The present application is related to the co-filed U.S. applications Ser. No. 11/184,768, 11/185,001, and 11/184,428 filed on Jul. 19, 2005, which are invented by the same inventor as the present application and incorporated herein by reference in their entireties.
Electronic consumer products are pushing both the bounds of portability and computation complexity, in certain cases, simultaneously. Today mobility implies that the product has attributes such as the capability of being wireless. In addition, since video is playing a larger role in our lives every day, the need for low power computation techniques and high performance for video applications for both mobile and desktop systems is required.
An oscillator block provides the ability to regulate the flow of computation data within a VLSI (Very Large Scale Integration). For instance, the on chip clock frequency of a high-end microprocessor is expected to reach 10 GHz before the end of this decade. In addition, the power dissipation for the microprocessor is expected to be about 200 W, where the clock network will consume almost half of this power or 100 W. Thus, for this microprocessor, the higher frequencies and larger power dissipation values indicate a need to have clock circuits that can easily generate a 10 GHz signal and should be able to reduce the power dissipation of the clock network. The clock network of these VLSI chips typically contains large values of capacitance that need to be driven.
Handheld units are driving the desire for the ubiquitous need for wireless. Due to the limited energy storage ability of batteries, energy conservation is paramount for longer play and talk times. These units contain a mixture of analog and digital components. Analog circuits are used in the radio frequency (RF) sections of the wireless blocks that typically contain some form of a clock oscillator. The digital circuits will require a lower power technique of distributing the clock signal within the chip. By minimizing the power dissipation of the clock circuits and networks of the wireless units, the time between charging the batteries of the portable units can be extended.
Some of the basic circuit blocks to help achieve the ability for mobility, low power, and high computation require the necessity of a clock oscillator block. Tank circuits have been used to generate oscillatory clock signals. These circuits use LC (inductor-capacitor) elements to form the tank circuit.
For example, U.S. Pat. No. 5,396,195 issued Mar. 7, 1995 to Gabara depicts a basic LC tank circuit in an MOS technology. Several examples are given where a cross-coupled MOS circuit drives the tank circuit. The oscillations generated by the MOS LC tank circuit fabricated in a 0.9 μm CMOS technology operated with a supply voltage of 3.3V. The power dissipation was reduced by a factor of a 10× when a capacitive load was driven using an LC tank circuit as compared to being driven using conventional digital techniques. This circuit has been used in a multitude of applications ranging from wireless to on-chip clock generation modules. Many of the inductors used in this type of tank circuit have the form of the horizontal planar inductor as illustrated in
The calculations of the values of these type of inductors is provided in a published paper, “Simple Accurate Expressions for Planar Spiral Inductances”, IEEE J. Solid-State Circuits, Vol. 34, No. 10, October 1999, by Mohan et al., hereafter referred to as the “Mohan” reference.
In addition, the Q or quality factor of these inductors that are fabricated in CMOS are typically low. The quality factor or Q is a primary parameter in the evaluation of tank circuits.
The Q indicates the amount of energy dissipated by the tank circuit to maintain oscillations. The tank circuit is more energy efficient as the value of the Q term increases which indicates that the energy dissipated in the tank circuit decreases. One way to decrease the dissipation is to reduce the parasitic resistance of the inductor.
Another method to increase the Q for designs above 1 GHz is to reduce the induced eddy current in the conductor of the inductor. As pointed out by Niknejad and Meyer, IEEE Trans. Microwave Theory Tech., Vol. 49, No. 1, January 2001, the eddy current loss within the metallic region of the planar inductors is a dominant loss above 1 GHz.
U.S. Pat. No. 6,759,937 issued Jul. 6, 2004 to Kyriazidou suggests a balanced vertical multi-layer planar inductor to reduce the area and improve the symmetry of the inductor. A vertical planar inductor is very similar to a helix. This helix uses a square coil instead of a circular one. A square helix structure is illustrated in
U.S. Pat. No. 5,831,331 issued Nov. 3, 1998 to Lee proposed a helix structure to form a vertical multi-layer planar inductor that uses shielding to increase the inductance. A shield formed in the substrate stops the flow of eddy currents in the substrate. This structure also offered the benefit of using less area for a given value of inductance. In addition, Lee desired to decrease the resistance of a coil in a lower metal layer by electrically connecting the lower layer coil to an upper layer coil formed in a higher metal layer. There is a drawback to this reduction of the resistance. As described by Lee, a single via is used to create this electrical connection. Because only one end of the upper layer coil is DC connected to the lower coil (by this single via), the desire to reduce the resistance of the lower coil in not effective since current entering the higher metal level would not have a return path back to the lower coil. This is in stark contrast to the approach of Kyriazidou since Kyriazidou does provide multiple current return paths from sections of the upper metal layer to sections of the lower layer and achieves the goal of reducing the resistance of the coil. Thus, Lee's approach to reducing the resistance of a coil does not achieve its goal.
