-2001
  • DEFINITION Homo sapiens melan-A (MLANA), mRNA.
  • ACCESSION NM005511
  • VERSION NM005511.1 GI:5031912











/trans1ation =“MPREDAHFIYGYPKKGHGHSYTTAEEAAGIGILTVILGVLLLIGCWYCRRRN
(SEQ ID NO.2)






GYRALMDKSLHVGTQCALTRRCPQEGFDHRDSKVSLQEKNCEPVVPNAPPAYEKLSAE






QSPPPYSP”

















ORIGIN















(SEQ ID NO. 35)








1
agcagacaga ggactctcat taaggaaggt gtcctgtgcc ctgaccctac aagatgccaa





61
gagaagatgc tcacttcatc tatggttacc ccaagaaggg gcacggccac tcttacacca





121
cggctgaaga ggccgctggg atcggcatcc tgacagtgat cctgggagtc ttactgctca





181
tcggctgttg gtattgtaga agacgaaatg gatacagagc cttgatggat aaaagtcttc





241
atgttggcac tcaatgtgcc ttaacaagaa gatgcccaca agaagggttt gatcatcggg





301
acagcaaagt gtctcttcaa gagaaaaact gtgaacctgt ggttcccaat gctccacctg





361
cttatgagaa actctctgca gaacagtcac caccacctta ttcaccttaa gagccagcga





421
gacacctgag acatgctgaa attatttctc tcacactttt gcttgaattt aatacagaca





481
tctaatgttc tcctttggaa tggtgtagga aaaatgcaag ccatctctaa taataagtca





541
gtgttaaaat tttagtaggt ccgctagcag tactaatcat gtgaggaaat gatgagaaat





601
attaaattgg gaaaactcca tcaataaatg ttgcaatgca tgatactatc tgtgccagag





661
gtaatgttag taaatccatg gtgttatttt ctgagagaca gaattcaagt gggtattctg





721
gggccatcca atttctcttt acttgaaatt tggctaataa caaactagtc aggttttcga





781
accttgaccg acatgaactg tacacagaat tgttccagta ctatggagtg ctcacaaagg





841
atacttttac aggttaagac aaagggttga ctggcctatt tatctgatca agaacatgtc





901
agcaatgtct ctttgtgctc taaaattcta ttatactaca ataatatatt gtaaagatcc





961
tatagctctt tttttttgag atggagtttc gcttttgttg cccaggctgg agtgcaatgg





1021
cgcgatcttg gctcaccata acctccgcct cccaggttca agcaattctc ctgccttagc





1081
ctcctgagta gctgggatta caggcgtgcg ccactatgcc tgactaattt tgtagtttta





1141
gtagagacgg ggtttctcca tgttggtcag gctggtctca aactcctgac ctcaggtgat





1201
ctgcccgcct cagcctccca aagtgctgga attacaggcg tgagccacca cgcctggctg





1261
gatcctatat cttaggtaag acatataacg cagtctaatt acatttcact tcaaggctca





1321
atgctattct aactaatgac aagtattttc tactaaacca gaaattggta gaaggattta





1381
aataagtaaa agctactatg tactgcctta gtgctgatgc ctgtgtactg ccttaaatgt





1441
acctatggca atttagctct cttgggttcc caaatccctc tcacaagaat gtgcagaaga





1501
aatcataaag gatcagagat tctg










Tyrosinase mRNA Sequence
  • LOCUS NM000372 1964 bp mRNA PRI 31-OCT-2000
  • DEFINITION Homo sapiens tyrosinase (oculocutaneous albinism IA) (TYR), mRNA.
  • ACCESSION NM000372
  • VERSION NM000372.1 GI:4507752











/translation =“MLLAVLYCLLWSFQTSAGHFPRACVSSKNLMEKECCPPWSGDRS
(SEQ ID NO.3)






PCGQLSGRGSCQNILLSNAPLGPQFPFTGVDDRESWPSVFYNRTCQCSGNFMGFNCGNC






KFGFWGPNCTERRLLVRRNWDLSAPEKDKFFAYLTLAKHTISSDYVTPIGTYGQMKNGS






TPMFNDINIYDLFVWMHYYVSMDALLGGSEIWRDIDFAHEAPAYLPWHRLFLLRWEQEI






QKLTGDENFTIPYWDWRDAEKCDICTDEYMGGQHPTNPNLLSPASFFSSWQIVCSRLEE






YNSHQSLCNGTPEGPLRRNPGNHDKSRTPRLPSSADVEFCLSLTQYESGSMDKAANFSFR






NTLEGFASPLTGIADASQSSMHNALHIYMNGTMSQVQGSANDPTFLLHHAFVDSIFEQWL






RRHRPLQEVYPEANAPIGHNRESYMVPFIPLYRNGDFFISSKDLGYDYSYLQDSDPDSFQ






DYIKSYLEQASRIWSWLLGAAMVGAVLTALLAGLVSLLCRHKRKQLP






EEKQPLLMEKEDYHSLYQSHL”

















ORIGIN















(SEQ ID NO. 36)








1
atcactgtag tagtagctgg aaagagaaat ctgtgactcc aattagccag ttcctgcaga





61
ccttgtgagg actagaggaa gaatgctcct ggctgttttg tactgcctgc tgtggagttt





121
ccagacctcc gctggccatt tccctagagc ctgtgtctcc tctaagaacc tgatggagaa





181
ggaatgctgt ccaccgtgga gcggggacag gagtccctgt ggccagcttt caggcagagg





241
ttcctgtcag aatatccttc tgtccaatgc accacttggg cctcaatttc ccttcacagg





301
ggtggatgac cgggagtcgt ggccttccgt cttttataat aggacctgcc agtgctctgg





361
caacttcatg ggattcaact gtggaaactg caagtttggc ttttggggac caaactgcac





421
agagagacga ctcttggtga gaagaaacat cttcgatttg agtgccccag agaaggacaa





481
attttttgcc tacctcactt tagcaaagca taccatcagc tcagactatg tcatccccat





541
agggacctat ggccaaatga aaaatggatc aacacccatg tttaacgaca tcaatattta





601
tgacctcttt gtctggatgc attattatgt gtcaatggat gcactgcttg ggggatctga





661
aatctggaga gacattgatt ttgcccatga agcaccagct tttctgcctt ggcatagact





721
cttcttgttg cggtgggaac aagaaatcca gaagctgaca ggagatgaaa acttcactat





781
tccatattgg gactggcggg atgcagaaaa gtgtgacatt tgcacagatg agtacatggg





841
aggtcagcac cccacaaatc ctaacttact cagcccagca tcattcttct cctcttggca





901
gattgtctgt agccgattgg aggagtacaa cagccatcag tctttatgca atggaacgcc





961
cgagggacct ttacggcgta atcctggaaa ccatgacaaa tccagaaccc caaggctccc





1021
ctcttcagct gatgtagaat tttgcctgag tttgacccaa tatgaatctg gttccatgga





1081
taaagctgcc aatttcagct ttagaaatac actggaagga tttgctagtc cacttactgg





1141
gatagcggat gcctctcaaa gcagcatgca caatgccttg cacatctata tgaatggaac





1201
aatgtcccag gtacagggat ctgccaacga tcctatcttc cttcttcacc atgcatttgt





1261
tgacagtatt tttgagcagt ggctccgaag gcaccgtcct cttcaagaag tttatccaga





1321
agccaatgca cccattggac ataaccggga atcctacatg gttcctttta taccactgta





1381
cagaaatggt gatttcttta tttcatccaa agatctgggc tatgactata gctatctaca





1441
agattcagac ccagactctt ttcaagacta cattaagtcc tatttggaac aagcgagtcg





1501
gatctggtca tggctccttg gggcggcgat ggtaggggcc gtcctcactg ccctgctggc





1561
agggcttgtg agcttgctgt gtcgtcacaa gagaaagcag cttcctgaag aaaagcagcc





1621
actcctcatg gagaaagagg attaccacag cttgtatcag agccatttat aaaaggctta





1681
ggcaatagag tagggccaaa aagcctgacc tcactctaac tcaaagtaat gtccaggttc





1741
ccagagaata tctgctggta tttttctgta aagaccattt gcaaaattgt aacctaatac





1801
aaagtgtagc cttcttccaa ctcaggtaga acacacctgt ctttgtcttg ctgttttcac





1861
tcagcccttt taacattttc ccctaagccc atatgtctaa ggaaaggatg ctatttggta





1921
atgaggaact gttatttgta tgtgaattaa agtgctctta tttt










NY-ESO-1 mRNA Sequence
  • LOCUS HSU87459 752 bp. mRNA PRI 22-DEC-1999
  • DEFINITION Human autoimmunogenic cancer/testis antigen NY-ESO-1 mRNA, complete cds.
  • ACCESSION U87459
  • VERSION U87459.1 GI:1890098











/translation =“MQAEGRGTGGSTGDADGPGGPGWDGPGGNAGGPGEAGATGGRGPRGAG
(SEQ ID NO. 11)






AARASGPGGGAPRGPHGGAASGLNGCCRCGARGPESRLLEFYLAMPFATPMEAELARR






SLAQDAPPLPVPGVLLKEFTVSGNILTIRLTAADHRQLQLSISSCLQQLSLLM






WITQCFLPVFLAQPPSGQRR”

















ORIGIN















(SEQ ID NO. 37)








1
atcctcgtgg gccctgacct tctctctgag agccgggcag aggctccgga gccatgcagg





61
ccgaaggccg gggcacaggg ggttcgacgg gcgatgctga tggcccagga ggccctggca





121
ttcctgatgg cccagggggc aatgctggcg gcccaggaga ggcgggtgcc acgggcggca





181
gaggtccccg gggcgcaggg gcagcaaggg cctcggggcc gggaggaggc gccccgcggg





241
gtccgcatgg cggcgcggct tcagggctga atggatgctg cagatgcggg gccagggggc





301
cggagagccg cctgcttgag ttctacctcg ccatgccttt cgcgacaccc atggaagcag





361
agctggcccg caggagcctg gcccaggatg ccccaccgct tcccgtgcca ggggtgcttc





421
tgaaggagtt cactgtgtcc ggcaacatac tgactatccg actgactgct gcagaccacc





481
gccaactgca gctctccatc agctcctgtc tccagcagct ttccctgttg atgtggatca





541
cgcagtgctt tctgcccgtg tttttggctc agcctccctc agggcagagg cgctaagccc





601
agcctggcgc cccttcctag gtcatgcctc ctcccctagg gaatggtccc agcacgagtg





661
gccagttcat tgtgggggcc tgattgtttg tcgctggagg aggacggctt acatgtttgt





721
ttctgtagaa aataaaactg agctacgaaa aa










PSMA cDNA Sequence
  • LOCUS NM004476 2653 bp mRNA PRI 01-NOV-2000
  • DEFINITION Homo sapiens folate hydrolase (prostate-specific membrane antigen) 1 (FOLH1), mRNA.
  • ACCESSION NM004476
  • VERSION NM004476.1 GI:4758397











/trans1ation =“MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWIKSSNEAT
(SEQ ID NO. 38)






NITPKHNMKAFLDELKAENIKKFLYNFTQIPHLAGTEQNFQLAKQIQSQWKEFGLDSVEL






AHYDVLLSYPNKTHPNYISIINEDGNEIFNTSLFEPPPPGYENVSDIVPPFSAFSPQGMPEG






DLVYVNYARTEDFFKLERDMKINCSGKIVIARYGKVFRGNKVKNAQLAGAKGVILYSDP






ADYFAGVKSYPDGWNLPGGGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGL






PSIPVHPIGYYDAQKLLEKMGGSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHS






TNEVTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGDPQSGAAVVHEIVRSFGTLKKE






GWRPRRTILFASWDAEEFGLLGSTEWAEENSRLLQERGVAYINADSSIEGNYTLRVDCTP






LMYSLVHNLTKELKSPDEGFEGKSLYESWTKKSPSPEFSGMPRISKLGSGNDFEVFFQRL






GIASGRARYTKNWETNKFSGYPLYHSVYETYELVEKFYDPMFKYHLTVAQVRGGMVFE






LANSIVLPFDCRDYAVVLRKYADMYSISMKHPQEMKTYSVSFDSLFSAVKNFTEIASKFS






ERLQDFDKSNPIVLRMMNPQLMFLERAIUDPLGLPDRPFYRHVIYAPSSHNKYAGESFPGI






YDALFDIESKVDPSKAWGEVKRQIYVAAFTVQAAAETLSEVA”



















ORIGIN















(SEQ ID NO. 39)








