Moreover, this application is related to patent application Ser. No. 12/890,137 (Attorney Docket Number TI-68285, filed simultaneously with this application) entitled “Hydrogen Passivation of Integrated Circuits” and patent application Ser. No. 12/717,604 (Attorney Docket Number TI-67319, filed Mar. 4, 2010) entitled “Passivation of Integrated Circuits Containing Ferroelectric Capacitors and Hydrogen Barriers”. With their mention in this section, these patent applications are not admitted to be prior art with respect to the present invention.
These embodiments relate to the field of integrated circuits. More particularly, these embodiments relate to protecting a ferroelectric capacitor from hydrogen degradation.
The example embodiments are described with reference to the attached figures, wherein like reference numerals are used throughout the figures to designate similar or equivalent elements. The figures are not drawn to scale and they are provided merely to illustrate the example embodiments. Several aspects are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the example embodiments. One skilled in the relevant art, however, will readily recognize that the example embodiments can be practiced without one or more of the specific details or with other methods. In other instances, well-known structures or operations are not shown in detail to avoid obscuring the embodiment. The example embodiments are not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the example embodiments.
Ferroelectric capacitors (FeCaps) are frequently used in integrated circuits to provide nonvolatile memory in devices such as Ferroelectric (“FRAM”) memories, high-k capacitors, piezoelectric devices, and pyroelectric devices. The construction of the ferroelectric capacitors may be integrated into a CMOS process flow after the formation of the transistor portion of the integrated circuit (e.g. after ‘front-end’ processing), but before the formation of the metallization or interconnection portion of the integrated circuit (e.g. before ‘back-end’ processing).
Many CMOS back-end processing steps include the use of hydrogen. For example, hydrogen may be used in the formation of trench etch-stop layers, etch clean, and copper sintering (e.g. heating). During these process steps, hydrogen may diffuse into the ferroelectric capacitor material, causing a degradation in the electrical properties of the device (such as degraded switched polarization of FRAM memory cells). To protect the FeCaps from degradation due to hydrogen, an electrically conductive hydrogen barrier layer may be used to form the bottom plate of an FeCap plus a hydrogen barrier film may be deposited over the FeCap.
The term “FeCap” refers to a ferroelectric capacitor. The ferroelectric dielectric of the FeCap may be composed of (but is not limited to) lead zirconate titanate (PZT).
The term “FeCap region” refers to an array of FeCaps having two or more FeCaps.
The integrated circuit (1000) containing an FeCap (1022) in
A pre-metal dielectric (“PMD-2”) layer (1032) is deposited over the substrate (1002) containing FeCaps (1022). Second contacts (1030) are formed in the PMD-2 layer (1032) to make contact to the top plate (1024) of the FeCap (1022) and also to the transistor sources and drains (1006). A first level of metal interconnect (“met-1”) (1034) is formed within the first level of inter-metal dielectric (“IMD-1”) (1036) plus a second level of metal interconnect (“met-2”) (1042), and vias for the met-2 level (“via-2”) (1040) are formed within the second level of inter-metal dielectric (“IMD-2”) (1038). It is to be noted that either fewer or additional levels of metal interconnect and dielectric passivation may be used to complete the integrated circuit (1000).
A close up view of a FeCap (1022) is shown in
The integrated circuit structure (1100) in
The manufacturing method for forming an integrated circuit according to an embodiment of the instant embodiment is illustrated in
As shown in
As described in copending U.S. patent application Ser. No. 12/717,604 incorporated supra, hydrogen barrier films (2020) and (2338) may be patterned and etched from over the transistors that are in periphery logic regions (2003) (see
In another example embodiment, the overlying hydrogen barrier layer (2338) may be composed of two hydrogen diffusion barrier films. The first overlying hydrogen barrier film may be nitrided aluminum oxide (“AlONx”) that may be deposited using physical vapor deposition (“PVD”) or atomic layer deposition (“ALD”). The nitridation of the AlOx to improve the hydrogen barrier properties may be accomplished by exposing the AlOx to a nitrogen-containing plasma, or by annealing the AlOx at about 400 C in a nitrogen containing ambient. The second overlying hydrogen barrier film may be SiNxHy that is formed using the same PECVD process as the underlying hydrogen barrier layer described in Table 1 supra.
Another embodiment is illustrated in
As described in copending U.S. patent application Ser. No. 12/______ incorporated supra, a hydrogen releasing film (3022) may be formed under the underlying hydrogen barrier film (3020) in the integrated circuit (3000). The hydrogen releasing layer (3022) may be a SiNxHy film that is deposited using HDP under process conditions, such as those shown in Table 2 supra, to form a SiNxHy film (3022) with a high concentration of Si—H bonds.
Generally, Si—H bonds are of a lower bond energy (e.g. about 3.34 eV) than N—H bonds (e.g. about 4.05 eV). Therefore, Si—H bonds tend to dissociate during thermal processing steps (such as copper anneals that usually release hydrogen). During back-end thermal steps (such as the copper anneals) hydrogen may be released from this hydrogen releasing film (3022) and may diffuse into the interface (3058) and then passivate the interface states and crystalline defects. However, the underlying hydrogen barrier (3020) of this embodiment may prevent this released hydrogen from diffusing upwards and subsequently degrading the FeCap. The underlying hydrogen barrier film (3020) that is located on top of the hydrogen releasing film (3022) may also prevent the degradation of the passivation by preventing hydrogen from diffusing away from the interface.
Instead of a hydrogen-releasing film (3022) of
An optional oxide capping layer (3024) may be deposited on top of the underlying hydrogen barrier (3020) to prevent photoresist from coming into contact with the SiNxHy underlying hydrogen barrier (3020). When the SiNxHy film is formed with NH3 (see Table 1, supra), residual NH3 may remain in the film and may react with the contact photoresist (3026), making the contact photoresist (3026) difficult develop and also difficult to be removed later in the fabrication process. In the embodiment shown in
While various example embodiments have been described above, it should be understood that they have been presented by way of example only and not limitation. Numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit or scope of the example embodiments. Thus, the breadth and scope of the example embodiments should not be limited. Rather, the scope of the example embodiments should be defined in accordance with the following claims and their equivalents.
This application is a divisional of U.S. patent application Ser. No. 12/890,219 filed Sep. 24, 2010 which claims priority, under U.S.C. §119(e) of U.S. Provisional Application 61/249,478 (Texas Instruments docket number TI-67739 PS and entitled “Ferroelectric Capacitor Encapsulated with a Hydrogen Barrier”), filed Oct. 7, 2009).
Number | Date | Country | |
---|---|---|---|
61249478 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12890219 | Sep 2010 | US |
Child | 13485068 | US |