U.S. Pat. No. 6,480,086 issued Nov. 12, 2002 to Kluge et. al., describes a vertical multi-layer planar inductor to increase the inductance for a given area usage. Kluge uses a helix to create the inductance. In addition, a transformer is described where the second coil is closely spaced to the first coil to achieve a magnetic coupling between the two coils. Kluge indicates the use of multiple vias to reduce the series resistance. However, this resistance reduction is directed to the via connection itself.
Because real estate is expensive, reducing the area used to from the inductors would be beneficial. In addition, it is desirable to address power dissipation reduction issues in the design of inductors. The first is to decrease the parasitic resistance of a coil so that losses are minimized. Next, it is desirable to decrease the eddy current loss within the metallic inductor. Doing so offers an increase in the Q of the tank circuit and provides the added benefit of reducing the power dissipation of the tank circuit. This application will address these and other issues necessary to help achieve these goals.
Inductors are used in a variety of circuits. In the manufacture of the inductor, there is a parasitic resistive element contained within the inductor. This parasitic element causes losses in the circuit. The goal is to reduce the value of this parasitic resistance as much as possible in order to minimize the energy loss as indicated by the previous references. This procedure effectively lowers the sheet resistance since the overall metal sheet resistance decreases. However, it would be desirable to decrease the parasitic resistance, decrease the flow of eddy current within the metallic conductor of the inductor, and adjust the mutual coupling between two parallel-connected inductors thereby controlling the value of the overall effective inductance.
The basic invention is to place additional inductors in parallel across the two leads of an existing inductor that forms an LC tank circuit. It is important to note the parallel connection implies a true parallel connection; the added inductor has two leads (or the two access points of the inductor) and these two leads are placed in electrical contact (in parallel) with the two leads of the existing inductor that forms the inductance in the LC tank circuit. Connecting these two inductors together leads to a reduction of the overall parasitic resistance. This reduction in resistance occurs since the parasitic resistors are all connected in parallel. It is well known that by paralleling resistors, their net resistance decreases. However, besides reducing the resistance, the inductance also decreases according to the parallel rule applied to inductors. Thus, both the resistance and inductance are reduced using the parallel combination technique. In other words, connecting two identical inductors in parallel creates a single effective inductor that has half the parasitic resistance and half of the initial inductance value of either inductor. In some cases, this may be acceptable for certain applications.
Another aspect of this invention is to reduce the parasitic resistance of a parallel combination of inductors, yet prevent the full effect of the parallel reduction rule to reduce the overall inductance value. The key aspect of this invention is to utilize the magnetic coupling between the two inductors to compensate for this inductance reduction. The structure to obtain this behavior is known as the transformer. In order for this idea to function, the transformer is connected in a particular configuration that allows the reduction of the parasitic resistance but attempts to maintain the value of the inductance at its original value. In its simplest form, the transformer consists of two identical inductors that have a mutual coupling coefficient k. This value can be adjusted within the range of 0 to that approaching 1. Lenz's law is utilized to increase the overall inductance by using the magnetic coupling between the two coils to effectively increase the inductance of coils that are mutually coupled together. Thus, when two identical inductors in the transformer are connected in parallel and the mutual coupling coefficient k is close to 1, the parasitic resistance decreases in half, but the final inductance value is nearly equal to the initial inductance value of either inductor. A further benefit of this technique in a planar technology is that an inductor can be segmented into parallel strips along its length according to this invention and thereby reducing the eddy current loss within the inductor. By maintaining the coefficient k large between these parallel strips, the initial value of the inductor can be maintained while simultaneously achieving a decrease in eddy current loss.
a-b illustrates two planar inductor structures.
c presents a view of a planar inductor that has a helix structure.
d depicts an equivalent circuit for the planar inductor shown in
e provides dimensions and parameters for several inductors.
a is an RLC circuit using two non-coupling inductors in accordance with the present invention.
b-c illustrates a physical representation and a table giving capacitance values for several frequencies.
a depicts an RLC circuit using two parallel coupling inductors in accordance with the present invention.
b-c depicts a physical representation of the circuit and a table giving capacitance values for several frequencies.
