Field effect transistor devices with low source resistance

Information

  • Patent Grant
  • 9029945
  • Patent Number
    9,029,945
  • Date Filed
    Friday, May 6, 2011
    13 years ago
  • Date Issued
    Tuesday, May 12, 2015
    9 years ago
Abstract
A semiconductor device includes a drift layer having a first conductivity type, a well region in the drift layer having a second conductivity type opposite the first conductivity type, and a source region in the well region. The source region has the first conductivity type and defines a channel region in the well region. The source region includes a lateral source region adjacent the channel region and a plurality of source contact regions extending away from the lateral source region opposite the channel region. A body contact region having the second conductivity type is between at least two of the plurality of source contact regions and is in contact with the well region. A source ohmic contact overlaps at least one of the source contact regions and the body contact region. A minimum dimension of a source contact area of the semiconductor device is defined by an area of overlap between the source ohmic contact and the at least one source contact region.
Description
FIELD OF THE INVENTION

The present invention relates to electronic devices and fabrication methods. More particularly, the present invention relates to high power insulated gate transistors and fabrication methods.


BACKGROUND

Power devices made with silicon carbide (SiC) are expected to show great advantages as compared to those on silicon for high speed, high power and/or high temperature applications due to the high critical field and wide band gap of SiC. For devices capable of blocking high voltages, such as voltages in excess of about 5 kV, it may be desirable to have bipolar operation to reduce the drift layer resistance via conductivity modulation resulting from injected minority carriers. However, one technical challenge for bipolar devices in silicon carbide is forward voltage degradation over time, possibly due to the presence of Basal Plane Dislocations (BPD) in single crystals of silicon carbide. Thus, unipolar devices such as SiC Schottky diodes and MOSFETs are typically used for high power applications, e.g., up to 10 kV or more.


SiC DMOSFET devices with a 10 kV blocking capability have been fabricated with a specific on-resistance of about 100 mΩ×cm2. DMOSFET devices may exhibit very fast switching speeds of, for example, less than 100 ns, due to their majority carrier nature. However, as the desired blocking voltage of devices increases, for example up to 15 kV or more, the on-resistance of a MOSFET device may increase substantially, due to the corresponding increase in the drift layer thickness. This problem may be exacerbated at high temperatures due to bulk mobility reduction, which may result in excessive power dissipation.


With the progress of SiC crystal material growth, several approaches have been developed to mitigate BPD related problems. See, e.g., B. Hull, M. Das, J. Sumakeris, J. Richmond, and S. Krishinaswami, “Drift-Free 10-kV, 20-A 4H—SiC PiN Diodes”, Journal of Electrical Materials, Vol. 34, No. 4, 2005. These developments may enhance the development and/or potential applications of SiC bipolar devices such as thyristors, GTOs, etc. Even though thyristors and/or GTOs may offer low forward voltage drops, they may require bulky commutating circuits for the gate drive and protections. Accordingly, it may be desirable for a SiC bipolar device to have gate turn-off capability. Due to their superior on-state characteristics, reasonable switching speed, and/or excellent safe-operation-area (SOA), 4H—SiC insulated gate bipolar transistors (IGBTs) are becoming more suitable for power switching applications.


SUMMARY

A semiconductor device according to some embodiments includes a drift layer having a first conductivity type, a well region in the drift layer having a second conductivity type opposite the first conductivity type, and a source region in the well region. The source region has the first conductivity type and defines a channel region in the well region. The source region includes a lateral source region adjacent the channel region and a plurality of source contact regions extending away from the lateral source region opposite the channel region. A body contact region having the second conductivity type is between at least two of the plurality of source contact regions and is in contact with the well region, and a source ohmic contact is in contact with the source contact regions and the body contact region.


The body contact region may include a plurality of body contact regions that are interspersed between the source contact regions. The plurality of body contact regions may be spaced apart from the channel region by the lateral source region.