1
ctcaaaaggg gccggatttc cttctcctgg aggcagatgt tgcctctctc tctcgctcgg





61
attggttcag tgcactctag aaacactgct gtggtggaga aactggaccc caggtctgga





121
gcgaattcca gcctgcaggg ctgataagcg aggcattagt gagattgaga gagactttac





181
cccgccgtgg tggttggagg gcgcgcagta gagcagcagc acaggcgcgg gtcccgggag





241
gccggctctg ctcgcgccga gatgtggaat ctccttcacg aaaccgactc ggctgtggcc





301
accgcgcgcc gcccgcgctg gctgtgcgct ggggcgctgg tgctggcggg tggcttcttt





361
ctcctcggct tcctcttcgg gtggtttata aaatcctcca atgaagctac taacattact





421
ccaaagcata atatgaaagc atttttggat gaattgaaag ctgagaacat caagaagttc





481
ttatataatt ttacacagat accacattta gcaggaacag aacaaaactt tcagcttgca





541
aagcaaattc aatcccagtg gaaagaattt ggcctggatt ctgttgagct agcacattat





601
gatgtcctgt tgtcctaccc aaataagact catcccaact acatctcaat aattaatgaa





661
gatggaaatg agattttcaa cacatoatta tttgaaccac ctcctccagg atatgaaaat





721
gtttcggata ttgtaccacc tttcagtgct ttctctcctc aaggaatgcc agagggcgat





781
ctagtgtatg ttaactatgc acgaactgaa gacttcttta aattggaacg ggacatgaaa





841
atcaattgct ctgggaaaat tgtaattgcc agatatggga aagttttcag aggaaataag





901
gttaaaaatg cccagctggc aggggccaaa ggagtcattc tctactccga ccctgctgac





961
tactttgctc ctggggtgaa gtcctatcca gatggttgga atcttcctgg aggtggtgtc





1021
cagcgtggaa atatcctaaa tctgaatggt gcaggagacc ctctcacacc aggttaccca





1081
gcaaatgaat atgcttatag gcgtggaatt gcagaggctg ttggtcttcc aagtattcct





1141
gttcatccaa ttggatacta tgatgcacag aagctcctag aaaaaatggg tggctcagca





1201
ccaccagata gcagctggag aggaagtctc aaagtgccct acaatgttgg acctggcttt





1261
actggaaact tttctacaca aaaagtcaag atgcacatcc actctaccaa tgaagtgaca





1321
agaatttaca atgtgatagg tactctcaga ggagcagtgg aaccagacag atatgtcatt





1381
ctgggaggtc accgggactc atgggtgttt ggtggtattg accctcagag tggagcagct





1441
gttgttcatg aaattgtgag gagctttgga acactgaaaa aggaagggtg gagacctaga





1501
agaacaattt tgtttgcaag ctgggatgca gaagaatttg gtcttcttgg ttctactgag





1561
tgggcagagg agaattcaag actccttcaa gagcgtggcg tggcttatat taatgctgac





1621
tcatctatag aaggaaacta cactctgaga gttgattgta caccgctgat gtacagcttg





1681
gtacacaacc taacaaaaga gctgaaaagc cctgatgaag gctttgaagg caaatctctt





1741
tatgaaagtt ggactaaaaa aagtccttcc ccagagttca gtggcatgcc caggataagc





1801
aaattgggat ctggaaatga ttttgaggtg ttcttccaac gacttggaat tgcttcaggc





1861
agagcacggt atactaaaaa ttgggaaaca aacaaattca gcggctatcc actgtatcac





1921
agtgtctatg aaacatatga gttggtggaa aagttttatg atccaatgtt taaatatcac





1981
ctcactgtgg cccaggttcg aggagggatg gtgtttgagc tagccaattc catagtgctc





2041
ccttttgatt gtcgagatta tgctgtagtt ttaagaaagt atgctgacaa aatctacagt





2101
atttctatga aacatccaca ggaaatgaag acatacagtg tatcatttga ttcacttttt





2161
tctgcagtaa agaattttac agaaattgct tccaagttca gtgagagact ccaggacttt





2221
gacaaaagca acccaatagt attaagaatg atgaatgatc aactcatgtt tctggaaaga





2281
gcatttattg atccattagg gttaccagac aggccttttt ataggcatgt catctatgct





2341
ccaagcagcc acaacaagta tgcaggggag tcattcccag gaatttatga tgctctgttt





2401
gatattgaaa gcaaagtgga cccttccaag gcctggggag aagtgaagag acagatttat





2461
gttgcagcct tcacagtgca ggcagctgca gagactttga gtgaagtagc ctaagaggat





2521
tctttagaga atccgtattg aatttgtgtg gtatgtcact cagaaagaat cgtaatgggt





2581
atattgataa attttaaaat tggtatattt gaaataaagt tgaatattat atataaaaaa





2641
aaaaaaaaaa aaa










NM 003147 Homo Sapiens Synovial Sarcoma, X Breakpoint 2 (SSX2), mRNA
  • LOCUS NM003147 766 bp mRNA PRI 14-MAR-2001
  • DEFINITION Homo sapiens synovial sarcoma, X breakpoint 2 (SSX2), mRNA.
  • ACCESSION NM003147
  • VERSION NM003147.1 GI:10337582











/translation =“MNGDDAFARRPTVGAQIPEKIQKAFDDTAKYFSKEEWEKMKASE
SEQ ID NO. 40






KIFYVYMKRKYEANTKLGFKATLPPFMCNKRAEDFQGNDLDNDPNRGNQVERPQMTFG






RLQGISPKIMPKKPAEEGNDSEEVPEASGPQNDGKELCPPGKPTTSEKIHERSGPKRG






EHAWTHRLRERKQLVIYEEISDPEEDDE”