a depicts an RLC circuit using two parallel coupling inductors in accordance with the present invention.
b-c depicts a physical representation of the circuit and a table giving capacitance values for several frequencies.
a is an RLC circuit using two anti-parallel coupling inductors in accordance with the present invention.
b-c gives a physical representation of the circuit and a table giving capacitance values for several frequencies.
a is an RLC circuit using two parallel coupling inductors in accordance with the present invention.
b-c provides a physical representation of the circuit and a table giving capacitance values for several frequencies.
a-c depicts the circuits for the mesh current analysis of several parallel inductors each inductor having a series resistor.
a-b provides circuit equivalent models for parallel-connected inductors with parasitic resistances that are also magnetically coupled.
c provides a table of estimated parameters of several transformer-based inductors following the embodiment of this invention.
a-f shows several examples of a regenerative circuit.
a-c shows circuit schematics where a transformer, capacitors and regenerative circuit are combined together in accordance with the present invention.
a depicts a physical description of the inventive aspect of the transformer structure in a planar technology connected to a regenerative circuit.
b shows the circuit schematic of the physical transformer structure given in
a illustrated the inventive physical structure of a multi-coiled transformer in a planar technology in accordance with the present invention.
b illustrated the circuit schematic of the multi-coiled transformer in a planar technology in accordance with the present invention.
a provides the circuit description of a conventional LC tank circuit.
b-d illustrates the inventive circuit configuration of a two, three and four-coil transformer based tank circuit.
e provides the simulation results of the circuits presented in
f depicts the simulation conditions of the simulation results given in
a illustrates the inventive description of a two-metal layer transformer connected as an inductor with parallel coupling.
b illustrates the circuit schematic of
a depicts an inventive cross-under for the inductor of
b provides a second form of an inventive cross-under for the inductor of
a illustrates a conventional LC tank circuit.
b depicts the inventive circuit in a three-coil configuration where the inductor of
c provides the simulation results of the two circuits of
d shows the simulation conditions applied to the circuits of
a depicts a conventional single turn planar inductor that occupies the same area as the three-coil inductor depicted in
b provides a magnified view of the planar inductor in
c illustrates a magnified view of the inset shown in
a depicts the physical representation of a parallel combination of two transformers in a planar technology in accordance with the present invention.
b presents the equivalent circuit schematic of the structure shown in
The LC (inductor-capacitor) tank circuit has been a fundamental building block in many electrical system designs. This circuit is used in the wireless, digital, and mixed-signal designs. The basic building elements of the LC tank circuit consist of an inductor and capacitor.
The invention is based on the discovery that a transformer can be used to decrease the effective resistance of an equivalent inductance that is applied to a capacitive load while maintaining a higher inductance value. The coupling coefficient of the transformer can be utilized to increase the effective inductance presented to the capacitor yet significantly reduce the resistance of the equivalent inductance of the transformer. The ability to reduce the resistance will offer an improvement in the Q or quality factor of the inductor.
In addition, this technique offers a degree of freedom in the design of tank circuits, which did not exist previously. For example, tradeoffs between single and multi-coil tank circuits can be compared. The number of coils in a multi-coil transformer may be optimized for a particular use. The power dissipation of several tank circuits using an equivalent inductance based on a single or multi-coil transformer can be compared. Finally, the coupling of the transformer can be utilized to injection lock all the tank circuits formed on the chip.
Several basic examples of an LC tank circuit in different configurations will be described and this analysis will be used to set a reference point so that a better comprehension of the invention can be made. Since the inventive tank circuit uses a transformer instead of an inductor, these circuits are called TC (transformer-capacitor) tank circuits.
Several assumptions are initially made to simplify the analysis of the inventive entity. This helps identify the key aspects of the invention without losing insight. It would be very informative to see what capacitive loads allow the inventive circuit to operate under three different frequencies: 1 GHz, 5 GHz and 10 GHz. To help achieve this analysis, the following assumptions will be made.
The first one will be to assume that the resistive component of the tank circuits will not significantly affect the frequency of operation of the TC tank circuits. Thus, instead of providing an actual resistance value, a relative value of resistance will be given and this value will be scaled appropriately for each different circuit analyzed. Later, the impact of incorporating a realistic value of resistance into the circuit will be described. In particular, the simulation results will include the resistive losses of the tank circuit. This realistic value will dissipate the energy in the tank circuit thereby requiring an additional circuit which has the ability to regenerate the energy loss in the resistive losses of the tank circuit. Various versions of this regenerative circuit will be described.