The source ohmic contact may be in contact with the source region in a source contact area and the source ohmic contact may be in contact with the body contact region in a body contact region area.


In some embodiments, a ratio of a minimum dimension p1 of the contact region area to a minimum dimension w1 of the well region may be greater than 0.2. In further embodiments, the ratio of the minimum dimension p1 of the contact region area to the minimum dimension w1 of the well region may be greater than about 0.3.


The drift region may include a wide bandgap semiconductor material, such as silicon carbide.


The source region has a sheet resistance and the source ohmic contact has a sheet resistance that is greater than 75% of the contact resistance of the source region, and in some embodiments is greater than the contact resistance of the source region.


The device may have a reverse blocking voltage in excess of 1000 volts and a current density greater than 200 amps per square centimeter.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate certain embodiment(s) of the invention. In the drawings:



FIG. 1 is a circuit diagram of a metal-oxide-semiconductor field effect (MOSFET) device.



FIG. 2 is a graph illustrating hypothetical on-state current-voltage characteristics for a MOSFET device.



FIG. 3 is a graph illustrating the effect of source resistance on gate voltage.



FIG. 4 is a partial cross sectional illustration of cell of a conventional power MOSFET device.



FIGS. 5 and 6 are plan views illustrating layouts of conventional power MOSFET devices.



FIGS. 7 and 8 are plan views illustrating layouts of power MOSFET devices according to some embodiments.



FIGS. 9 and 10 are partial cross sectional illustrations of a cell of a power MOSFET device according to some embodiments.



FIG. 11 is a graph on-state current-voltage characteristics for a MOSFET device according to some embodiments.



FIG. 12 is a cross sectional illustration of cell of a power MOSFET device according to some embodiments.



FIG. 13 is a cross sectional illustration of cell of an insulated gate bipolar transistor device according to some embodiments.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Embodiments of the present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” “comprising,” “includes” and/or “including” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


It will be understood that when an element such as a layer, region or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.


Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “lateral” or “vertical” may be used herein to describe a relationship of one element, layer or region to another element, layer or region as illustrated in the figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.


Embodiments of the invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. The thickness of layers and regions in the drawings may be exaggerated for clarity. Additionally, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a discrete change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the invention.


Some embodiments of the invention are described with reference to semiconductor layers and/or regions which are characterized as having a conductivity type such as n-type or p-type, which refers to the majority carrier concentration in the layer and/or region. Thus, n-type material has a majority equilibrium concentration of negatively charged electrons, while p-type material has a majority equilibrium concentration of positively charged holes. Some material may be designated with a “+” or “−” (as in n+, n−, p+, p−, n++, n−−, p++, p−−, or the like), to indicate a relatively larger (“+”) or smaller (“−”) concentration of majority carriers compared to another layer or region. However, such notation does not imply the existence of a particular concentration of majority or minority carriers in a layer or region.


Some embodiments of the invention provide silicon carbide (SiC) insulated gate devices that are suitable for high power and/or high temperature applications.



FIG. 1 is a circuit diagram of a metal oxide semiconductor field effect transistor (MOSFET) device 10. As shown therein, a MOSFET device generally includes three terminals, namely, a drain terminal (D), a source terminal (S) and a gate terminal (G). The gate-to-source voltage of the device is denoted VGS, while the drain-to-source voltage of the device is denoted VDS. The device has a built in source resistance RS and a built-in drain resistance RD based on the physical characteristics of the device. The voltage over the built-in source resistance RS is denoted VRs.


In a MOSFET device, current passing through a channel of the device from the drain to the source is regulated by applying a voltage to the gate. The gate is insulated from the channel by a gate insulator, such as silicon dioxide. As the voltage on the gate terminal is increased, current passing through the device may increase.