SEQ ID NO 41










1
ctctctttcq attcttccat actcagagta cgcacggtct gattttctct ttggattctt






61
ccaaaatcag agtcagactg ctcccggtgc catgaacgga gacgacgcct ttgcaaggag





121
acccacggtt ggtgctcaaa taccagagaa gatccaaaag gccttcgatg atattgccaa





181
atacttctct aaggaagagt gggaaaagat gaaagcctcg gagaaaatCt tctatgtgta





241
tatgaagaga aagtatgagg ctatgactaa actaggtttc aaggccaccc tcccaccttt





301
catgtgtaat aaacgggccg aagacttcca ggggaatgat ttggataatg accctaaccg





361
tgggaatcag gttgaacgtc ctcagatgac tttcggcagg ctccagqgaa tctccccgaa





421
gatcatgccc aagaagccag cagaggaagg aaatgattcg gaggaagtgc cagaagcatc





481
tggcccacaa aatgatggga aagagctgtg ccccccggga aaaccaacta cctctgagaa





541
gattcacgag agatctggac ccaaaagggg ggaacatgcc tggacccaca gactgcgtga





601
gagaaaacag ctggtgattt atgaagagat cagcgaccct gaggaagatg acgagtaact





661
cccctcaggg atacgacaca tgcccatqat gagaagcaga acgtggtgac ctttcacgaa





721
catgggcatg gctgcggacc cctcgtcatc aggtgcatag caagtg















APPENDIX A





SEQ ID NO
IDENTITY
SEQUENCE

















980
Tyr 207-216
FLPWHRLFLL


981
Tyrosinase protein
Accession number**: P14679


982
SSX-2 protein
Accession number: NP_003138


983
PSMA protein
Accession number: NP_004467


984
Tyrosinase cDNA
Accession number: NM_000372


985
SSX-2 cDNA
Accession number: NM_003147


986
PSMA cDNA
Accession number: NM_004476


987
Tyr 207-215
FLPWHRLFL


988
Tyr 208-216
LPWHRLFLL


989
SSX-2 31-68
YFSKEEWEKMKASEKIFYV




YMKRKYEAMTKLGFKATLP


990
SSX-2 32-40
FSKEEWEKM


991
SSX-2 39-47
KMKASEKIF


992
SSX-2 40-48
MKASEKIFY


993
SSX-2 39-48
KMKASEKIFY


994
SSX-2 41-49
KASEKIFYV


995
SSX-2 40-49
MKASEKIFYV


996
SSX-2 41-50
KASEKIFYVY


997
SSX-2 42-49
ASEKIFYVY


998
SSX-2 53-61
RKYEAMTKL


999
SSX-2 52-61
KRKYEAMTKL


1000
SSX-2 54-63
KYEAMTKLGF


1001
SSX-2 55-63
YEAMTKLGF


1002
SSX-2 56-63
EAMTKLGF


1003
HBV18-27
FLPSDYFPSV


1004
HLA-B44 binder
AEMGKYSFY


1005
SSX-1 41-49
KYSEKISYV


1006
SSX-3 41-49
KVSEKIVYV


1007
SSX-4 41-49
KSSEKIVYV


1008
SSX-5 41-49
KASEKIIYV


1009
PSMA163-192
AFSPQGMPEGDLVYV




NYARTEDFFKLERDM


1010
PSMA 168-190
GMPEGDLVYVNYAR




TEDFFKLER


1011
PSMA 169-177
MPEGDLVYV


1012
PSMA 168-177
GMPEGDLVYV


1013
PSMA 168-176
GMPEGDLVY


1014
PSMA 167-176
QGMPEGDLVY


1015
PSMA 169-176
MPEGDLVY


1016
PSMA 171-179
EGDLVYVNY


1017
PSMA 170-179
PEGDLVYVNY


1018
PSMA 174-183
LVYVNYARTE


1019
PSMA 177-185
VNYARTEDF


1020
PSMA 176-185
YVNYARTEDF


1021
PSMA 178-186
NYARTEDFF


1022
PSMA 179-186
YARTEDFF


1023
PSMA 181-189
RTEDFFKLE


1024
PSMA 281-310
RGIAEAVGLPSIPVHP




IGYYDAQKLLEKMG


1025
PSMA 283-307
IAEAVGLPSIPVHPIG




YYDAQKLLE


1026
PSMA 289-297
LPSIPVHPI


1027
PSMA 288-297
GLPSIPVHPI


1028
PSMA 297-305
IGYYDAQKL


1029
PSMA 296-305
PIGYYDAQKL


1030
PSMA 291-299
SIPVHPIGY


1031
PSMA 290-299
PSIPVHPIGY


1032
PSMA 292-299
IPVHPIGY


1033
PSMA 299-307
YYDAQKLLE


1034
PSMA454-481
SSIEGNYTLRVDCT




PLMYSLVHLTKEL


1035
PSMA 456-464
IEGNYTLRV


1036
PSMA 455-464
SIEGNYTLRV


1037
PSMA 457-464
EGNYTLRV


1038
PSMA 461-469
TLRVDCTPL


1039
PSMA 460-469
YTLRVDCTPL


1040
PSMA 462-470
LRVDCTPLM


1041
PSMA 463-471
RVDCTPLMY


1042
PSMA 462-471
LRVDCTPLMY


1043
PSMA653-687
FDKSNPIVLRMMNDQ




LMFLERAFIDPLGLPDRPFY


1044
PSMA 660-681
VLRMMNDQLMFLERAFIDPLGL


1045
PSMA 663-671
MMNDQLMFL


1046
PSMA 662-671
RMMNDQLMFL


1047
PSMA 662-670
RMMNDQLMF


1048
Tyr1-17
MLLAVLYCLLWSFQTSA


1049
GP100 protein2
**Accession number: P40967


1050
MAGE-1 protein
Accession number: P43355


1051
MAGE-2 protein
Accession number: P43356


1052
MAGE-3 protein
Accession number: P43357


1053
NY-ESO-1 protein
Accession number: P78358


1054
LAGE-1a protein
Accession number: CAA11116


1055
LAGE-1b protein
Accession number: CAA11117


1056
PRAME protein
Accession number: NP 006106


1057
PSA protein
Accession number: P07288


1058
PSCA protein
Accession number: O43653


1059
GP100 cds
Accession number: U20093


1060
MAGE-1 cds
Accession number: M77481


1061
MAGE-2 cds
Accession number: L18920


1062
MAGE-3 cds
Accession number: U03735


1063
NY-ESO-1 cDNA
Accession number: U87459


1064
PRAME cDNA
Accession number: NM_006115


1065
PSA cDNA
Accession number: NM_001648


1066
PSCA cDNA
Accession number: AF043498


1067
GP100 630-638
LPHSSSHWL


1068
GP100 629-638
QLPHSSSHWL


1069
GP100 614-622
LIYRRRLMK


1070
GP100 613-622
SLIYRRRLMK


1071
GP100 615-622
IYRRRLMK


1072
GP100 630-638
LPHSSSHWL


1073
GP100 629-638
QLPHSSSHWL


1074
MAGE-1 95-102
ESLFRAVI


1075
MAGE-1 93-102
ILESLFRAVI


1076
MAGE-1 93-101
ILESLFRAV


1077
MAGE-1 92-101
CILESLFRAV


1078
MAGE-1 92-100
CILESLFRA


1079
MAGE-1 263-271
EFLWGPRAL


1080
MAGE-1 264-271
FLWGPRAL


1081
MAGE-1 264-273
FLWGPRALAE


1082
MAGE-1 265-274
LWGPRALAET


1083
MAGE-1 268-276
PRALAETSY


1084
MAGE-1 267-276
GPRALAETSY


1085
MAGE-1 269-277
RALAETSYV


1086
MAGE-1 271-279
LAETSYVKV


1087
MAGE-1 270-279
ALAETSYVKV


1088
MAGE-1 272-280
AETSYVKVL


1089
MAGE-1 271-280
LAETSYVKVL


1090
MAGE-1 274-282
TSYVKVLEY


1091
MAGE-1 273-282
ETSYVKVLEY


1092
MAGE-1 278-286
KVLEYVIKV


1093
MAGE-1 168-177
SYVLVTCLGL


1094
MAGE-1 169-177
YVLVTCLGL


1095
MAGE-1 170-177
VLVTCLGL


1096
MAGE-1 240-248
TQDLVQEKY


1097
MAGE-1 239-248
LTQDLVQEKY


1098
MAGE-1 232-240
YGEPRKLLT


1099
MAGE-1 243-251
LVQEKYLEY


1100
MAGE-1 242-251
DLVQEKYLEY


1101
MAGE-1 230-238
SAYGEPRKL


1102
MAGE-1 278-286
KVLEYVIKV


1103
MAGE-1 277-286
VKVLEYVIKV


1104
MAGE-1 276-284
YVKVLEYVI


1105
MAGE-1 274-282
TSYVKVLEY


1106
MAGE-1 273-282
ETSYVKVLEY


1107
MAGE-1 283-291
VIKVSARVR


1108
MAGE-1 282-291
YVIKVSARVR


1109
MAGE-2 115-122
ELVHFLLL


1110
MAGE-2 113-122
MVELVHFLLL


1111
MAGE-2 109-116
ISRKMVEL


1112
MAGE-2 108-116
AISRKMVEL


1113
MAGE-2 107-116
AAISRKMVEL


1114
MAGE-2 112-120
KMVELVHFL


1115
MAGE-2 109-117
ISRKMVELV


1116
MAGE-2 108-117
AISRKMVELV


1117
MAGE-2 116-124
LVHFLLLKY


1118
MAGE-2 115-124
ELVHFLLLKY


1119
MAGE-2 111-119
RKMVELVHF


1120
MAGE-2 158-166
LQLVFGIEV


1121
MAGE-2 157-166
YLQLVFGIEV


1122
MAGE-2 159-167
QLVFGIEVV


1123
MAGE-2 158-167
LQLVFGIEVV


1124
MAGE-2 164-172
IEVVEVVPI


1125
MAGE-2 163-172
GIEVVEVVPI


1126
MAGE-2 162-170
FGIEVVEVV


1127
MAGE-2 154-162
ASEYLQLVF


1128
MAGE-2 153-162
KASEYLQLVF


1129
MAGE-2 218-225
EEKIWEEL


1130
MAGE-2 216-225
APEEKIWEEL


1131
MAGE-2 216-223
APEEKIWE


1132
MAGE-2 220-228
KIWEELSML


1133
MAGE-2 219-228
EKIWEELSML


1134
MAGE-2 271-278
FLWGPRAL


1135
MAGE-2 271-279
FLWGPRALI


1136
MAGE-2 278-286
LIETSYVKV


1137
MAGE-2 277-286
ALIETSYVKV


1138
MAGE-2 276-284
RALIETSYV


1139
MAGE-2 279-287
IETSYVKVL


1140
MAGE-2 278-287
LIETSYVKVL


1141
MAGE-3 271-278
FLWGPRAL


1142
MAGE-3 270-278
EFLWGPRAL


1143
MAGE-3 271-279
FLWGPRALV


1144
MAGE-3 276-284
RALVETSYV


1145
MAGE-3 272-280
LWGPRALVE


1146
MAGE-3 271-280
FLWGPRALVE


1147
MAGE-3 27 2-281
LWGPRALVET


1148
NY-ESO-1 82-90
GPESRLLEF


1149
NY-ESO-1 83-91
PESRLLEFY


1150
NY-ESO-1 82-91
GPESRLLEFY


1151
NY-ESO-1 84-92
ESRLLEFYL


1152
NY-ESO-1 86-94
RLLEFYLAM


1153
NY-ESO-1 88-96
LEFYLAMPF


1154
NY-ESO-1 87-96
LLEFYLAMPF


1155
NY-ESO-1 93-102
AMPFATPMEA


1156
NY-ESO-1 94-102
MPFATPMEA


1157
NY-ESO-1 115-123
PLPVPGVLL


1158
NY-ESO-1 114-123
PPLPVPGVLL


1159
NY-ESO-1 116-123
LPVPGVLL


1160
NY-ESO-1 103-112
ELARRSLAQD


1161
NY-ESO-1 118-126
PGVLLKEF


1162
NY-ESO-1 117-126
PVPGVLLKEF


1163
NY-ESO-1 116-123
LPVPGVLL


1164
NY-ESO-1 127-135
TVSGNILTI


1165
NY-ESO-1 126-135
FTVSGNILTI


1166
NY-ESO-1 120-128
GVLLKEFTV


1167
NY-ESO-1 121-130
VLLKEFTVSG


1168
NY-ESO-1 122-130
LLKEFTVSG


1169
NY-ESO-1 118-126
VPGVLLKEF


1170
NY-ESO-1 117-126
PVPGVLLKEF


1171
NY-ESO-1 139-147
AADHRQLQL


1172
NY-ESO-1 148-156
SISSCLQQL


1173
NY-ESO-1 147-156
LSISSCLQQL


1174
NY-ESO-1 138-147
TAADHRQLQL


1175
NY-ESO-1 161-169
WITQCFLPV


1176
NY-ESO-1 157-165
SLLMWITQC


1177
NY-ESO-1 150-158
SSCLQQLSL


1178
NY-ESO-1 154-162
QQLSLLMWI


1179
NY-ESO-1 151-159
SCLQQLSLL


1180
NY-ESO-1 150-159
SSCLQQLSLL


1181
NY-ESO-1 163-171
TQCFLPVFL


1182
NY-ESO-1 162-171
ITQCFLPVFL


1183
PRAME 219-227
PMQDIKMIL


1184
PRAME 218-227
MPMQDIKMIL


1185
PRAME 428-436
QHLIGLSNL


1186
PRAME 427-436
LQHLIGLSNL


1187
PRAME 429-436
HLIGLSNL


1188
PRAME 431-439
IGLSNLTHV


1189
PRAME 430-439
LIGLSNLTHV


1190
PSA 53-61
VLVHPQWVL


1191
PSA 52-61
GVLVHPQWVL


1192
PSA 52-60
GVLVHPQWV


1193
PSA 59-67
WVLTAAHCI


1194
PSA 54-63
LVHPQWVLTA


1195
PSA 53-62
VLVHPQWVLT


1196
PSA 54-62
LVHPQWVLT


1197
PSA 66-73
CIRNKSVI


1198
PSA 65-73
HCIRNKSVI


1199
PSA 56-64
HPQWVLTAA


1200
PSA 63-72
AAHCIRNKSV


1201
PSCA 116-123
LLWGPGQL


1202
PSCA 115-123
LLLWGPGQL


1203
PSCA 114-123
GLLLWGPGQL


1204
PSCA 99-107
ALQPAAAIL


1205
PSCA 98-107
HALQPAAAIL


1206
Tyr 128-137
APEKDKFFAY


1207
Tyr 129-137
PEKDKFFAY


1208
Tyr 130-138
EKDKFFAYL


1209
Tyr 131-138
KDKFFAYL


1210
Tyr 205-213
PAFLPWHRL


1211
Tyr 204-213
APAFLPWHRL


1212
Tyr 214-223
FLLRWEQEIQ


1213
Tyr 212-220
RLFLLRWEQ


1214
Tyr 191-200
GSEIWRDIDF


1215
Tyr 192-200
SEIWRDIDF


1216
Tyr 473-481
RIWSWLLGA


1217
Tyr 476-484
SWLLGAAMV


1218
Tyr 477-486
WLLGAAMVGA


1219
Tyr 478-486
LLGAAMVGA


1220
PSMA 4-12
LLHETDSAV


1221
PSMA 13-21
ATARRPRWL


1222
PSMA 53-61
TPKHNMKAF


1223
PSMA 64-73
ELKAENIKKF


1224
PSMA 69-77
NIKKFLH1NF


1225
PSMA 68-77
ENIKKFLH1NF


1226
PSMA 220-228
AGAKGVILY


1227
PSMA 468-477
PLMYSLVHNL


1228
PSMA 469-477
LMYSLVHNL


1229
PSMA 463-471
RVDCTPLMY


1230
PSMA 465-473
DCTPLMYSL


1231
PSMA 507-515
SGMPRISKL


1232
PSMA 506-515
FSGMPRISKL


1233
NY-ESO-1 136-163
RLTAADHRQLQLS




ISSCLQQLSLLMWIT


1234
NY-ESO-1 150-177
SSCLQQLSLLMWIT




QCFLPVFLAQPPSG


1235
Mage-1 125-132
KAEMLESV


1236
Mage-1 124-132
TKAEMLESV


1237
Mage-1 123-132
VTKAEMLESV


1238
Mage-1 128-136
MLESVIKNY


1239
Mage-1 127-136
EMLESVIKNY


1240
Mage-1 125-133
KAEMLESVI


1241
Mage-1 146-153
KASESLQL


1242
Mage-1 145-153
GKASESLQL


1243
Mage-1 147-155
ASESLQLVF


1244
Mage-1 153-161
LVFGIDVKE


1245
Mage-1 114-121
LLKYRARE


1246
Mage-1 106-113
VADLVGFL


1247
Mage-1 105-113
KVADLVGFL


1248
Mage-1 107-115
ADLVGFLLL


1249
Mage-1 106-115
VADLVGFLLL


1250
Mage-1 114-123
LLKYRAREPV


1251
Mage-3 278-286
LVETSYVKV


1252
Mage-3 277-286
ALVETSYVKV


1253
Mage-3 285-293
KVLHHMVKI


1254
Mage-3 283-291
YVKVLHHMV


1255
Mage-3 275-283
PRALVETSY


1256
Mage-3 274-283
GPRALVETSY


1257
Mage-3 278-287