The second one will assume that the value of the inductor L (if the circuit only contains one inductor) or Lequ (determining an equivalent inductance if several inductors are used in the circuit) will be targeted to remain constant. Initially, this inductance value will be temporally be set to 0.8 nH unless otherwise specified.
The third one will assume that the self-inductances of the coils in the transformer are equal.
The last one will assume that the capacitive load elements in a balanced tank circuit are equal. To be more specific, if a tank circuit generates a clock and a clock bar signal, the capacitive load attached to both of these nodes are identical.
It is important to understand that setting these assumptions does not limit the range or scope of the inventive idea. The above assumptions help as an aid to easily identify the keys aspects of the invention. Before a TC tank circuit is utilized in an actual operating system, each of the above assumptions will need to be re-evaluated according to the specifications of the design parameters. Those skilled in the art will recognize that the above assumptions do not limit the scope of the invention.
a illustrates a square inductor 1-1 with one turn. Note that this inductor has at least two leads, 1-4 and 1-5, or ways of physically connecting the inductor to a circuit. The width of the metallic trace is shown as W. A two-turn inductor 1-2 is depicted in
c depicts a helix structure used to form an inductor 1-3. This inductor has two leads 1-6 and 1-7. A single turn coil 1-12 is formed in a lower metal layer, then a via 1-8 is used to connect this coil to the single turn coil 1-11 in an upper metal layer. The via 1-9 connects the middle coil to the top coil 1-10 formed in an upper metal layer
The inductors 1-1, 1-2 and 1-3 are typical for the type of inductors found in a planar technology layout. These inductors are also called coils where coil can indicate that the conductor forming the inductor has a configuration that spans a portion of 360 degrees.
In all of these planar inductors presented, several aspects were not shown. The substrate of the integrated circuit upon which these planar inductors are fabricated is not shown. In addition, the oxide or dielectric layer surrounding the metal layers is not illustrated. This provides an easier description of the structure of the inductor. The integrated circuit can typically have a plurality of metallization and dielectric layers. In addition, only a square inductor has been shown, however, those skilled in the art will realize that the inductor can be formed in a circular, oval, hexagonal shape or other shape, and still be within the scope of the invention.
Finally, the table listed in
The number of squares can be used with the sheet resistance value to determine an approximate resistance. The skin effect typically increases the resistance of the inductors proportional to the square root of frequency; however, the skin resistance effect will not be addressed in this discussion so that the concepts of the invention can be more easily visualized. For instance, the skin-depth in copper is about 0.66 μm at 10 GHz. Because of this effect, the current is carried near the surface causing the resistance to increase as mentioned earlier.
The schematic of a simple series RLC (resistor-inductor-capacitor) circuit 2-1 is illustrated in
On a first order, most of the resistance is typically contained in the inductor L and the thrust of this description will be to reduce this component of resistance. This assumption will be applied to many of the figures in this specification and this resistance will be called Requ. However, those skilled in the art will appreciate that a more accurate representation of the total resistance in the tank circuit will include the combined resistance values of all of these circuit elements.
Assume the top plate is charged to +V volts, a current flow of I is provided in the wire 2-5. This circuit will oscillate at different frequencies depending on the values of the inductor L and capacitor C.
Note that the fifth column indicates the ratio of Requ/Rref. Rref was selected to be equivalent to the parasitic resistance of the 0.8 nH inductor designed in
a shows the schematic of a Colpitts oscillator 3-1 consisting of one inductor L with a value of 0.8 nH, one resistor and two capacitors C1 and C2. A physical representation of the Colpitts oscillator 3-2 is illustrated in
Note that Cequ given in
This demonstrates the benefit of a Colpitts circuit where oscillatory signals are generated in a balanced fashion. The Colpitts oscillator can drive or generate an oscillation signal across more total capacitance Ctot for the same given frequency and in addition, the Colpitts oscillator also generates a clock signal on the top plate of both capacitors of
a depicts the schematic of a dual parallel inductor oscillator 4-1. It consists of two inductors L1 and L2, two resistors R1 and R2, and one capacitor Ctot. Note that the value of the resistances R1 and R2 increased by 37%. These inductors of 1.6 nH have a longer metal trace as indicated in
By using equation (4) (where n corresponds to the number of parallel inductors) to combine parallel inductors, the equivalent parallel inductance Lequ presented to the circuit reduces to the value of 0.8 nH as required by our earlier assumptions.
Equation (5) determines the equivalent resistance of n resistor in parallel.