FIG. 2 is a graph illustrating hypothetical (curve 102) and actual (104) on-state current-voltage characteristics for a MOSFET device for a given gate-to-source voltage (VGS). As shown in FIG. 2, for a given gate voltage, the current through the device (ID) increases as the voltage between the drain and source (VDS) increases, up to a saturation point. In actual devices, the actual saturation current of a transistor is typically less than the ideal saturation current. Part of the reason for this relates to the source resistance of the device.


In particular, as the drain current ID passing through the device increases, the amount of voltage dropped over the source resistance RS increases in direct proportion. FIG. 3 is a graph illustrating the effect of source resistance on gate voltage. In FIG. 3, the voltage from the gate terminal to the source terminal is denoted VGS. A portion of the gate voltage VGS applied to the device across the gate and source terminals is dropped over the internal source resistance RS of the device. That portion of the gate voltage is denoted VRs in FIG. 3. The remainder of the gate-to-source voltage appears as a voltage across the gate insulator, denoted VGS,int in FIG. 3. Thus, VGS is equal to the sum of VRs and VGS,int.


As shown in FIG. 3, the gate-to-source voltage may remain constant as the drain current increases. However, the portion of the gate voltage VGS that is dropped over the internal source resistance of the device, VRs, increases as the drain current ID increases, while the portion of the gate-to-source voltage that appears as a voltage across the gate insulator, VGS,int, decreases as the drain current ID increases.


Thus, as the drain current increases the portion of the gate voltage that is being used to maintain the channel decreases, which may cause the device to go into saturation at a lower level of drain-to-source voltage. Accordingly, a high source resistance can adversely affect the operation of a MOSFET or other insulated gate controlled device.


A unit cell 10 of a MOSFET structure according to some embodiments is shown in FIG. 4. The device 10 of FIG. 1 includes an n− drift epitaxial layer 14 on an n-type, 8° off-axis 4H—SiC substrate 12. The n− drift layer 14 may have a thickness of about 100 μm to about 120 μm, and may be doped with n-type dopants at a doping concentration of about 2×1014 cm−3 to about 6×1014 cm−3 for a blocking capability of about 10 kV. Other doping concentrations/voltage blocking ranges are also possible.


The structure further includes a p+ well region 18 and an n+ source region 20 that may be formed by selective implantation of, for example, aluminum and nitrogen, respectively. The junction depth of the p+ well region 18 may be about 0.5 μm, although other depths are possible. The structure 10 further includes a p+ contact region 22 that extends from a surface of the drift layer 14 into the p+ well region 18. A junction termination (not shown) may be provided around the device periphery.


All of the implanted dopants may be activated by annealing the structure at a temperature of about 1600° C. with a silicon over pressure and/or covered by an encapsulation layer such as a graphite film. A high temperature anneal may damage the surface of the silicon carbide epitaxy. In order to reduce such damage, a graphite coating may be formed on the surface of the device. Prior to annealing the device to activate the implanted ions, a graphite coating may be applied to the top/front side of the structure in order to protect the surface of the structure during the anneal. The graphite coating may be applied by a conventional resist coating method and may have a thickness of about 1 μm. The graphite coating may be heated to form a crystalline coating on the drift layer 14. The implanted ions may be activated by a thermal anneal that may be performed, for example, in an inert gas at a temperature of about 1600° C. or greater. In particular the thermal anneal may be performed at a temperature of about 1600° C. in argon for 5 minutes. The graphite coating may help to protect the surface of the drift layer 14 during the high temperature anneal.


The graphite coating may then be removed, for example, by ashing and thermal oxidation.


After implant annealing, a field oxide of silicon dioxide (not shown) having a thickness of about 1 μm may be deposited and patterned to expose the active region of the device.


A gate oxide layer 36 may be formed by a gate oxidation process, with a final gate oxide thickness of 400-600 Å.