LVETSYVKVL


1258
ED-B 4'-5
TIIPEVPQL


1259
ED-B 5'-5
DTIIPEVPQL


1260
ED-B 1-10
EVPQLTDLSF


1261
ED-B 23-30
TPLNSSTI


1262
ED-B 18-25
IGLRWTPL


1263
ED-B 17-25
SIGLRWTPL


1264
ED-B 25-33
LNSSTIIGY


1265
ED-B 24-33
PLNSSTIIGY


1266
ED-B 23-31
TPLNSSTII


1267
ED-B 31-38
IGYRITVV


1268
ED-B 30-38
IIGYRITVV


1269
ED-B 29-38
TIIGYRITVV


1270
ED-B 31-39
IGYRITVVA


1271
ED-B 30-39
IIGYRITVVA


1272
CEA 184-191
SLPVSPRL


1273
CEA 183-191
QSLPVSPRL


1274
CEA 186-193
PVSPRLQL


1275
CEA 185-193
LPVSPRLQL


1276
CEA 184-193
SLPVSPRLQL


1277
CEA 185-192
LPVSPRLQ


1278
CEA 192-200
QLSNGNRTL


1279
CEA 191-200
LQLSNGNRTL


1280
CEA 179-187
WVNNQSLPV


1281
CEA 186-194
PVSPRLQLS


1282
CEA 362-369
SLPVSPRL


1283
CEA 361-369
QSLPVSPRL


1284
CEA 364-371
PVSPRLQL


1285
CEA 363-371
LPVSPRLQL


1286
CEA 362-371
SLPVSPRLQL


1287
CEA 363-370
LPVSPRLQ


1288
CEA 370-378
QLSNDNRTL


1289
CEA 369-378
LQLSNDNRTL


1290
CEA 357-365
WVNNQSLPV


1291
CEA 360-368
NQSLPVSPR


1292
CEA 540-547
SLPVSPRL


1293
CEA 539-547
QSLPVSPRL


1294
CEA 542-549
PVSPRLQL


1295
CEA 541-549
LPVSPRLQL


1296
CEA 540-549
SLPVSPRLQL


1297
CEA 541-548
LPVSPRLQ


1298
CEA 548-556
QLSNGNRTL


1299
CEA 547-556
LQLSNGNRTL


1300
CEA 535-543
WVNGQSLPV


1301
CEA 533-541
LWWVNGQSL


1302
CEA 532-541
YLWWVNGQSL


1303
CEA 538-546
GQSLPVSPR


1304
Her-2 30-37
DMKLRLPA


1305
Her-2 28-37
GTDMKLRLPA


1306
Her-2 42-49
HLDMLRHL


1307
Her-2 41-49
THLDMLRHL


1308
Her-2 40-49
ETHLDMLRHL


1309
Her-2 36-43
PASPETHL


1310
Her-2 35-43
LPASPETHL


1311
Her-2 34-43
RLPASPETHL


1312
Her-2 38-46
SPETHLDML


1313
Her-2 37-46
ASPETHLDML


1314
Her-2 42-50
HLDMLRHLY


1315
Her-2 41-50
THLDMLRHLY


1316
Her-2 719-726
ELRKVKVL


1317
Her-2 718-726
TELRKVKVL


1318
Her-2 717-726
ETELRKVKVL


1319
Her-2 715-723
LKETELRKV


1320
Her-2 714-723
ILKETELRKV


1321
Her-2 712-720
MRILKETEL


1322
Her-2 711-720
QMRILKETEL


1323
Her-2 717-725
ETELRKVKV


1324
Her-2 716-725
KETELRKVKV


1325
Her-2 706-714
MPNQAQMRI


1326
Her-2 705-714
AMPNQAQMRI


1327
Her-2 706-715
MPNQAQMRIL


1328
HER-2 966-973
RPRFRELV


1329
HER-2 965-973
CRPRFRELV


1330
HER-2 968-976
RFRELVSEF


1331
HER-2 967-976
PRFRELVSEF


1332
HER-2 964-972
ECRPRFREL


1333
NY-ESO-1 67-75
GAASGLNGC


1334
NY-ESO-1 52-60
RASGPGGGA


1335
NY-ESO-1 64-72
PHGGAASGL


1336
NY-ESO-1 63-72
GPHGGAASGL


1337
NY-ESO-1 60-69
APRGPHGGAA


1338
PRAME 112-119
VRPRRWKL


1339
PRAME 111-119
EVRPRRWKL


1340
PRAME 113-121
RPRRWKLQV


1341
PRAME 114-122
PRRWKLQVL


1342
PRAME 113-122
RPRRWKLQVL


1343
PRAME 116-124
RWKLQVLDL


1344
PRAME 115-124
RRWKLQVLDL


1345
PRAME 174-182
PVEVLVDLF


1346
PRAME 199-206
VKRKKNVL


1347
PRAME 198-206
KVKRKKNVL


1348
PRAME 197-206
EKVKRKKNVL


1349
PRAME 198-205
KVKRKKNV


1350
PRAME 201-208
RKKNVLRL


1351
PRAME 200-208
KRKKNVLRL


1352
PRAME 199-208
VKRKKNVLRL


1353
PRAME 189-196
DELFSYLI


1354
PRAME 205-213
VLRLCCKKL


1355
PRAME 204-213
NVLRLCCKKL


1356
PRAME 194-202
YLIEKVKRK


1357
PRAME 74-81
QAWPFTCL


1358
PRAME 73-81
VQAWPFTCL


1359
PRAME 72-81
MVQAWPFTCL


1360
PRAME 81-88
LPLGVLMK


1361
PRAME 80-88
CLPLGVLMK


1362
PRAME 79-88
TCLPLGVLMK


1363
PRAME 84-92
GVLMKGQHL


1364
PRAME 81-89
LPLGVLMKG


1365
PRAME 80-89
CLPLGVLMKG


1366
PRAME 76-85
WPFTCLPLGV


1367
PRAME 51-59
ELFPPLFMA


1368
PRAME 49-57
PRELFPPLF


1369
PRAME 48-57
LPRELFPPLF


1370
PRAME 50-58
RELFPPLFM


1371
PRAME 49-58
PRELFPPLFM


1372
PSA 239-246
RPSLYTKV


1373
PSA 238-246
ERPSLYTKV


1374
PSA 236-243
LPERPSLY


1375
PSA 235-243
ALPERPSLY


1376
PSA 241-249
SLYTKVVHY


1377
PSA 240-249
PSLYTKVVHY


1378
PSA 239-247
RPSLYTKVV


1379
PSMA 211-218
GNKVKNAQ


1380
PSMA 202-209
IARYGKVF


1381
PSMA 217-225
AQLAGAKGV


1382
PSMA 207-215
KVFRGNKVK


1383
PSMA 211-219
GNKVKNAQL


1384
PSMA 269-277
TPGYPANEY


1385
PSMA 268-277
LTPGYPANEY


1386
PSMA 271-279
GYPANEYAY


1387
PSMA 270-279
PGYPANEYAY


1388
PSMA 266-274
DPLTPGYPA


1389
PSMA 492-500
SLYESWTKK


1390
PSMA 491-500
KSLYESWTKK


1391
PSMA 486-494
EGFEGKSLY


1392
PSMA 485-494
DEGFEGKSLY


1393
PSMA 498-506
TKKSPSPEF


1394
PSMA 497-506
WTKKSPSPEF


1395
PSMA 492-501
SLYESWTKKS


1396
PSMA 725-732
WGEVKRQI


1397
PSMA 724-732
AWGEVKRQI


1398
PSMA 723-732
KAWGEVKRQI


1399
PSMA 723-730
KAWGEVKR


1400
PSMA 722-730
SKAWGEVKR


1401
PSMA 731-739
QIYVAAFTV


1402
PSMA 733-741
YVAAFTVQA


1403
PSMA 725-733
WGEVKRQIY


1404
PSMA 727-735
EVKRQIYVA


1405
PSMA 738-746
TVQAAAETL


1406
PSMA 737-746
FTVQAAAETL


1407
PSMA 729-737
KRQIYVAAF


1408
PSMA 721-729
PSKAWGEVK


1409
PSMA 723-731
KAWGEVKRQ


1410
PSMA 100-108
WKEFGLDSV


1411
PSMA 99-108
QWKEFGLDSV


1412
PSMA 102-111
EFGLDSVELA


1413
SCP-1 126-134
ELRQKESKL


1414
SCP-1 125-134
AELRQKESKL


1415
SCP-1 133-141
KLQENRKII


1416
SCP-1 298-305
QLEEKTKL


1417
SCP-1 297-305
NQLEEKTKL


1418
SCP-1 288-296
LLEESRDKV


1419
SCP-1 287-296
FLLEESRDKV


1420
SCP-1 291-299
ESRDKVNQL


1421
SCP-1 290-299
EESRDKVNQL


1422
SCP-1 475-483
EKEVHDLEY


1423
SCP-1 474-483
REKEVHDLEY


1424
SCP-1 480-488
DLEYSYCHY


1425
SCP-1 477-485
EVHDLEYSY


1426
SCP-1 477-486
EVHDLEYSYC


1427
SCP-1 502-509
KLSSKREL


1428
SCP-1 508-515
ELKNTEYF


1429
SCP-1 507-515
RELKNTEYF


1430
SCP-1 496-503
KRGQRPKL


1431
SCP-1 494-503
LPKRGQRPKL


1432
SCP-1 509-517
LKNTEYFTL


1433
SCP-1 508-517
ELKNTEYFTL


1434
SCP-1 506-514
KRELKNTEY


1435
SCP-1 502-510
KLSSKRELK


1436
SCP-1 498-506
GQRPKLSSK


1437
SCP-1 497-506
RGQRPICLSSK


1438
SCP-1 500-508
RPKLSSKRE


1439
SCP-1 573-580
LEYVREEL


1440
SCP-1 572-580
ELEYVREEL


1441
SCP-1 571-580
NELEYVREEL


1442
SCP-1 579-587
ELKQKREDEV


1443
SCP-1 575-583
YVREELKQK


1444
SCP-1 632-640
QLNVYEIKV


1445
SCP-1 630-638
SKQLNVYEI


1446
SCP-1 628-636
AESKQLNVY


1447
SCP-1 627-636
TAESKQLNVY


1448
SCP-1 638-645
IKVNKLEL


1449
SCP-1 637-645
EIKVNKLEL


1450
SCP-1 636-645
YEIKVNKLEL


1451
SCP-1 642-650
KLELELESA


1452
SCP-1 635-643
VYEIKVNKL


1453
SCP-1 634-643
NVYEIKVNKL


1454
SCP-1 646-654
ELESAKQKF


1455
SCP-1 642-650
KLELELESA


1456
SCP-1 646-654
ELESAKQKF


1457
SCP-1 771-778
KEKLKREA


1458
SCP-1 777-785
EAKENTATL


1459
SCP-1 776-785
REAKENTATL


1460
SCP-1 773-782
KLKREAKENT


1461
SCP-1 112-119
EAEKIKKW


1462
SCP-1 101-109
GLSRVYSKL


1463
SCP-1 100-109
EGLSRVYSKL


1464
SCP-1 108-116
KLYKEAEKI


1465
SCP-1 98-106
NSEGLSRVY


1466
SCP-1 97-106
ENSEGLSRVY


1467
SCP-1 102-110
LSRVYSKLY


1468
SCP-1 101-110
GLSRVYSKLY


1469
SCP-1 96-105
LENSEGLSRV


1470
SCP-1 108-117
KLYKEAEKIK


1471
SCP-1 949-956
REDRWAVI


1472
SCP-1 948-956
MREDRWAVI


1473
SCP-1 947-956
KMREDRWAVI


1474
SCP-1 947-955
KMREDRWAV


1475
SCP-1 934-942
TTPGSTLKF


1476
SCP-1 933-942
LTTPGSTLKF


1477
SCP-1 937-945
GSTLKGAI


1478
SCP-1 945-953
IRKMREDRW


1479
SCP-1 236-243
RLEMHFKL


1480
SCP-1 235-243
SRLEMHFKL


1481
SCP-1 242-250
KLKEDYEKI


1482
SCP-1 249-257
KIQHLEQEY


1483
SCP-1 248-257
EKIQHLEQEY


1484
SCP-1 233-242
ENSRLEMHF


1485
SCP-1 236-245
RLEMHFKLKE


1486
SCP-1 324-331
LEDIKVSL


1487
SCP-1 323-331
ELEDIKVSL


1488
SCP-1 322-331
KELEDIKVSL


1489
SCP-1 320-327
LTKELEDI


1490
SCP-1 319-327
HLTKELEDI


1491
SCP-1 330-338
SLQRSVSTQ


1492
SCP-1 321-329
TKELEDIKV


1493
SCP-1 320-329
LTKELEDIKV


1494
SCP-1 326-335
DIKVSLQRSV


1495
SCP-1 281-288
KMKDLTFL


1496
SCP-1 280-288
NKMKDLTFL


1497
SCP-1 279-288
ENKMKDLTFL


1498
SCP-1 288-296
LLEESRDKV


1499
SCP-1 287-296
FLLEESRDKV


1500
SCP-1 291-299
ESRDKVNQL


1501
SCP-1 290-299
EESRDKVNQL


1502
SCP-1 277-285
EKENKMKDL


1503
SCP-1 276-285
TEKENKMKDL


1504
SCP-1 279-287
ENKMKDLTF


1505
SCP-1 218-225
IEKMITAF


1506
SCP-1 217-225
NIEKMITAF


1507
SCP-1 216-225
SNIEKMITAF


1508
SCP-1 223-230
TAFEELRV


1509
SCP-1 222-230
ITAFEELRV


1510
SCP-1 221-230
MITAFEELRV


1511
SCP-1 220-228
KMITAFEEL


1512
SCP-1 219-228
EKMITAFEEL


1513
SCP-1 227-235
ELRVQAENS


1514
SCP-1 213-222
DLNSNIEKMI


1515
SCP-1 837-844
WTSAKNTL


1516
SCP-1 846-854
TPLPKAYTV


1517
SCP-1 845-854
STPLPKAYTV


1518
SCP-1 844-852
LSTPLPKAY


1519
SCP-1 843-852
TLSTPLPKAY


1520
SCP-1 842-850
NTLSTPLPK


1521
SCP-1 841-850
KNTLSTPLPK


1522
SCP-1 828-835
ISKDKRDY


1523
SCP-1 826-835
HGISKDKRDY


1524
SCP-1 832-840
KRDYLWTSA


1525
SCP-1 829-838
SKDKRDYLWT


1526
SCP-1 279-286
ENKMKDLT


1527
SCP-1 260-268
EINDKEKQV


1528
SCP-1 274-282
QITEKENKM


1529
SCP-1 269-277
SLLLIQITE


1530
SCP-1 453-460
FEKIAEEL


1531
SCP-1 452-460
QFEKIAEEL


1532
SCP-1 451-460
KQFEKIAEEL


1533
SCP-1 449-456
DNKQFEKI


1534
SCP-1 448-456
YDNKQFEKI


1535
SCP-1 447-456
LYDNKQFEKI


1536
SCP-1 440-447
LGEKETLL


1537
SCP-1 439-447
VLGEKETLL


1538
SCP-1 438-447
KVLGEKETLL


1539
SCP-1 390-398
LLRTEQQRL


1540
SCP-1 389-398
ELLRTEQQRL


1541
SCP-1 393-401
TEQQRLENY


1542
SCP-1 392-401
RTEQQRLENY


1543
SCP-1 402-410
EDQLIILTM


1544
SCP-1 397-406
RLENYEDQLI


1545
SCP-1 368-375
KARAAHSF


1546
SCP-1 376-384
VVTEFETTV


1547
SCP-1 375-384
FVVTEFETTV


1548
SCP-1 377-385
VTEFETTVC


1549
SCP-1 376-385
VVTEFETTVC


1550
SCP-1 344-352
DLQIATNTI


1551
SCP-1 347-355
IATNTICQL


1552
SCP-1 346-355
QIATNTICQL


1553
SSX4 57-65
VMTKLGFKY


1554
SSX4 53-61
LNYEVMTKL


1555
SSX4 52-61
KLNYEVMTKL


1556
SSX4 66-74
TLPPFMRSK


1557
SSX4 110-118
KIMPKKPAE


1558
SSX4 103-112
SLQRIFPKIM


1559
Tyr 463-471
YIKSYLEQA


1560
Tyr 459-467
SFQDYIKSY


1561
Tyr 458-467
DSFQDYIKSY


1562
Tyr 507-514
LPEEKQPL


1563
Tyr 506-514
QLPEEKQPL


1564
Tyr 505-514
KQLPEEKQPL


1565
Tvr 507-515
LPEEKQPLL


1566
Tyr 506-515
QLPEEKQPLL


1567
Tvr 497-505
SLLCRHKRK


1568
ED-B domain of
EVPQLTDLSFVDIT



Fibronectin
DSSIGLRWTPLNSSTIIGYRI




TVVAAGEGIPIFEDFVDSSV




GYYTVTGLEPGIDYDISVIT




LINGGESAPTTLTQQT


1569
ED-B domain of
CTFDNLSPGLEYNVSVY



Fibronectin with
TVKDDKESVPISDTIIP



flanking sequence
EVPQLTDLSFVDITDS



from Fribronectin
SIGLRWTPLNSSTIIGYRI




TVVAAGEGIPIFEDFVD




SSVGYYTVTGLEPGID




YDISVITLINGGESAPTTLTQQT




AVPPPTDLRFTNIGPDTMRVTW


1570
ED-B domain of
Accession number: X07717



Fibronectin cds



1571
CEA protein
Accession number: P06731


1572
CEA cDNA
Accession number: NM_004363


1573
Her2/Neu protein
Accession number: P04626


1574
Her2/Neu cDNA
Accession number: M11730


1575
SCP-1 protein
Accession number: Q15431


1576
SCP-1 cDNA
Accession number: X95654


1577
SSX-4 protein
Accession number: O60224


1578
SSX-4 cDNA
Accession number: NM_005636






1This H was reportedas Y in the SWISSPROT database.




