This invention relates to spatial light modulators, and more particularly to detection of conditions in which the light incident on the spatial light modulator exceeds a predetermined intensity.
A Digital Micromirror Device™ (DMD™) is a type of microelectromechanical systems (MEMS) device. Invented in 1987 at Texas Instruments Incorporated, the DMD is a fast, reflective digital spatial light modulator. It can be combined with image processing, memory, a light source, and optics to form a digital light processing system capable of projecting large, bright, high-contrast color images.
The DMD is fabricated using CMOS-like processes over a CMOS memory. It has an array of individually addressable mirror elements, each having an aluminum mirror that can reflect light in one of two directions depending on the state of an underlying memory cell. With the memory cell in a first state, the mirror rotates to +10 degrees. With the memory cell in a second state, the mirror rotates to −10 degrees. By combining the DMD with a suitable light source and projection optics, the mirror reflects incident light either into or out of the pupil of the projection lens. Thus, the first state of the mirror appears bright and the second state of the mirror appears dark. Gray scale is achieved by binary pulsewidth modulation of the incident light. Color is achieved by using color filters, either stationary or rotating, in combination with one, two, or three DMD chips.
One aspect of the invention is an improved spatial light modulator (SLM) having an array of pixel elements and control circuitry. In one embodiment, the improvement comprises a diode placed around at least a portion of the perimeter of the pixel array, the diode operable to conduct current in response to light incident on the pixel array. A disable circuit is operable to receive the current from the diode and to deliver a disable signal to the control circuitry when the current exceeds a predetermined amplitude.
An advantage of the invention is that it provides a cost effective means to detect overlight conditions, that is, conditions when light incident on the SLM exceeds a predetermined threshold. The collection diode may be fabricated using CMOS processes consistent with fabrication of the SLM. Existing voltages that are used to operate the SLM may be used to bias the diode.
The diode may be used to detect the overlight conditions in a manner that is transparent to the user of the SLM. It may be fabricated in a manner such that it is integral to the SLM and does not affect its operation.
The following discussion is related to use of a reverse-biased N-well diode as a light collector for a spatial light modulator (SLM). The didode forms a recombination region in the substrate of the SLM for photogenerated holes, which can be sensed as an increase in current through the diode. The sensed current may then be used to detect an “overlight” condition, that is, a condition in which the intensity of light incident on the SLM exceeds a predetermined intensity.
The diode may be fabricated using standard CMOS fabrication processes. The biasing voltages for the diode may be the same as those used for operation of the DMD. Further, the bias voltage may be from a low current power supply so that the signal to noise ratio of the photogenerated current is substantial.
For purposes of example herein SLM 10 is a DMD type SLM. As discussed in the Background, a DMD 10 is comprised of an array 11 of hundreds or thousands of micro-mirror elements, also referred to as “pixel elements”. Peripheral (active) circuitry 12 is used to load data to the pixel elements and control their operation. A control circuit 14 delivers control signals to the peripheral circuitry 12.
As illustrated in
When SLM 10 is a DMD, one possible DMD operating voltage that may be used for Vdiode is the shield bias, which has no direct current. Another available voltage is the Vcc2 voltage.
In both of the above-described embodiments, it may be desirable for the diode 13 or the diodes in array 41 to cover much of the exposure field of the SLM 10. The diode(s) may thereby rely on a large surface area for collection efficiency. This helps ensure that the collection current is immune to surface variations in the doping profiles of the silicon. Thus, in the example of
Although the foregoing description is in terms of a DMD, the same concepts are applicable to other types of SLMs. For example, the embodiments of
Although the present invention has been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.
This application claims priority under 35 USC § 119(e)(1) of provisional application No. 60/344,220 filed Dec. 27, 2001.
Number | Name | Date | Kind |
---|---|---|---|
4615595 | Hornbeck | Oct 1986 | A |
5179274 | Sampsell | Jan 1993 | A |
5481118 | Tew | Jan 1996 | A |
5535047 | Hornbeck | Jul 1996 | A |
5561287 | Turner et al. | Oct 1996 | A |
6188427 | Anderson et al. | Feb 2001 | B1 |
6410903 | Miyazaki | Jun 2002 | B1 |
6624756 | Butterworth | Sep 2003 | B1 |
6683290 | Doherty | Jan 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20030123123 A1 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
60344220 | Dec 2001 | US |