In particular, the gate oxide may be grown by a dry-wet oxidation process that includes a growth of bulk oxide in dry O2 followed by an anneal of the bulk oxide in wet O2 as described, for example, in U.S. Pat. No. 5,972,801, the disclosure of which is incorporated herein by reference in its entirety. As used herein, anneal of oxide in wet O2 refers to anneal of an oxide in an ambient containing both O2 and vaporized H2O. An anneal may be performed in between the dry oxide growth and the wet oxide growth. The dry O2 oxide growth may be performed, for example, in a quartz tube at a temperature of up to about 1200° C. in dry O2 for a time of at least about 2.5 hours. Dry oxide growth is performed to grow the bulk oxide layer to a desired thickness. The temperature of the dry oxide growth may affect the oxide growth rate. For example, higher process temperatures may produce higher oxide growth rates. The maximum growth temperature may be dependent on the system used.


In some embodiments, the dry O2 oxide growth may be performed at a temperature of about 1175° C. in dry O2 for about 3.5 hours. The resulting oxide layer may be annealed at a temperature of up to about 1200° C. in an inert atmosphere. In particular, the resulting oxide layer may be annealed at a temperature of about 1175° C. in Ar for about 1 hour. The wet O2 oxide anneal may be performed at a temperature of about 950° C. or less for a time of at least about 1 hour. The temperature of the wet O2 anneal may be limited to discourage further thermal oxide growth at the SiC/SiO2 interface, which may introduce additional interface states. In particular, the wet O2 anneal may be performed in wet O2 at a temperature of about 950° C. for about 3 hours. The resulting gate oxide layer may have a thickness of about 500 Å.


In some embodiments, the dry O2 oxide growth may be performed at a temperature of about 1175° C. in dry O2 for about 4 hours. The resulting oxide layer may be annealed at a temperature of up to about 1175° C. in an inert atmosphere. In particular, the resulting oxide layer may be annealed at a temperature of about 1175° C. in Ar for about a time duration ranging from 30 min to 2 hours. Then the oxide layer receives an anneal in NO ambient at a temperature ranging from 1175 C to 1300 C, for a duration ranging from 30 minutes to 3 hours. The resulting gate oxide layer may have a thickness of about 500 Å.


After formation of the gate oxide 36, a polysilicon gate 32 may be deposited and doped, for example, with boron followed by a metallization process to reduce the gate resistance. Al/Ni contacts may be deposited as the p-type ohmic source contact metal 28, and Ni as the n-type drain contact metal 26. All contacts may be sintered in a Rapid Thermal Annealer (RTA), and thick Ti/Au layers may be used for pad metals.


Referring to FIG. 4, the source resistance of a MOSFET device has two primary components, namely, the contact resistance RC between the source ohmic contact 34 and the source region 20, and the sheet resistance Rsheet in the source region 20 between the source ohmic contact 34 and the channel. Thus, RS=RC+Rsheet. In a conventional silicon-based MOSFET device, the sheet resistance Rsheet is the dominant factor in determining the source resistance, because it is possible to form very low resistivity ohmic contacts to silicon and other narrow-bandgap semiconductors. However, in wide bandgap semiconductors (i.e., semiconductors having a bandgap greater than about 2.0 V), including compound semiconductor materials, such as silicon carbide and gallium nitride, diamond, and ZnO, the contact resistance RC may be the dominant contributor to the source resistance. In particular, it is difficult to form very low resistivity ohmic contacts to silicon carbide and other wide bandgap materials because of the high energy barrier associated with such materials.



FIGS. 5 and 6 are plan views illustrating layouts of conventional power MOSFET devices. In a conventional power MOSFET device, the layout is designed to reduce or minimize sheet resistance under the assumption that contact resistance is less important than sheet resistance. Thus, referring to FIG. 5, a conventional power MOSFET device typically includes a p-well 18 formed in a drift layer 14, an n+ source region 20 in the p-well 18, and a p+ contact region 22 in the n+ source region 20. Referring to FIG. 6, a source contact 34 is formed on the n+ source region 20 and the p+ contact region 22. A gate 32 is formed over the p-well 18 and overlaps the periphery of the n+ source region 20 and adjacent portions of the drift layer 14. Current flow from the drain to the source is indicated by the arrows 42 in FIG. 5.