2The amino acid at position 274 may be Pro or Leu depending upon the database. The particular analysis presented herein used the Pro.



**All accession numbers used here and throughout can be accessed through the NCBI databases, for example, through the Entrez seek and retrieval system on the world wide web.













APPENDIX B







Predicted Binding of Tyrosinase207-216


(SEQ ID NO. 980) to Various MHC types











*Half time of



MHC I type
dissociation (min)














Al
0.05



A*0201
1311.



A*0205
50.4



A3
2.7



A*1101
0.012



(part of the A3 supertype)




A24
6.0



B7
4.0



B8
8.0



B14
60.0



(part of the B27 supertype)




B*2702
0.9



B*2705
30.0



B*3501
2.0



(part of the B7 supertype)




B*4403
0.1



B*5101
26.0



(part of the B7 supertype)




B*5102
55.0



B*5801
0.20



B60
0.40



B62
2.0







*HLA Peptide Binding Predictions (world wide web hypertext transfer protocol “access at bimas.dcrt.nih.gov/molbio/hla_bin”).













APPENDIX C





Class I HLA peptide binding anchor residues*


Amino acids in boldface indicate anchor residues, underline


represents auxiliary anchor positions.























Position



















HLA-A1



1

2


3

4
5
6
7
8

9






Anchor or





T



D






L




Y




auxiliary anchor residues





S



E




















Position



















HLA-A*0201



1

2

3
4
5
6
7
8

9






Anchor or






L






V





V




auxiliary anchor residues






M










L




















Position



















HLA-A*0202



1

2

3
4
5
6
7
8

9






Anchor residues






L










L


















V




















Position



















HLA-A*0204



1

2

3
4
5
6
7
8

9






Anchor or






L










L




auxiliary anchor residues


















Position



















HLA-A*0205



1

2

3
4
5
6
7
8

9






Anchor or






V






I





L




auxiliary anchor residues






L






V













I






L













M






A













Q




















Position



















HLA-A*0206



1

2

3
4
5
6
7
8

9






Anchor or






V










V




auxiliary anchor residues


















Position



















HLA-A*0207



1

2


3

4
5
6
7
8

9






Anchor or






L




D









L




auxiliary anchor residues


















Position



















HLA-A*0214



1

2

3
4
5
6
7
8

9






Anchor or






V,

Q






I, L





L




auxiliary anchor residues






L






V, F





V




















Position



















HLA-A3



1

2

3
4
5
6
7
8

9






Anchor or






L



F




I


I




K




auxiliary anchor residues






V



Y




M


L




Y











M






F


M




F














V


F















L



















Position



















HLA-A*1101



1
2
3
4
5
6
7
8

9






Anchor or





V


M





L




K




auxiliary anchor residues





I


L





I











F


F





Y











Y


Y





V












I





F












A



















Position



















HLA-A24



1

2

3
4
5
6
7
8

9






Anchor or






Y





I


F





I




auxiliary anchor residues








V






L


















F




















Position



















HLA-A*2902



1

2

3
4
5
6
7
8

9






Anchor or






E










Y




auxiliary anchor residues






F



















Position




















HLA-A*3101




1
2
3
4
5
6
7
8

9






Anchor or





L


F




L





R




auxiliary anchor residues





V


L




F












Y


Y




V












F


W




I



















Position



















HLA-A*3302



1
2
3
4
5
6
7
8

9






Anchor or





A









R




auxiliary anchor residues





I
















L
















F
















Y
















V



















Position



















HLA-A*6801



1

2

3
4
5
6
7
8

9






Anchor residues




D



V










R









E



T










K




















Position



















HLA-A*6901



1

2

3
4
5
6
7
8

9






Anchor or






V



I




I





V




auxiliary Residues






T



F




F





L











A



L




L













M



















Position



















HLA-B7



1

2

3
4
5
6
7
8

9






Anchor or






P



R








L




auxiliary anchor residues













F




















Position



















HLA-B*0702



1

2


3

4
5
6
7
8

9






Anchor or






P










L




auxiliary anchor residues


















Position



















HLA-B*0703



1

2

3
4
5
6
7
8

9






Anchor or






P



R






E



L




auxiliary anchor residues


















Position



















HLA-B*0705



1

2

3
4
5
6
7
8

9






Anchor or






P










L




auxiliary anchor residues


















Position



















HLA-B8



1
2

3

4

5

6
7
8

9






Anchor residues







K





K







L














R




















Position



















HLA-B14



1

2

3
4

5

6
7
8

9






Anchor or






R



L




R



I





L




auxiliary anchor Residues






K



Y




H



L













F



















Position



















HLA-B*1501(B62)



1

2

3
4
5
6
7
8

9






Anchor or






Q





I






F




auxiliary anchor residues






L





V






Y




















Position



















HLA-B27



1

2

3
4
5
6
7
8

9






Anchor residues






R




















Position



















HLA-B*2702



1

2

3
4
5
6
7
8

9






Anchor residues






R










F


















Y


















I


















L


















W




















Position



















HLA-B*2705



1

2

3
4
5
6
7
8

9






Anchor or






R










L




auxiliary anchor Residues













F




















Position



















HLA-B*35



1

2

3
4
5
6
7
8

9






Anchor or






P










Y




Auxiliary anchor residues













F


















M


















L


















I




















Position



















HLA-B*3501



1

2

3
4
5
6
7
8

9






Anchor or






P










Y




auxiliary anchor residues













F


















M


















L


















I




















Position



















HLA-B*3503



1

2

3
4
5
6
7
8

9






Anchor or






P










M




auxiliary anchor residues












L
















F



















Position



















HLA-B*3701



1

2

3
4
5
6
7

8


9






Anchor or






D





V





F




I




auxiliary anchor residues






E





I





M




L

















L




















Position



















HLA-B*3801



1
2
3
4
5
6
7
8

9






Anchor or





H


D








F




auxiliary anchor residues






E








L




















Position



















HLA-B*39011



1

2

3
4
5
6
7
8

9






Anchor or






R






I





L




auxiliary anchor residues






H






V
















L



















Position



















HLA-B*3902



1

2

3
4
5
6
7
8

9






Anchor or






K





I






L




auxiliary anchor residues






Q





L
















F
















V



















Position



















HLA-B40*



1

2

3
4
5
6
7
8

9






Anchor or






E



F








L




auxiliary anchor residues






I







W










V







M
















A
















T
















R



















Position



















HLA-B*40012 (B60)



1

2

3
4
5
6
7
8

9






Anchor or






E







I




L




auxiliary anchor residues










V



















Position



















HLA-B*4006 (B61)



1

2

3
4
5
6
7
8

9






Anchor or






E



F




I





V




auxiliary anchor residues






I
















L
















V
















Y
















W



















Position



















HLA-B44



1

2

3
4
5
6
7
8

9






Anchor or






E



I


P



V





Y




auxiliary anchor residues


















Position



















HLA-B*4402



1

2

3
4
5
6
7
8

9






Anchor or






E










F




auxiliary anchor residues













Y




















Position



















HLA-B*4403



1

2

3
4
5
6
7
8

9













E










Y


















F




















Position



















HLA-B*4601



1

2

3
4
5
6
7
8

9






Anchor or






M



K


D


P


S


E


V



Y




auxiliary anchor residues






R, N


E, V


I




A



F




















Position



















HLA-B*5101



1

2

3
4
5
6
7
8

9






Anchor or






A










F




auxiliary anchor residues






P










I











G




















Position



















HLA-B*5102



1

2

3
4
5
6
7
8

9






Anchor or






P



Y








I




auxiliary anchor residues






A










V











G




















Position



















HLA-B*5103



1

2

3
4
5
6
7
8

9






Anchor or






A



Y








V




auxiliary anchor residues






P










I











G










F




















Position



















HLA-B*5201



1
2
3
4
5
6
7

8


9






Anchor or





Q


F



L





I




I




auxiliary anchor residues






Y



I





V




V











W



V



















Position



















HLA-B*5301



1

2

3
4
5
6
7
8

9






Anchor or






P










L,

I




auxiliary anchor residues


















Position



















HLA-B*5401



1

2

3
4
5
6
7
8
9





Anchor or






P











auxiliary anchor residues


















Position



















HLA-B*5501



1

2

3
4
5
6
7
8
9





Anchor or






P











auxiliary anchor residues


















Position



















HLA-B*5502



1

2

3
4
5
6
7
8
9





Anchor or






P











auxiliary anchor residues


















Position



















HLA-B*5601



1

2

3
4
5
6
7
8

9






Anchor or






P











auxiliary anchor residues




A



Y








A




















Position



















HLA-B*5801



1

2

3
4
5
6
7
8

9






Anchor or






A




P


V






F




auxiliary anchor residues






S




E


I






W











T




K


L
















M
















F



















Position



















HLA-B*6701



1

2

3
4
5
6
7
8

9






Anchor or






P










L




auxiliary anchor residues


















Position



















HLA-B*7301



1

2

3
4
5
6
7
8

9






Anchor or






R










P




auxiliary anchor residues


















Position



















HLA-B*7801



1

2

3
4
5

6

7
8
9





Anchor or






P






I



A




auxiliary anchor residues






A






L













G






F
















V



















Position



















HLA-Cw*0102



1

2

3
4
5
6
7
8

9






Anchor or






A










L




auxiliary anchor residues






L




















Position



















HLA-Cw*0301



1
2
3
4
5
6
7
8

9






Anchor or






V


P



F





L




auxiliary anchor residues






I




Y





F











Y








M











L








I











M



















Position



















HLA-Cw*0304



1

2

3
4
5
6
7
8

9






Anchor or






A



V


P




M




L




auxiliary anchor residues






I


E




E




M











P
















Y
















M



















Position



















HLA-Cw*0401



1

2

3
4
5
6
7
8

9






Anchor or






Y






V





L




auxiliary anchor residues






P






I





F











F






L




M



















Position



















HLA-Cw*0601



1
2
3
4
5
6
7
8

9






Anchor or








I


V





L




auxiliary anchor residues








L


I





I













F


L





V













M






Y




















Position



















HLA-Cw*0602



1
2
3
4
5
6
7
8

9






Anchor or








I


V





L




auxiliary anchor residues








L


I





I













F


L





V













M






Y




















Position



















HLA-Cw*0702



1
2
3
4
5
6
7
8

9






Anchor or





Y




V


V





Y




auxiliary anchor residues





P




Y


I





F













I


L





L













L


M















F
















M






*(Extracted from Table 4.2 of Rammensee et al., previously incorporated by reference.)





Claims
  • 1. A vector comprising a housekeeping epitope expression cassette, wherein the housekeeping epitope is derived from a target-associated antigen, wherein the housekeeping epitope is liberatable from a translation product of the cassette by immunoproteasome processing, wherein the antigen is NY-ESO-1, wherein the housekeeping epitope is NY-ESO-1157-165 (SEQ ID NO:12), and wherein the vector comprises a nucleic acid sequence encoding SEQ ID NO:18.
  • 2. A vector comprising a housekeeping epitope expression cassette, wherein the housekeeping epitope is derived from a target-associated antigen, wherein the housekeeping epitope is liberatable from a translation product of the cassette by immunoproteasome processing, wherein the antigen is NY-ESO-1, wherein the housekeeping epitope is NY-ESO-1157-165 (SEQ ID NO:12), and wherein the vector comprises a nucleic acid sequence encoding SEQ ID NO:22.
  • 3. The vector of claim 2, comprising a nucleic acid sequence encoding SEQ ID NO:20.
  • 4. A vector comprising a housekeeping epitope expression cassette, wherein the housekeeping epitope is derived from a target-associated antigen, wherein the housekeeping epitope is liberatable from a translation product of the cassette by immunoproteasome processing, wherein the antigen is NY-ESO-1, wherein the housekeeping epitope is NY-ESO-1157-165 (SEQ ID NO:12), and wherein the vector comprises a nucleic acid sequence encoding the polypeptide sequence M-(B-A-D-D-A-B-A-A), and wherein M is an initiator Methionine, B is the sequence of SEQ ID NO:12, A is the sequence of SEQ ID NO:13, and D is the sequence of SEQ ID NO:15 (SEQ ID NO:1582).
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/336,968 filed Nov. 7, 2001, which is hereby incorporated by reference in its entirety.