A physical representation of the dual parallel inductor oscillator 4-2 is illustrated in
According to M. E. Van Valkenburg, Network Analysis, Third Edition, 1974, Prentice-Hall, Inc., Englewoods Cliffs, N.J., page 38: “When the magnetic field produced by a changing current in one oil induces a voltage in other coils, the coils are said to be coupled, and the windings constitute a transformer.”
There are two basis mechanisms to specify the amount of coupling and direction of the coupling in a transformer. The amount of coupling known as the coupling coefficient, k, determines the level of mutual inductance interaction of the transformer. The value of k can range from 0 (no coupling) to 1 (100% coupling). The k value indicates how much flux from the first coil is linked to the second coil. In addition to the k factor, the coils of the transformer are marked to indicate the direction of this linking or coupling. That is as current enters the first node of the first coil, a voltage is generated on one of the nodes of the second coil. These two nodes are then marked. Depending on the value of k and the positioning of the two dots, the mutual inductance of the transformer can be adjusted significantly. The term coil and inductor are used interchangeably. Inductors have a self-inductance while two inductors that are magnetically (mutually) coupled form a transformer. These inductors that are mutually coupled are referred to as coils of the transformer.
For a transformer with two coils (a transformer can have more than two coils), the two dots can be orientated in four different ways.
a shows a schematic of a transformer-capacitor (TC) based tank circuit 5-1 where two parallel inductors L1 and L2 are connected in parallel to the capacitor Ctot The two inductors also have has a series resistor R1 and R2, respectively. This tank circuit has a T-T coupling configuration. A physical depiction of this circuit is provided in
Because the equivalent inductance Lequ of the transformer in
This is illustrated in
This idea can be extended to include a transformer having more than two inductors where the equivalent resistance will be the parallel combination of three or more parallel resistors causing the resistance to become further reduced. This is an aspect that all tank circuits seek to achieve since the a higher Q provides many benefits including generating less phase noise, operating with better frequency selection, and having less power loss to name a few characteristics.
In
b illustrates the physical structure 7-2 of the circuit in
c provides capacitance value and the frequency of operation of the circuit. Note that the equivalent inductance that the transformer presents to the capacitor Ctot is very low—only 0.04 nH when k is assumed to be 0.9. This illustrates the case where the equivalent inductance Lequ can be significantly reduced. This type of circuit can be used to reduce the inductive voltage drop of a varying current, since the voltage drop will be proportional to the inductance.
The TC tank circuit can be arranged to have a Colpitts configuration as indicated by the circuit schematic 8-1 given in
The coupling coefficient can be utilized in the design of tank circuits to affect the value of inductance that is presented to the capacitive component of a tank circuit. This ability can be used for a multitude of uses in the analog and digital field; such as, wireless applications, clocking networks, driving mixers, adiabatic logic, to name a few.
M=k√{square root over (L1L2)} (6)
Using mesh equations, the equivalent inductance (Lequ) of the coupled coils 9-1 of
Assume that L1=L2=L and using equation (6) gives;
If the transformer had the two coils in an anti-parallel coupling configuration, the + sign in equation (8) would be changed to a − sign.
Placing a capacitor across the equivalent inductance Lequ forms the tank circuit 10-1 given in
A Colpitts oscillator 11-1 is illustrated in
The ratio of the frequency of a TC tank circuit fTC compared to the frequency of a LC tank circuit fLC is illustrated in
The relationship given in equation (9) is plotted in
The lower curve 12-2 corresponds to the case when the denominator is (1+k), this is the parallel coupling configuration and indicates that the effective inductance of the tank circuit increases and lowers the frequency of operation of the TC tank circuit as compared to the LC tank circuit.
The next relationship given in equation (10) is plotted in
The anti-parallel coupling configuration occurs when the denominator is (1−k), as the coupling coefficient k increases, the amount of capacitance 13-1 that the TC tank circuit can oscillate increases. This occurs because the equivalent inductance of the TC tank circuit decreases.
The lower curve 13-2 corresponds to the case when the denominator is (1+k), the amount of capacitance that the circuit can oscillate decreases at a slow rate as the function k−>1.