As noted above, in a wide bandgap semiconductor material system, the source resistance may be more affected by the contact resistance of the source ohmic contact than by the sheet resistance of the source layer. Accordingly, to decrease the source resistance of a wide bandgap power semiconductor device, it may be desirable to decrease the contact resistance of the source ohmic contact. In general, contact resistance can be decreased by increasing the minimum dimension of the contact, which is the smallest dimension of the contact in any direction. However, simply increasing the minimum dimension of the source ohmic contact of an electronic device can undesirably increase the cell to cell spacing, or pitch, of the device. The pitch of a MOSFET device may be proportional to the width of the p-well region of the device. Increasing the pitch of the device reduces the density of the devices that can be formed on a single substrate, reducing the devices yielded and increasing manufacturing costs.


According to some embodiments, an insulated gate device layout is provided that increases the minimum dimension of the source ohmic contact without increasing the pitch of the device and/or the width of the p-well region of the device. A device layout according to some embodiments may increase the sheet resistance of the device. Such an effect may be highly undesirable in a device based on a narrow bandgap semiconductor material. However, since sheet resistance is not the dominant factor in determining source resistance of a wide bandgap device, such a tradeoff may be acceptable for wide bandgap devices. In devices according to some embodiments, a ratio of the source sheet resistance to the source contact resistance may be greater than 0.75 (i.e. Rsheet/RC>0.75). In some embodiments, the device may have a source contact resistance that is less than the source sheet resistance. That is, in some embodiments, the ratio of the source sheet resistance to the source contact resistance may be greater than 1 (i.e. Rsheet/RC>1), and in further embodiments, the ratio of the source sheet resistance to the source contact resistance may be greater than 5.



FIGS. 7 and 8 are plan views illustrating layouts of MOSFET device cells 100 according to some embodiments, and FIGS. 9 and 10 are partial cross sectional illustrations of a cell of a MOSFET device according to some embodiments. In particular, FIG. 9 is a cross section taken along line A-A′ of FIG. 8, while FIG. 10 is a cross section taken along line B-B′ of FIG. 8.


The device 100 shown in FIGS. 7-10 includes an n− drift epitaxial layer 114 on an n-type, 8° off-axis 4H—SiC substrate 112. The n− drift layer 114 may have a thickness of about 100 μm to about 120 μm, and may be doped with n-type dopants at a doping concentration of about 2×1014 cm−3 to about 6×1014 cm−3 for a blocking capability of about 10 kV.


The structure further includes a p+ well region 118 and an n+ source region 120 that may be formed by selective implantation of, for example, aluminum and nitrogen, respectively. The junction depth of the p+ well region 118 may be about 0.5 μm. The structure 100 further includes a plurality of p+ contact regions 122 that extend from a surface of the drift layer 114 into the p+ well region 118. A junction termination (not shown) may be provided around the device periphery.


Referring to FIG. 7, the n+ source region 120 includes a pair of lateral source regions 120A that are parallel to opposing channel regions 125 in the p-well 118. A plurality of source contact regions 120B extend between the lateral source regions 120A, and the plurality of p+ contact regions 122 are provided between the source contact regions 120B.


Referring to FIG. 8, gate contacts 132 are formed over the channel regions 125 and overlap the lateral source regions 120A. A source ohmic contact 134 is formed across the source contact regions 120B and the p+ contact regions 122. The source ohmic contact 134 overlaps the source contact regions 120B in a source contact region 136. The source ohmic contact 134 overlaps the p+ contact regions 122 in a body contact region 138.