US Referenced Citations (47)
Number Name Date Kind
4439199 Amkraut et al. Mar 1984 A
4683199 Palladino Jul 1987 A
4937190 Palmenberg et al. Jun 1990 A
5093242 Bachmair et al. Mar 1992 A
5132213 Bachmair et al. Jul 1992 A
5168062 Stinski Dec 1992 A
5258294 Boyle et al. Nov 1993 A
5385839 Stinski Jan 1995 A
5405940 Boon et al. Apr 1995 A
5478556 Elliott et al. Dec 1995 A
5487974 Boon-Falleur et al. Jan 1996 A
5496721 Bachmair et al. Mar 1996 A
5519117 Wolfel et al. May 1996 A
5530096 Wolfel et al. Jun 1996 A
5554506 van der Bruggen et al. Sep 1996 A
5554724 Melief et al. Sep 1996 A
5558995 van der Bruggen et al. Sep 1996 A
5580859 Felgner et al. Dec 1996 A
5585461 Townsend et al. Dec 1996 A
5589466 Felgner et al. Dec 1996 A
5646017 Bachmair et al. Jul 1997 A
5648226 Van den Eynde et al. Jul 1997 A
5679647 Carson et al. Oct 1997 A
5698396 Pfreundschuh Dec 1997 A
5733548 Restifo et al. Mar 1998 A
5744316 Lethe et al. Apr 1998 A
5747269 Rammensee et al. May 1998 A
5844075 Kawakami et al. Dec 1998 A
5846540 Restifo et al. Dec 1998 A
5847097 Bachmair et al. Dec 1998 A
5856187 Restifo et al. Jan 1999 A
5925565 Berlioz et al. Jul 1999 A
5962428 Carrano et al. Oct 1999 A
5989565 Storkus et al. Nov 1999 A
5993828 Morton Nov 1999 A
5994523 Kawakami et al. Nov 1999 A
6004777 Tartaglia et al. Dec 1999 A
6037135 Kubo et al. Mar 2000 A
6060273 Dirks et al. May 2000 A
6074817 Landini et al. Jun 2000 A
6130066 Tartaglia et al. Oct 2000 A
6287569 Kipps et al. Sep 2001 B1
7084239 Wang et al. Aug 2006 B1
20030220239 Simard et al. Nov 2003 A1
20040203051 Simard et al. Oct 2004 A1
20040214284 Tureci et al. Oct 2004 A1
20050130920 Simard et al. Jun 2005 A1
Foreign Referenced Citations (41)
Number Date Country
2147863 May 1994 CA
44 23 392 Jan 1996 DE
9303175 Apr 1995 EP
1118860 Jul 2001 EP
1181314 Feb 2002 EP
74899 Aug 1997 IE
WO 9221033 Nov 1992 WO
WO 9601429 Jan 1996 WO
WO 9603144 Feb 1996 WO
WO 9640209 Dec 1996 WO
WO 9734613 Sep 1997 WO
WO 9741440 Nov 1997 WO
WO 9813489 Apr 1998 WO
WO 9814464 Apr 1998 WO
WO 9840501 Sep 1998 WO
WO 9902183 Jan 1999 WO
WO 9924596 May 1999 WO
WO 9945954 Sep 1999 WO
WO 9955730 Nov 1999 WO
WO 0006723 Feb 2000 WO
WO 0029008 May 2000 WO
WO 0040261 Jul 2000 WO
WO 0052157 Sep 2000 WO
WO 0052451 Sep 2000 WO
WO 0066727 Nov 2000 WO
WO 0073438 Dec 2000 WO
WO 0111040 Feb 2001 WO
WO 0118035 Mar 2001 WO
WO 0119408 Mar 2001 WO
WO 0123577 Apr 2001 WO
WO 0155393 Aug 2001 WO
WO 0158478 Aug 2001 WO
WO 0182963 Nov 2001 WO
WO 0189281 Nov 2001 WO
WO 0190197 Nov 2001 WO
WO 02068654 Sep 2002 WO
WO 0071158 Nov 2002 WO
WO 03011331 Feb 2003 WO
WO 0382963 Feb 2003 WO
WO 2004018666 Mar 2004 WO
WO 2004022709 Mar 2004 WO
Non-Patent Literature Citations (204)
Entry
Manickan, E et al. Crit. Rev. Immunol. [1997] 17(2):139-154.
Chen et al. Journal of Immunol. 2000, 165: 948-955.
US 6,008,200, 12/1999, Krieg (withdrawn).
Aid et al., “Interferon-( Induces Different Subunit Organizations and Functional Diversity of Proteasomes,” J. Biochem., 115: 257-269(1994).
Altuvia et al., “A structure-based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets,” Human Immunology, 58: 1-11 (1997).
An et al. “A Multivalent Minigene Vaccine, Containing B-Cell, Cytoxic T-Lymphocyte, and Th Epitopes from Several Microbes, Induces Appropriate Responses in Vivo and Confers Protection against More than One Pathogen”, J Virol; 71(3):2292-302 (1997).
Aria et al., “Isolation of Highly Purified Lysosomes from Rat Liver: Identification of Electron Carrier Components on Lysosomal Membranes”, J. Biochem. , 110:541-7 (1991).
Arnold et al., “Proteasome subunits encoded in the MHC are not generally required for the processing of peptides bound by MHC class I molecules,” Nature, 360: 171-174 (1992).
Ausubel et al., Short Protocols in Molecular Biology, Unit 11.2 (3d ed. 1997).
Ayyoub, et al., “Lack of tumor recognition by hTERT peptide 540-548-specific CD8+T cells from melanoma patients reveals inefficient antigen processing,” Eur. J. Jmmunol., 31:2642-2651 (2001).
Bachmann et al., “In vivo vs. in vitro assays for the assessment of T- and B-cell function,” Curr. Opin. Immunol., 6:320-326 (1994).
Bettinotti et al., “Stringent Allele/Epitope Requirements for MART-1/Melan A Immunodominance: Implications for Peptide-Based immunotherapy,” J. Immunol., 161: 877-889.(1998).
Boes et al., “Interferon y Stimulation Modulates the Proteolytic Activity and Cleavage Site Preference of 20S Mouse Proteasomes,”J. Exp. Med., 179: 901-909 (1994).
Brown et al., “Structural and serological simularity of MHC-linked LMP and proteasome (rnulticatalytie proteinase) complexes,” Nature, 353: 355-357 (1991).
Butterfield et al., “Generation of Melanoma-Specific Cytotoxic T Lymphocytes by Dendritic Cells Tranduced with a MART-1 Adenovirus,” J. Immunol., 161: 5607-5613 (1998).
Carulli et al., “High Throughput Analysis of Differential Gene Expression”, J. Cellular Biochem Suppl., 30/31:286-96(1998).
Chattergoon, et al., “Genetic Immunization: a new era in vaccines and immune therapeutics,” FASEB J., 11:753-763 (1997).
Chaux et al., “Identification of Five MAGE-A1 Epitopes Recognized by Cytolytic T Lymphocytes Obtained by in Vitro Stimulation with Dendritic Cells Transduced with MAGE-A1,” The Journal of Immunology, 163: 2928-2936 (1999).
Cleland et al., “Design and developmental strategy”, Formulation and Delivery of Proteins and Peptides, American Chemical Society Symposium Series, No. 567, (1994).
Davis, H. L., “Plasmid DNA expression systems for the purpose of immunization,” Current Opinion in Immunology, 8: 635-640 (1997).
Dean et al., “Proteolysis in Mitochondrial Preparations and in Lysosomal Preparations Derived from Rat Liver”, Arch. Biochem. Biophys., 227:154-63 (1983).
Dean et al., “Sequence requirements for plasmid nuclear import,” Experimental Cell Research, 253: 713-722 (1999).
DeGroot et al., “An Interactive Web Site Providing Major Histocompatibility Ligand Predictions: Application to HIV Research,” Aids Res. and Human Retrov, 13: 529-531 (1997).
Dick et al., “Coordinated Dual Cleavages Induced by the Protcasome Regulator PA28 Lead to Dominant MHC Ligands,” Cell, 86: 253-262 (1996).
Dick, et al., “Proteolytic Processing of Ovalbumin and 3-galactosidase by the Proteasome to Yield Antigenic Peptides,” J. of Immunology, 152:3884-3894-(1994).
Driscoll et al., “MHC-linked LMP gene products specifically alter peptidase activities of the proteasome,” Nature, 365: 262-264 (1993).
Durrant, L.G., “Cancer vaccines,” Anti-cancer drugs, 8: 727-733 (1997).
Elliot et al., “Intercellular Trafficking and Protein Delivery by a Herpesvirus Structural Protein”, Cell 88:223-233 (1997).
Escola et al., “Characterization of a Lysozyme-Major Histocompatibility Complex Class II Molecule-loading Compartment as a Specialized Recycling Endosome in Murine B Lymphocytes”, J. Biol. Chem. 271:27360-65 (1996).
Falk et al., “Allele-specific Motifs Revealed by Sequencing of Self-peptides Eluted from MHC Molecules”, Nature, 351:290-296 (1991).
Fang et al., “Expression of Vaccinia E3L and K3L Genes by a Novel Recombinant Canarypox HIV Vaccine Vector Enhances HIV-1 Pseudovirion Production and Inhibits Apoptosis in Human Cells”, Virology 291(2):272-84 (2001).
Farrar et al., “The molecular cell biology of interferon-( and its receptor,” Annu. Rev. Immunol., 11: 571-611 (1993).
Fayolle et al., “Delivery of Multiple Epitopes by Recombinant Detoxified Adenylate Cyclase of Bordetella pertussis Induces Protective Antiviral Immunity”, J Virol 75(161:7330-8 (2001).
Fiette et al, “Theiler's virus infection of 129Sv mice that lack the interferon α/β or interferon y receptors,” J. Exp. Med., 181: 2069-2076 (1995).
Firat et al., “Design of a Polyepitope Construct for the Induction of HLA-A0201-restricted HIV 1-specific CTL Responses Using HLA-A*0201 Transgenic, H-2 Class I KO Mice”, Eur J lmmunol 31(101:3064-74 (2001).
Firat et al., “H-2 Class 1 Knockout, HLA-A2.1-Transgenic Mice: a Versatile Animal Model for Preclinical Evaluation or Antitumor Immunotherapeutic Strategies”, Eur J Immunol 29(10):3112-21 (1999).
Firat et al., “Use of a Lentiviral Flap Vector for Induction of CTL Immunity Against Melanoma. Perspectives for Immunotherapy”, J Gene Med; 4(1):38-45 (2001).
Fomsgaard et al., “Induction of Cytotoxic T-cell-RespoliSes by Gene Gun DNA Vaccination with Minigenes Encoding Influenza A Virus HA and NP CTL-Epitopes”, Vaccine 18(7-8):681-91 (2000).
Ford et al., “Protein Transduction: an Alternative to Genetic Intervention?”, Gene Ther. 8:1-4, (2001).
Gaczynska et al., “γγ-Interferon and expression of Mhc genes regulate peptide hydrolysis by proteasomes,” Nature, 365: 264-267 (1993).
Gale et al., “Evidence that hepatitis C Virus resistance to interferon is mediated through repression of the PKR protein kinase by the onostructural 5A protein,” Virology, 230: 217-227 (1997).
Gariglio et al., “Therapeutic Uterine-Cervix Cancer Vaccines in Humans”, Arch Med Res 29(4):279-84 (1998).
Gilbert et al., Nat. Biotech. 15:1280-1284, 1997.
Gileadi et al., “Generation of an Immunodominant CTL Epitope is Affected by Proteasome Subunit Composition and Stability of the Antigenic Protein,” Am. Assoc. of Immunol., 163: 6045-6052 (1999).
Glynne et al., “A proteasome-related gene between the two Abc transporter loci in the class II region of the human MHC,” Nature, 353: 357-360 (1991).
Groettrup et al., “A role for the proteasome regulator PA28a in antigen presentation,” Nature, 381: 166-168 (1996).
Gulukota et al., “Two complementary methods for predicting peptides binding major histocompatibility complex molecules,” J. Mol. Biol., 267: 1258-1267 (1997).
Gurunathan et al., “DNA vaccines: a key for inducing long-term cellular immunity,” Current Opinion in Immunology, 12:442-447 (2000).
Hammond et al., “Heavy Endosomes Isolated from the Rat Renal Cortex Show Attributes of Intermicrovillar Clefts”, Am. J. Physiol. 267:F516-27 (1994).
Hanke et al., “DNA Multi-CTL Epitope Vaccines for HIV and Plasmodium Falciparum: Immunogenicity in Mice”, Vaccine 16(4):426-35 (1998).
Heemskerk et al., “Enrichment of an Antigen-Specific T Cell Response by Retrovirally Transduced Human Dendritic Cells”, Cell Immunol. 195(1): 10-7 (1999).
Heim et al., “Expression of hepatitis C virus proteins inhibits signal transduction through the Jak-STAT pathway,” Journal of Virology, 73: 8469-8475 (1999).
Hirano et al., “Expression of a Mutant ER-retained Polytope Membrane Protein in Cultured Rat Hepatocytes Results in Mallory Body Formation”, Histochem. Cell Biol. 117(1):41-53 (2002).
Huang et al., “Immune response in mice that lack the interferon-( receptor,” Science, 259: 1742-1745 (1993).
Hung et al., “Improving DNA Vaccine Potency by Linking Marek's Disease Virus Type 1 VP22 to an Antigen”, J. Virol. 76:2676-2682 (2002).
hypertext transfer protocol address syfpeithi.bmi-heidelberg.com/Scripts/MHCServer.dll/EpPredict.htm (Apr. 3, 2003).
Inaba et al., “Identification of Proliferating Dendritic Cell Precursors in Mouse Blood,”J. Exp. Med. 175:1157-67 (1992).
International Search Report from co-pending Application No. PCT/US01/13806.