The mesh equation analysis for all the schematics given in
This assumption simplifies the equation and provides an insight into finding an approximate value for the equivalent inductance. Accepting the previous assumptions and conditions, the equivalent impedance Z2 for a two-coil transformer for the circuit using the current mesh analysis depicted in
b shows a parallel connection of three mutually coupled coils. The equivalent impedance Z3 for this three-coil transformer is:
c shows a parallel connection of four mutually coupled coils. The equivalent impedance Z4 for this four-coil transformer is:
Note two conditions in equations 11 through 13; if k is close to 1, the equivalent inductance Lequ is approximate to the value of the self-inductance L of a single coil. Secondly, the resistance of the multi-coil transformer decreases proportionally to the number of coils. Thus, this type of transformer provides an inductance that remains constant but decreases in resistance as the number of coils are increased as indicated by the resistive component Requ of equation (11) through equation (13). This will provide a mechanism to improve the Q or quality factor of an inductor in circuits where a high Q is desired. In addition, the power dissipation of the circuit will be decreased.
a depicts this impedance in a Colpitts oscillator 15-1 configuration including the equivalent resistance Requ. The total resistance in a tank circuit consists of several resistance terms. Because of this resistive loss, the oscillations generated by the tank circuit 15-1 would eventually die out. Thus, a regenerative circuit is required to replace the energy lost by the dissipative process of energy flow through the resistive components. The regenerative circuit can be formed out of active devices; such as MOS transistors, CMOS transistors or BJT transistors. The regenerative circuit provides a negative resistance that cancels the parasitic resistance in the tank circuit.
c provides the parameters of a coil and several transformers that can be formed in a planar technology. The single coil is listed in the first row where T=1. This coil has two turns and is the same coil described the first row of
The second row of
The third and fourth rows indicate the parameters of a 3 and 4 coil transformer. The turns ratio of the coils forming the transformer is 2.07 and 2.08, respectively. In both transformers, the self-inductance L has been designed at 0.857 and 0.865 nH, respectively. Using equation (12) and equation (13), respectively, the equivalent inductances Lequ of these two transformers are found to be 0.8 nH. Similarly, the resistance for the three coil transformer (T=3) Requ is 2.22Ω. In the case of the T=4 coils transformer, the resistance Requ is only 1.68Ω. This is over a 4× reduction over that of a single coil. Note that the Q has been increased to almost 3.
This is the key aspect of this invention—paralleling multi-coils in a parallel coupling configuration allows an equivalent inductance Lequ of a single coil to be achieved with a reduced equivalent resistance Requ proportional to the number of coils used in the transformer. Furthermore, the area of all of these transformers can be contained within the original area of a single coil. The capacitor loads C1 and C2 can consist of all the parasitic capacitance in the entire circuit. In addition, this capacitor can contain the load capacitance and the adjustable capacitor.
An example of a Colpitts oscillator 16-1 connected to a regenerative circuit 16-2 is given in
A Hartley oscillator 17-1 is shown in
A regen-1 type circuit 18-9 similar to 18-2 is given in
An equivalent representation of the circuit 18-9 is provided in
The remaining circuits are regen-2 type. In
The circuit shown in 18-12 of
The last circuit 18-14 illustrated in
The capacitor 19-3 is an adjustable capacitor which is used to adjust the frequency of oscillation of the TC tank circuit. Some examples include a voltage-controlled varactor that can be formed using a diode or a MOS transistor. The MOS device can be configured as an enhancement or depletion mode device. By adjusting the control voltage to these devices, the capacitance presented to the tank circuit can be modified, thereby, modifying the frequency of operation of the tank circuit. Another form of adjustable capacitor would include an array of MOS transistors. The array would present capacitance to the TC tank circuit through switches that can be controlled by a set of control voltages. By adjusting these voltages, one or many gates can be connected or disconnected to the TC circuit which in turn varies the effective capacitance presented to the TC tank circuit. The frequency of operation of the tank circuit changes according to equation (2). The inductance of the tank circuit 19-4 contains the transformer which has an effective inductance of Lequ.
b shows a TC tank circuit 19-4 that is identical to the circuit of 19-1 except the current controlled p-channel transistor is removed. The circuit 19-4 can generate a voltage swing that is larger than the swing produce by the circuit 19-1.
Finally,
a and
Both
In both
a illustrates the physical structure of the transformer. Note that the inductor 20-3 overlays the inductor 20-2. The number of turns N in the coil can be a variable. Such a transformer can be fabricated in integrated circuits (IC) where a lower metal layer can be used to form 20-2 while an upper metal layer can be used to form 20-3. Furthermore, this example shows the case where the coils only have one turn (N=1).
b presents the circuit equivalent of the transformer. The upper 20-3 coil consists of the self-inductance L1 and resistance R1. The lower 20-2 coil is represented by the self-inductance L2 and resistance R2. The coils have a mutual inductance denoted by M. The dots on the transformer indicate that the coils are arranged in a parallel coupling configuration. Thus, the coils are arranged to have an equivalent inductance Lequ that attempts to match the value of the self-inductance of either coil as indicated by equation (11) where the + sign is taken. The larger the value of k, the greater will be the match. Furthermore, by observing that the value of the resistance in equation (11) is reduced to half that of a single coil or inductor, making a multi-layer transformer would have the additional benefit of reducing the equivalent resistance. The reduction of the resistance occurs because the coils are connected in parallel.
