The present invention relates generally to a fastener assembly for fastening two components together, and more particularly to a fan fastener fastening a fan to a fan holder of a heat sink for dissipating heat generated by an electronic device.
It is well known that, during operation of a computer, electronic devices such as central processing units (CPUs) frequently generate large amounts of heat. The heat must be quickly removed from the electronic device to prevent it from becoming unstable or being damaged. Typically, a heat sink is attached to an outer surface of the electronic device to absorb heat from the electronic device. The heat absorbed by the heat sink is then dissipated to ambient air. Generally, in order to improve heat dissipation efficiency of the heat sink, a fan assembly is attached to the heat sink to provide forced airflow to the heat sink.
Conventionally, a fan is fastened to a fan holder such as a bracket of a heat sink directly via a plurality of screws. However, it is time-consuming and laborious to screw the screws to the fan holder through the fan in order to combine the fan to the fan holder together. Furthermore, a fixation by the screws cannot effectively absorb vibration made by the fan when it rotates, whereby a noise is generated by the fan in operation, which is required to be further reduced.
What is needed, therefore, is a fastener fastening a fan to a fan holder of a heat sink conveniently; furthermore, the fastener can absorb vibration of the fan in operation thereby to reduce noise level generated by the fan during operation thereof.
A fastener in accordance with an embodiment of the present invention, for assembling a fan to a bracket (fan holder) of a heat sink, comprises a shaft. The shaft has an expanding head formed at an end thereof and a bulge formed at an opposite end thereof. A handle extends from the bulge of the shaft for facilitating operation of an operator to combine the fan and bracket together.
A method in accordance with an embodiment of the present invention for fastening the fan to the bracket includes the steps of:
Other advantages and novel features will become more apparent from the following detailed description of preferred embodiments when taken in conjunction with the accompanying drawings, in which:
Referring to
The heat sink 10 comprises a base 11 and a plurality of fins 13 arranged on the base 11. The base 11 extends two thin steps 112 from two opposite lateral sides thereof, respectively. The two steps 112 define two fixing holes 114 at front ends thereof, respectively, for fixing the bracket 20 to the heat sink 10.
The bracket 20 comprises a substantially rectangular faceplate 21 and four sidewalls 22 extending from four sides of the faceplate 21. The faceplate 21 defines an opening 211 in a center thereof. Four fixing apertures 212 are defined in four corners of the faceplate 21, respectively. Two fastening ears 221 each having a fastening hole 222 defined therein oppositely extend from two lateral ones of the sidewalls 22, respectively, for fastening the bracket 20 to the heat sink 10. Two screws (not shown) are used to extend through the fastening holes 222 and screw into the fixing holes 114, thereby securing the bracket 20 to the heat sink 10, after the fan 40, the gasket 30 and the bracket 20 are assembled together.
The fan 40 is substantially rectangular, and comprises a frame 41 and a fan blade unit (not labeled) located in the frame 41. The fan blade unit is used to generate a forced airflow when it rotates. Four through holes 411 are defined in four corners of the frame 41, respectively, for accommodating the fasteners 50 therein.
The gasket 30 is substantially rectangular corresponding to the fan 40 and comprises three interconnecting beams 31 which define an opening 33 thereamong. Four through apertures 313 are defined in four corners of the gasket 30 corresponding to the through holes 411 of the frame 41 of the fan 40 and the fixing apertures 212 of the faceplate 21 of the bracket 20.
Referring also to
Referring also to
According to the embodiment of present invention, the fan 40, the gasket 30 and the bracket 20 are assembled only by first pushing and then pulling the fasteners 50 through the fan 40, the gasket 30 and the bracket 20; thus, the assembly thereof is quite easily and simple.
Additionally, the fasteners 50 have good flexibility, which provide elastic securing force to retain the fan 40 and the bracket 20 together. Furthermore, the elastic fasteners 50 buffer vibration of the fan 40 during operation thereof; thus, noises level generated by operation the fan 40 can be lowered. Additionally, the gasket 30 between the fan 40 and the bracket 20 is also made of elastic material, thereby further absorbing vibration of the fan 40 during operation thereof.
It is believed that the present embodiment and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4568243 | Schubert et al. | Feb 1986 | A |
5316423 | Kin | May 1994 | A |
6322382 | Viallet | Nov 2001 | B1 |
6324731 | Pliml, Jr. | Dec 2001 | B1 |
6459584 | Kuo | Oct 2002 | B1 |
6637502 | North et al. | Oct 2003 | B1 |
6654246 | Wu | Nov 2003 | B2 |
6894897 | Nagurny et al. | May 2005 | B1 |
20050271506 | Pan | Dec 2005 | A1 |
20060045616 | Sura et al. | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070237602 A1 | Oct 2007 | US |