Jager et al., “Granulocyte-macrophage-colony-stimulating Factor Enhances Immune Responses to Melanoma-associated Peptides in Vivo”, Int. J Cancer 67, 54-62 (1996).
Jager et al., “Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding Peptide Epitopes,” J. Exp. Med., 187: 265-270 (1998).
Kang et al., “Induction of Melanoma Reactive T Cells by Stimulator Cells Expressing Melanoma Epitope-Major Histocompatibility Complex Class 1 Fusion Proteins,” Cancer Res., 57: 202-205 (1997).
Kawakami et al., “The Use of Melanosomal Proteins in the Immunotherapy of Melanoma,”J. Immunother., 21:237-246 (1998).
Kawashima et al., “A Simple Procedure for the Isolation of Rat Kidney Lysosomes”, Kidney Int. 54:275-8 (1998).
Kawashima et al., “The Multi-epitope Approach for Immunotherapy for Cancer: Identification of Several CTL Epitopes from Various Tumor-associated Antigens Expressed on Solid Epithelial Tumors”, Human Immunology 59:1-14 (1998).
Kelly et al., “Second proteasome-related gene in the human MHC class II region,” Nature, 353:667-668 (1991).
Kittlesen et al., “Human Melanoma Patients Recognize an HLA-A1-Restricted CTL Epitope from Tyrosinase Containing Two Cysteine Residues: Implications for Tumor Vaccine Development,” J. Immunol., 160: 2099-2106 (1998).
Kuby, Janis, “Cell-mediated Immunity”, Immunology Chapter 15 (2d ed., W.H. Freeman and Company 1991).
Kundig et al., “Skin Test to Assess Virus-Specific Cytotoxic T-cell Activity,” Proc. Natl. Acad Sci. USA 89:7757-7761 (1992).
Kündig et al., “Fibroblasts as efficient antigen-presenting cells in lymphoid organs,” Proc. Natl. Acad. Sci., 268:1343-1347 (1995).
Kündig et al., “On the Role of Antigen in Maintaining Cytotoxic T-cell Memory,” Proc. Natl. Acad Sci. USA 93:9716-23 (1996).
Larregina et al., “Direct Transfection and Activation of Human Cutaneous Dendritic Cells,” Gene Ther., 8:608-617 (2001).
Le et al., “Cytotoxic T Cell Polyepitope Vaccines Delivered by ISCOMs”, Vaccine 19(32):4669-75 (2001).
Lee et al., “Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients,” Nature Medicine, 5:677-685 (1999).
Leitner, et al., “DNA and RNA-based vaccines: principles, progress and prospects,” Vaccine, 18:765-777 (2000).
Levy et al., “Using ubiquitin to follow the metabolic fate of a protein,” Proc. Natl. Acad. Sci USA, 93: 4907-4912 (1996).
Linette et al., “In Vitro Priming with Adenovirus/gp100 Antigen-Transduced Dendritic Cells Reveals the Epitope Specificity of HLA-A*0201-Restricted CD8+T Cells in Patients with Melanoma, ”J. Immunol., 164: 3402-3412 (2000).
Lisman et al., “A Separation Method by Means of Alteration of Mitochondrial and Synaptosomal Sedimentation Properties”, Biochem. J. 178:79-87 0979).
Liu et al., “Papillomavirus Virus-like Particles for the Delivery of Multiple Cytotoxic T Cell Epitopes”,. Virology 273(2):374-82 (2000).
Loftus et al., “Peptides Derived from Self-Proteins as Partial Agonists and Antagonists of Human CD8+T-cell Clones Reactive to Melanoma/Melanocyte Epitope MART1(27-35),” Cancer Res., 11: 2433-2439 (1998).
Malcsymowych et al, “Invasion by Salmonella typhimurium-Induces Increased Expression of the LMP, MECL, and PA28 Proteasome Genes and Changes in the Peptide Repertoire of HLA-B27, Infection and Immunity, 66:4624-4632 (1998)”.
Marsh, M., “Endosome and Lysosome Purification by Free-flow Electrophoresis”, Methods Cell Biol. 31:319-34 (1989).
Martinez et al., “Homology of proteasome subunits to a major histocompatibility complex-linked LMP gene,” Nature, 353:664-667 (1991).
Mateo et al., “An HLA-A2 polyepitope vaccine for melanoma immunotherapy,” The Journal of Immunology, 163: 4058-4063 (1999).
McCluskie, et al., “Route and Method of Delivery of DNA Vaccine Influence Immune Response in Mice and Non-Human Primates,” Molecular Medicine, 5:287-300 (1999).
Meister et al., “Two novel T cell epitope prediction algorithms based on Mhc-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences,” Vaccine, 13: 581-591 (1995).
Melief, C. J., Cancerlit, Database Accession No. 1998625858, “Towards T-cell immunotherapy of cancer,” Meeting Abstract (1996).
Miconnet et al., “Amino acid identity and/or position determine the proteasomal cleavage of the HLA-A *0201-restricted peptide tumor antigen MAGE-3,” The American Society for Biochemistry and Molecular Biology, Inc., p. 20 (2000).
Missale et al., “HLA-A31-and HLA-Aw68-restricted Cytotoxic T cell Responses to a Single Hepatitis B Virus Nucelocapsid Epitope during Acute Viral Hepatitis,” J. Exp. Med., 177: 751-762 (1993).
Momburg et al., “Proteasome subunits encoded by the major histocompatilbity complex are not essential for antigen presentation,” Nature, 360: 174-177 (1992).
Morel et al., Processing of Some Antigens by the Standard Proteasome but not by the Immunoproteasome Results in Poor Presentation by Dendritic Cells, Immunity 12:107-117 (2000).
Morris et al., “A Peptide Carrier for the Delivery of Biologically Active Proteins into Mammalian Cells”, Nat. Biotech. 19:1173-1176 (2001).
Moskophidis et al., “Immuriobiology of Cytotoxic T-cell escape mutants of lymphocytic choriomentingitis virus,” Journal of Virology, 69: 7423-7429 (1995).
Murphy et al., “Higher-Dose and Less Frequent Dendritic Cell Infusions with PSMA Peptides in Hormone-Refractory Metastatic Prostate Cancer Patients,” The Prostate, 43: 59-62 (2000).
Nakabayshi et al., “Isolation and Characterization of Chicken Liver Lysosomes”, Biochem. Int. 16:1119-25 (1988).
NCBI Blast Accession No. NP—005502.
Noppen et al., Naturally processed and concealed HLA-A2.1-restricted epitopes from tumor-associated antigen tyrosinase-related protein-2, Int. J. Cancer, 87: 241-246 (2000).
Normand et al., “Particle Formation by a Conserved Domain of the Herpes Simplex Virus Protein VP22 Facilitating Protein and Nucleic Acid Delivery”, J. Biol. Chem. 276:15042-15050 (2001).
Nussbaum et al., “Cleavage motifs of the yeast 20S proteasome 13 subunits deduced from digest of enolase 1,” Proc. Natl. Acad. Sci USA, 95: 12504-12509 (1998).
Oehen et al., “Antivirally protective cytotoxic T cell memory to lymphocytic choriomeningitis virus is governed by persisting antigen,” J.Exp.Med. 176: 1273-1281 (1992).
Oess et al., Novel Cell Permeable Motif Derived from the PreS2-domain of Hepatitis-B Virus Surface Antigens, Gene Ther. 7:750-758 (2000).
Otaita et al., “Simple Preparation of Rat Brain-Lysosomes and Their Proteolytic Properties”, Anal. Biochem. 230:41-47 (1995).
Oldstone et al., “Discriminated selection among viral peptides with the appropriate anchor residues: Implications for the size of the cytotoxic T-lymphocyte repertoire and control of viral infection,” Journal of Virology, 69: 7423-7429 (1995).
Oliveira et al., “A Genetic Immunization Adjuvant System based on BVP22-Antigen Fusion”, Hum. Gene Ther. 12:1353-1359 (2001).
Ortiz-Navarrete et al., “Subunit of the '20S proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex,” Nature, 353: 662-664 (1991).
Overdijk et al., “Isolation of Lysosomes from Bovine Brain Tissue a New Zonal Centrifugation Technique”, Adv. Exp: Med. Biol./Enzymes of Lipid Metabolism 101:601-10 (1978).
Palmowski et al., “Competition Between CTL Narrows the Immune Response Induced by Prime-Boost Vaccination Protocols”, J Immunol 168(9):4391-8 (2002).
Pantaleo et al., “Evidence for rapid disappearance of initially expanded HIV-specific CD8+T cell clones during primary HIV infection,” Proc. Natl. Acad. Sci., 94: 9848-9853 (1997).
Parker et al., “Scheme for Ranking Potential HLA-A2 Binding Peptides Based on Independent Binding of Individual Peptide Side-chains,”J. Immunol. 152:163-175 (1994).
Pascolo et al., “HLA-A2.1-restricted Education and Cytolytic Activity of CD8 T Lymphocytes from β2 Microglobulin (132m) HLA-A2.1 Monochain Transgenic H-2Db β2m Double Knockout Mice” J. Exp. Med. 185:2043-2051 (1997).
Perez-Diez et al., “Generation of CD8+and CD4+T-cell Response to Dendritic Cells Genetically Engineered to Express the MART-1/Melan-A Gene,” Cancer Res., 58: 5305-5309 (1998).
Preckel et al., “Impaired ImmunoproteasOme Assembly and Immune Reponses in PA28-I-Mice,” Science, 286: 2162-2165 (1999).
Puccetti et al., “Use of skin test assay to determine tumor-specific CD8+T cell reactivity,” Eur. J. Immunol. 24: 1446-1452 (1994).
Rammensee et al., “MHC ligands and peptide motifs: first listing,” Immunogenetics, 41: 178-228 (1995).
Rammensee et al., “Peptide motifs: amino acids in peptide-MHC interactions,” Landes Bioscence Austin Texas, Chapter 4: 217-369 (1997).
Rammensee et al., “SYFPEITHI: Database for MHC ligands and peptide motifs, ” Immunogenetics, 50: 213-219 (1999).
Raz et al., “Preferential induction of a Th1 immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization,” Proc. Natl. Acad. Sci. USA, 93: 5141-5145 (1996).
Reeves et al., “Retroviral Transduction of Human Dendritic Cells with a Tumor-Associated Antigen Gene,” Cancer Res., 56: 5672-5677 (1996).
Rehermann et al., “The Cytotoxic T Lymphocyte Response to. Multiple Hepatitis B Virus Polymerase Epitopes During and After Acute Viral Hepatitis,” Journal of Exp. Medicine, 181: 1047-1058 (1995).
Remington, The Science and Practice of Pharmacy, Nineteenth Edition, Chapters 86-88 (1985).
Ripalti et al., “Construction of Polyepitope Fusion Antigens of Human Cytomegalovirus ppUL32: Reactivity with Human Antibodies”,J Clin Microbiol 32(2):358-63 (1994).
Roberts et al., “Prediction of HIV Peptide Epitopes by a Novel Algorithm,” Aids Research and Human Retroviruses, 12: 593-610 (1996).
Rock et al., “Degradation of cell proteins and the generation of MHC class I-presented peptides,” Annu. Rev. Immunol., 17: 739-779 (1999).
Roman et al., “Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants,” Nature Medicine, 3: 849-854 (1997).
Rosmorduc et al., “Inhibition of interferon-inducible MxA protein expression by hepatitis B virus capsid protein,” Journal of General Virology, 80: 1253-1262 (1999).
Ryan et al., “A model for nonstoichiometric, cotranslational protein scission in eukaryotic ribosomes,” Bioorganic Chemistry, 27: 55-79 (1999).
Ryser et al., “The Cellular Uptake of Horseradish Peroxidase and its Poly(Lysine) Conjugate by Cultured Fibroblasts is Qualitively Similar Despite a 900-Fold Difference in Rate”; J. Cell Physiol. 113:167-178 (1982).
Salmi et al., “Tumor endothelium selectively supports binding of IL-2 propagated tumor-infiltrating lymphocytes,” The Journal of Immunology, 154: 6002-6012 (1995).
Santus et al., “Osmotic Drug Delivery: A Review of the Patent Literature,” Journal of Controlled Release, 35:1-21 (1995).
Sato et al., “Immunostimulatory DNA sequences necessary for effective intradermal gene immunization,” Science, 273: 352-354 (1996).
Schirle et al., “Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens,” Journal of Immunological Methods, 257: 1-16 (2001).
Schmid et al., “Isolation of Functionally Distinct Endosome Subpopulations by Free-Flow Electrophoresis”, Prog. Clin. Biol. Res./Cell-Free Analysis of Membrane Traffic 270:35-49 (1988).