A physical example of a vertical multi-coil transformer 21-1 is illustrated in
The ingress current 21-8 is provided into each of the four inductors as indicated by the arrows 21-6. This is the ingress point of all four inductors. The egress current 21-7 from each inductor coil is collected and sunk as current 21-9. This is the egress point for all four inductors. Note that a symbolic short connects all four-ingress points, in addition, a symbolic short connects all four-egress points. For example, the ingress points of coils 21-2 an 21-3 are connected together by the short 21-10, while the ingress points of 21-3 and 21-4 are connected by the short 21-12. Similarly, the egress points of coils 21-2, 21-3 and 21-4 are connected together by the shorts 21-11 and 21-13, respectively. Vias will be used to replace these shorts 21-10, 21-12, 21-11, and 21-13 in a planar technology as will be shown shortly. Since there are four coils connected in parallel, the equivalent resistance Requ, assuming each coil has the same resistance R, would be R divided by the number of coils, or Requ=R/4. Thus, multi-coil transformers have the ability to reduce the resistance substantially.
This structure can also be implemented in the MEMS or MCM technology. The MEMS offers the ability to adjust the position of one of the coils which directly adjusts the coupling coefficient k. This feature can be used to adjust the frequency of oscillation of the tank circuit. In a MCM technology, the dimensions and spacing between coils can be increased since another die can be solder bumped to another die. The transformer can be split between these two die. The bump height can be more than a few microns.
So far the use of this transformer has been described in a tank circuit. However, those skilled in the art will recognize that this type of transformer circuit can be utilized in other circuit structures outside the domain of tank circuits. For example, this structure can be used wherever inductors are used in circuit and system designs. The use of this technique has a broad range in circuit applications, such as, filters, power supplies, RF circuits, mixers, etc.
b provides the schematic representation of the physical multi-coil transformer provided in
A Spice simulation was performed to demonstrate the benefit of using multi-coil transformers in tank circuits.
The circuits that were simulated are illustrated in
The conventional LC tank circuit 23-1 in
Some of the results of the simulation 23-6 of the four different circuits are given in the table of
Due to the large resistive loss of the inductor, the results for the conventional LC tank circuit indicate the need for a large inverter: 200 μm/100 μm, the self-capacitance of this large gate minimizes the amount of external load capacitance that can be driven. In this case, the value of C can only be 0.5 pF. In addition, because of the large inverters, the power dissipation is 21 mW.
The results of the two-coil TC tank circuit of 23-2 in
The three-coil TC tank circuit of 23-3 in
The last circuit 23-4 of the four-coil TC tank circuit in
Thus, the simulation results confirm the advantage of utilizing inductors connected in parallel to provide advantages in reducing the resistance of the equivalent inductance (given in the bottom row of
a illustrates another transformer structure 25-1. This transformer consists of two interwoven coils and offers a balanced differential interface. The first coil 25-2 receives current from port 25-6 and routes the current through the crossover 25-5 to the upper layer. The second coil 25-3 receives current from port 25-6 through the interconnect 25-4 and routes the current through the crossover 25-5 to the lower layer. The current approaches the end of the coils but the transformer has these two ends of its outputs shorted by 25-4. This current then exits the transformer at port 25-7.
b provides the schematic of the transformer identifying the same components in the circuit. The transformer has four ports. Two of the ports are shorted by the connection 25-4. Current from input port 25-6 enters coil L1 and coil L2 and exits at node 25-7. Note that this transformer has a parallel coupling configuration; this transformer will have an increased equivalent inductance according to the equation (11). In addition, the dots indicate this coupling. Thus, this is another representation where the two coils of a transformer are shorted together to effectively form one inductor.
