In the field of serial data communications, the quality of a serial digital bitstream can be assessed by observing an accurate visual representation of the amplitude of the signal with respect to time. This can be performed by a traditional oscilloscope, or a dedicated electrical circuit designed specifically to look at serial bitstream signals.
When observing such a visual representation, the shape of the bitstream signal can resemble the general shape of the human eye; for this reason, the images created by circuits designed to look at serial bitstream signals are sometimes referred to as ‘Eye Patterns’.
An eye pattern displays various parameters by which the quality of a serial data signal is quantified such as: rise time, fall time, undershoot, overshoot, jitter, pulse width, amplitude, and distortion, and the variation in those parameters.
Eye patterns are often created using either a very high-speed analog-to-digital converter (ADC) or sample-and-hold integrated circuits (ICs), but now there are various ICs that incorporate serial receivers with this eye pattern ability built-in. For example, this ability may be found in:
These circuits, however, require the signal to be of sufficient quality for the serial receiver to successfully lock onto the signal and recover the clock needed to produce eye pattern data. Using these circuits to generate an eye pattern at the receiver end of a transmission line can therefore be problematic as signals are typically degraded in transmission by cable losses. Signal-conditioning circuits can be used to improve the signal quality up to a level at which it becomes possible to produce an eye pattern but the pattern so produced shows the quality of the conditioned signal, not the raw signal quality.
Another limitation is that these serial receivers have a minimum operating frequency which can be above the data rate of some serial data streams: e.g. Standard definition SDI.
Our invention enables an eye pattern to be generated where the signal quality or signal frequency is not sufficient for an eye capable transceiver to lock onto, by the novel idea of using the slave/free-running mode of the transceiver to sample the unadulterated signal at the actual data rate. It achieves this by splitting the incoming signal, equalising one of the split signals and recovering a clock signal from the equalized signal. In this way, our invention allows a realistic eye pattern to be obtained for the unequalized signal, regardless of the quality of that unequalized signal.
Our invention provides a way to produce an eye pattern using the eye-pattern capability of a serial receiver where the signal of interest is of insufficient quality for the serial receiver's built-in eye pattern capability. It uses a signal splitter to generate two copies of the serial data signal, one of which is conditioned as required then fed to a “master” serial receiver that locks onto the input signal and recovers a serial clock. The other copy of the signal is fed to a “slave” serial receiver with embedded eye pattern capability which is set to “free-run” i.e. it does not attempt to lock onto its serial data input. Instead, the clock generated by the master serial receiver is used to the slave serial receiver, enabling it to produce the eye pattern of the unconditioned signal.
The conditioning applied could consist of amplification, filtering or cable equalisation. The serial receivers used may be located either in the same integrated circuit or in separate ICs, depending on the data rate of the signal and the operating characteristics of the ICs.
In
In
Number | Date | Country | Kind |
---|---|---|---|
GB1214668.4 | Aug 2012 | GB | national |