Schneider, et al., “Overlapping peptides of melanocyte differentiation antigen Melan-A/MART-1 recognized by autologous cytolytic T lymphocytes in association with HLA-B45.1 and HLA-A2.1,” Int. J. Cancer, 75(3):451-458 (1998).
Schwartz, J.J. & Zhang, S., “Peptide-mediated cellular delivery”, Curr. Opin. Mol. Ther. 2:162-167 (2000).
Seipelt et al., “The Structures of Picornaviral Proteinases,” Virus Research 62:159-68 (1999).
Sewell et al., “IFN-( Exposes a Cryptic Cytotoxic T Lymphocyte Epitope in HIV-1 Reverse Transcriptase,” J. Immunol., 162: 7075-7079 (1999).
Sheldon et al., “Loligomers: Design of de nove Peptide-based Intraccular Vehicles”; Proc. Natl. Aced. Sci: USA 92:2056-2060 (1995).
Shen et al., “Conjugation of Poly-L-lysine to Albumin and Horseradish Peroxidase: A Novel Method of Enhancing the Cellular Uptake of Proteins”, Proc. Natl. Aced. Sci. USA 75:1872-1876 (1978).
Sijts et al., “Efficient Generation of a Hepatitis B Virus Cytotoxic T Lymphocyte Epitope Requires the Structural Features of Immunoproteasomes,” Journal of Exp. Medicine, 191: 503-513 (2000).
Smith et al., “Human Dendritic Cells Genetically Engineered to Express a Melanoma Polyepitope DNA Vaccine Induce Multiple Cytotoxic T-Cell Responses”, Clin Cancer Res; 7(12):4253-61 (2001).
Smith, “The polyepitope approach to DNA vaccination”, Curr Opin Mol Ther 1(1):10-5 (1999).
Speiser et al., “Self antigens expressed by solid tumors do not efficiently stimulate naive or activated T cells: implications for immunotherapy,”Journal Exp. Medicine, 186: 645-653 (1997).
Stauss et al., “Induction of Cytotoxic T Lymphocytes with Peptides in Vitro: Identification of Candidate T-cell Epitopes in Human Papilloma,” Proc. Natl. Acad. Sci, 89: 7871-7875 (199D.
Steinmann et al., “The Dendritic Cells System and Its Role in Immunogenicity,” Ann. Rev. Immunol. 9:271-96 (1991).
Street et al., “Limitations of HLA-transgenic Mice in Presentation of Hla-restricted Cytotoxic T-cell Epitopes from Endogenously Processed Human Papillomavirus type 16 E7 Protein”, Immunology 106(4):526-36 (2002).
Stromhaug et al., “Purification and Characterization of Autophagosomes from Rat Hepatocytes”, Biochem. J. 335:217-24 (1998).
Stumiolo et al., “Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices,” Nature Biotechnology, 17: 555-561 (1999).
Suhrbier A, “Multi-epitope DNA Vaccines”, Immunol Cell Biol 75(4):402-8 (1997).
Taylor et al., “Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein,” Science, 285: 107-110 (1999).
Thomson et al., “Delivery of Multiple CD8 Cytotoxic T Cell Epitopes by DNA Vaccination”, J Immunol 160(4):1717-23 (1998).
Thomson et al., “Minimal Epitopes Expressed in a Recombinant Polyepitope Protein are Processed and Presented to CD8 Cytotoxic T cells: Implications for Vaccine Design”, Proc. Natl Acad Sci USA 92(13):5845-9 (1995).
Thomson et al., “Recombinant Polyepitope Vaccines for the Delivery of Multiple CD8 Cytotoxic T Cell Epitopes”, J Immunol 157(2):822-6 (1996).
Tjoa et al., “Evaluation of Phase I/II Clinical Trials in Prostate Cancer with Dendritic Cells and PSMA Peptides,” The Prostate, 36: 39-44 (1998).
Toes et al., “Discrete Cleavage Motifs of Constitutive and Immunoproteasomes Revealed by Quantitative Analysis of Cleavage Products”, J. Exp. Med. 194:1-12 (2001).
Toes et al., “Protective Anti-tumor Immunity Induced by Vaccination with Recombinant Adenoviruses Encoding Multiple Tumor-associated Cytotoxic T Lymphocyte Epitopes in a String-of-beads Fashion”, Proc Natl Acad Sci USA 94(26):14660-5 (1997).
Türeci et al., “Serological Analysis of Human Tumor Antigens: Molecular Definition and Implications,” Molecular Medicine Today 3:342 (1997).
Twu et al., “Transcription of the human beta interferon gene is inhibited by hepatitis B virus,” Journal of Virology, 63: 3065-3071 (1989).
Valmori et al., “Induction of Potent-Antitumor CTL Responses by-Recombinant Vaccinia Encoding a Melan-A Peptide Analogue,” J. Immunol., 164: 1125-1131 (2000).
Van den Eynde et al., “Differential Processing of Class-I-Restricted Epitopes by the Standard Proteasome and the Immunoproteasome,” Curr. Opinion in Immunol., 13: 147-153 (2001).
Van Kaer et al., “Altered Peptidase and Viral-Specific T Cell Response in LMP2 Mutant Mice,” Immunity 1: 533-541 (1994).
Vitiello et al., “Comparison of Cytotoxic T lymphocyte responses induced by peptide or DNA immunization: implications on immunogenicity and immunodominance,” Euro. Jr. Immunol., 27: 671-678 (1997).
Vonderheide et al., “Characterization of HLA-A3-restricted Cytotoxic T Lymphocytes Reactive Against the Widely Expressed Tumor Antigen Telomerase”, Clin Cancer Res 7(11):3343-8 (2001).
Wang et al., “Phase 1 Trial of a MART-1 Peptide Vaccine with Incomplete Freund's Adjuvant for Resected High-Risk Melanoma,” Clin. Cancer Res., 10: 2756-2765 (1999).
Ward et al., “Development and Characterisation of Recombinant Hepatitis Delta Virus-like Particle”, Virus Genes 23(I):97-104 (2001).
Wattiaux et al., “Isolation of Rat Liver Lysosomes by Isopycnic Centrifugation in a Metrizamide Gradient”, J. Cell Biol. 78:349-68 (1978).
Whitton et al., “A “String-of-Beads” Vaccine, Comprising Linked Minigenes, Confers Protection from Lethal-Dose Virus Challenge”, J Virol 67(1):348-52 (1993).
Williams et al., “Isolation of a Membrane-Associated Cathes-pin D-like Enzyme forrn the Model Antigen Presenting Cell, A20, and Its Ability to Generate Antigenic Fragments from a Protein Antigen in a Cell-Free System”, Arch. Biochem. Biophys. 305:298-306 (1993).
Woodberry et al., “Immunogenicity of a Human Immunodeficiency Virus (HIV) Polytope Vaccine Containing Multiple HLA A2 HIV CD8 Cytotoxic T-Cell Epitopes”, J Virol 73(7):5320-5 (1999).
Yamada et al., “A Simple Procedure for the Isolation of Highly Purified Lysosomes from Normal Rat Liver” J Biochem. 95:1155-60 (1984).
Yang et al., “Proteasomes Are Regulated by Interferon (: Implications for Antigen Processing,” Proc. Natl. Acad. Sci., 89: 4928-4932 (1992).
Yewedell, et al., “ MHC-Encoded Proteasome Subunits LMP2 and LMP7 Are Not Required for Efficient Antigen Presentation,” J. Immunology 1994, 152:1163-1170 (1994).
Young et al., “Dendritic Cells as Adjuvants for Class I Major Histocompatibility Complex-restricted Anti-tumor Immunity,” J Exp Med 183:7-11 (1996).
Zajac et al., “Enhanced Generation of Cytotoxic T Lymphocytes Using Recombinant Vaccinia Virus Expressing Human Tumor-Associated Antigens and B7 Costimulatory Molecules,” Cancer Res., 58: 4567-4571 (1998).
Zajac et al., “Generation of Tumoricidal Cytotoxic T Lymphocytes from Healthy Donors after in Vitro Stimulation with a Replication-Incompetent Vaccinia Virus Encoding MART-1/Melan-A 27-35 Epitope,” Int. J. Cancer, 71: 491-496 (1997).
Zhai et al., “Antigen-Specific Tumor Vaccines. Development and Characterization of Recombinant Adenoviruses Encoding MART1 or gp100 for Cancer Therapy,” J. Immunol., 156: 700-710 (1996).
Zipkin, I., “Cancer vaccines,” Bio Century, 6: A1-A6 (1998).
Ayyoub et al. J. Immunol. 168(4):1717-1722 (2002).
Gene Therapy Advisory Committee. “Ninth Annual Report,” Health Departments of the UK 2003; entire document.
Clark, J et al. Nature Genetics [1994] 7(4):502-508.
Crew, AJ et al. The EMBO Journal [1995] 14(10):2333-2340.
Campbell, A. Monoclonal Antibody Technology [1985] pp. 1-32.
Lim et al. “A KRAB-related domain and a novel transcription repression domain in proteins encoded by Ssx genes that are disrupted in human sarcomas,” Oncogene, 1998, 17: 2013-2018.
Invitrogen, www.invitrogen.com/content/sfs/vectors/pcdna3—1mychie/020—map.pdf, one page (Apr. 2007).
Kessler et al., J Exp Med 193, 73-88 (2001).
Qiagen, www.qiagen.com/literature/pqesequences/pqe9.pdf, one page (Apr. 2007).
Shadendorf et al. “Listeria expression vector for immunotherapy, particularly of malignant melanoma, comprises a DNA sequence encoding tumor-associated antigens,” Database Geneseq (online) Jul. 16, 2001, database accession No. AAB86042.
Bergmann, et al. 1994. “Differential Effects of Flanking Residues on Presentation of Epitopes from Chimeric Peptides.” J. Virol. 68(8):5306-5310.
Borbulevych, et al. 2005. “Increased Immunogenicity of an Anchor-Modified Tumor-Associated Antigen is Due to the Enhanced Stability of the Peptide/MHC Complex: Implications for Vaccine Design.” J. Immunol. 174:4812-4820.
Celts, et al. 1994. “Identification of Potential CTL Epitopes of Tumor-Associated Antigen Mage-1 for Five Common HLA-A Alleles.” Mol. Immunol. 31(18): 1423-1430.
Chaux, et al. 1998. “Estimation of the Frequencies of Anti-Mage-3 Cytolytic T-Lymphocyte Precursors in blood from Individuals without Cancer.” Int. J. Cancer. 77:538-542.
Eisenlohr, et al. 1992. “Flanking Sequences Influence the Presentation of an Endogenously Synthesized Peptide to Cytotoxic T Lymphocytes.” J. Exp. Med. 175: 481-487.
Gileadi, et al. 1999. “Effect of Epitope Flanking Residues on the Presentation of N-Terminal Cytotoxic T Lymphocyte Epitopes.” Eur. J. Immunol. 29: 2213-2222.
Gnjatic, et al. 2003. “Cross-Presentation of HLA Class I Epitopes from Exogenous Nyeso-1 Polypeptides by Nonprofessional APCs.” J. Immunol. 170: 1191-1196.
Gnjatic, et al. 2003. “Survey of naturally occurring CD4+T cell responses against NY-ESO-1 in cancer patients: Correlation with antibody reponses.” PNAS USA. 100(15): 8862-8867.
Lu, J. et al. 2004. “Multiepitope Trojan Antigen Peptide Vaccines for the Induction of Antitumor CTL and Th Immune Responses.” J. Immunol. 172:4575-4582.
Ochoa-Garay, et al. 1997. “The Ability of Peptides to Induce Ctotoxic T Cells in Vitro Does Not Strongly Correlate with their Affinity for the H-21d Molecule: Implications for Vaccine Design and Immunotherapy.” Molecular Immunology 34(3): 273-281.
Perkins, et al. 1991. “Immunodominance: Intramolecular Competition Between T Cell Epitopes.” J. Immunol. 146: 2137-2144.
Shastri, et al. 1995. “Presentation of Endogenous Peptide/MHC Class I Complexes is Profoundly Influenced by Specific C-Terminal Flanking Residues.” J. Immunol. 155: 4339-4346.
Simard, et al. 2001. “Novel nucleic acid encoding tumor-associated antigen SSx-2, useful in inducing an immune response and in treating cancer.” N—Geneseq Accession No. AAD14184, Nov. 6, 2001, p. 2.
Supplementary European Search Report for Application No. EP 02 80 6695.9 dated Dec. 30, 2005.
Theobald, et al. 1998. “The Sequence Alteration Associated with a Mutational Hotspot in P53 Protects Cells from Lysis by Cytotoxic T Lymphocytes Specific for a Flanking Peptide Epitope.” J. Exp. Med. 188(6): 1017-1028.
Wang, et al. 1992. “Silencing of Immunodominant Epitopes by Contiguous Sequences in Complex Synthetic Peptides.” Cell. Immunol. 143: 284-297.
Zheng, et al. 2001. “CD4+cell recognition of MHC class II-restricted epitopes from NY-ESO-1 presented by a prevalent HLA allele: Association with NY-ESO-1 anitbody production.” PHAN 98(7):3964-3969.
SYPEITHI search report, Jan. 4, 2010, 2 pages.
Swiss-Prot P78358, 2011, 7 pages.
Related Publications (1)
Number Date Country
20030228634 A1 Dec 2003 US
Provisional Applications (1)
Number Date Country
60336968 Nov 2001 US