A horizontal multi-coil transformer 26-1 for a planar technology is depicted in
In the upper right corner, the three coils route around one another. This is where metal vias are used to bridge the current from the upper metal layer to a lower metal layer to cross under the obstructing coil and use vias to redirect the current back to the upper metal layer. This structure is called a cross-under and redirects the current 26-8 down and under the coil fabricated in the top thick metal layer. For example, in coil 26-2, a cross-under 26-5 is used to continue the current flow 26-8 under the coil 26-3 and back to the coil 26-2. The middle coil 26-3 crosses under the coil 26-4 using the cross-under 26-6. Finally, the last coil 26-4 crosses under coil 26-2 using the cross-under 26-7. Note that each coil only has one cross-under in its entire path insuring that all the coils have a similar characteristic; for example, the resistance term in each coil is equalized.
a and
A circuit simulation was performed and the simulation conditions are illustrated in
The results for these two simulations are given in
An analysis was performed to determine the value of the equivalent inductance and parasitic resistance of a conventional single turn coil shown in
Moving forward with this analysis, the conventional single turn coil of
As
c illustrates a magnified version of the region 29-10 in
a depicts a multi-coil transformer formed from a vertical planar inductor structure. This structure is similar to that given in
A circuit representation of the structure in
Breaking up a wire into many parallel runners to help reduce eddy current loss is show in
The upper die has a similar structure as the lower die to simplify the description and many of the numerals describing the features are the same. A dielectric layer 32-3 is deposited on the substrate 32-2. A metal layer 32-8 with the shape of a coil (not shown) has been patterned on top of the dielectric layer 32-3. The coil 32-8 has its first lead electrically connected to a first via and a metal layer 32-6. The second lead of the coil is electrically connected to a second via and a metal layer 32-9. The solder bumps 32-7 not only provide mechanical support to the two die but electrically connect the two coils in parallel as well. These two coils are now electrically connected in parallel and are magnetically coupled due to their proximity to each other.
Finally, it is understood that the above description are only illustrative of the principle of the current invention. In accordance with these principles, those skilled in the art may devise numerous modifications without departing from the spirit and scope of the invention. For example, the multi-coil transformer element can be utilized in various circuits such as filters, antennas, and other RF circuits. In another example, the MOS devices illustrated in the regenerative circuit can be replaced by BJT device to provide a negative impedance and maintain the oscillations.
Number | Name | Date | Kind |
---|---|---|---|
3181096 | Werner | Apr 1965 | A |
4286704 | Wood | Sep 1981 | A |
4816784 | Rabjohn | Mar 1989 | A |
4992769 | Oppelt | Feb 1991 | A |
5396195 | Gabara | Mar 1995 | A |
5477204 | Li | Dec 1995 | A |
5831331 | Lee | Nov 1998 | A |
5872489 | Chang | Feb 1999 | A |
5966063 | Sato | Oct 1999 | A |
6060759 | Dhong | May 2000 | A |
6225677 | Kobayashi | May 2001 | B1 |
6274937 | Ahn et al. | Aug 2001 | B1 |
6304146 | Welland | Oct 2001 | B1 |
6323735 | Welland | Nov 2001 | B1 |
6404317 | Mizoguchi et al. | Jun 2002 | B1 |
6480086 | Kluge et al. | Nov 2002 | B1 |
6529385 | Brady et al. | Mar 2003 | B1 |
6580334 | Simburger et al. | Jun 2003 | B2 |
6608364 | Carpentier | Aug 2003 | B2 |
6621358 | Carballo | Sep 2003 | B2 |
6621365 | Hallivuori | Sep 2003 | B1 |
6650220 | Sia | Nov 2003 | B2 |
6661325 | Suh | Dec 2003 | B2 |
6714086 | Landrith | Mar 2004 | B1 |
6759937 | Kyriazidou | Jul 2004 | B2 |
6794977 | Christensen | Sep 2004 | B2 |
6867677 | Nielson | Mar 2005 | B2 |
6885090 | Franzon et al. | Apr 2005 | B2 |
6891444 | Jacobsson | May 2005 | B2 |
6911870 | Gierkink | Jun 2005 | B2 |
6943635 | Kaltenecker | Sep 2005 | B1 |
6982805 | Mondal | Jan 2006 | B2 |
7005930 | Kim | Feb 2006 | B1 |
7038443 | Proksch | May 2006 | B2 |
7068139 | Harris et al. | Jun 2006 | B2 |
7078998 | Zhang | Jul 2006 | B2 |
7109810 | Senthilkumar | Sep 2006 | B2 |
7138877 | Vu | Nov 2006 | B2 |
7317354 | Lee | Jan 2008 | B2 |
7355264 | Degani et al. | Apr 2008 | B2 |
20010007437 | Mashimo | Jul 2001 | A1 |
20030206067 | Wong | Nov 2003 | A1 |
20080265367 | Tan et al. | Oct 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20070018767 A1 | Jan 2007 | US |