The portion of the source contact regions 120B contacted by the source ohmic contact 134 may have a minimum dimension that is larger than the minimum dimension that can be obtained for a conventional layout such as the layout shown in FIGS. 5 and 6 for a similar pitch/p-well size. Accordingly, the source contact resistance may be reduced without substantially increasing the device pitch/p-well size. The “minimum dimension” of a feature refers to the smallest width of the feature in any cross section of the feature. For example, the minimum dimension p1 of the body contact region 138, the minimum dimension n1 of the n-type contact region 136 and the minimum dimension w1 of the p-well region 118 are shown in FIG. 8.


In a device having a layout as shown in FIGS. 7 and 8, current flow to the source contact flows through the source contact regions 120B, as indicated by the arrows 142 in FIG. 7. The source contact regions 120B may have an increased sheet resistance compared to the source region of a device having a conventional layout as shown in FIGS. 5 and 6. However, the increase in sheet resistance may be more than compensated by the decrease in contact resistance, thus providing an overall decrease in the source resistance of the device.



FIG. 11 is a graph of on-state current-voltage characteristics for a 7 mm×8 mm 1200 V silicon carbide MOSFET device according to some embodiments. In the device characteristics illustrated in FIG. 11, a drain current (ID) of 377 A was measured at a forward voltage drain-to-source voltage (VDS) of 3.8 V. The current density, normalized to the active area, was over 750 A/cm2.


The on-resistance of a MOSFET device is affected by the drain resistance, the channel resistance and the source resistance of the device. Accordingly, reducing the source resistance of the device also reduces the on-resistance of the device.


A wide bandgap MOSFET device having a layout according to some embodiments may be capable of substantially increased saturation current due to the lower on-resistance of the device and the fact that increased current levels have less of a de-biasing effect on the gate. That is, because of the lower source resistance, less voltage will be developed over the source resistance as the drain current increases. Thus, more of the gate-to-source voltage is applied to the channel of the device.



FIG. 12 is an idealized cross section of a device having a layout in accordance with some embodiments. In particular, FIG. 12 illustrates some dimensions of a device having a layout in accordance with some embodiments. For example, as shown in FIG. 12, the minimum dimension of the implanted cell area (i.e. the p-well 118) is denoted as width w1 in FIG. 12. It will be appreciated, however, that the minimum dimension of the p-well 118 may occur in a dimension that is different from the plane of the device illustrated in FIG. 12. For example, the minimum dimension of the p-well 118 may occur in a dimension that is perpendicular to the plane of the device illustrated in FIG. 12.


The minimum dimension of the n-type contact area is denoted as width n1 in FIG. 12, while the minimum dimension of the p-type contact area is denoted as width p1 in FIG. 12. The n-type contact area may be defined as the area of overlap between the source ohmic contact 134 and the n+ source region 120, while the p-type contact area may be defined as the area of overlap between the source ohmic contact 134 and the p+ contact regions 122.


An insulated gate bipolar transistor (IGBT) device 200 according to some embodiments is illustrated in FIG. 13. As shown therein, the IGBT device includes an n− drift epitaxial layer 214 on a p-type epitaxial layer 212. The p-type epitaxial layer 212 is formed on a p-type, 8° off-axis 4H—SiC substrate 210. The n− drift layer 214 may have a thickness of about 100 μm to about 120 μm, and may be doped with p-type dopants at a doping concentration of about 2×1014 cm−3 to about 6×1014 cm−3 for a blocking capability of about 10 kV.


The IGBT structure 200 further includes a p+ well region 218 and an n+ source/emitter region 220 that may be formed by selective implantation of, for example, aluminum and nitrogen, respectively. The junction depth of the p+ well region 218 may be about 0.5 μm. The structure 200 further includes a plurality of p+ body contact regions 222 that extend from a surface of the drift layer 214 into the p+ well region 218. The conductivity types may be reversed in some embodiments.


A gate contact 232 is on a gate insulator 236, a source/emitter contact 234 is on the source contact regions 220 and the body contact regions 222. A collector contact 226 contacts the substrate 210.


According to some embodiments, a transistor device may have a ratio of n1 to w1 that is greater than 0.2. In further embodiments, a transistor device may have a ratio of n1 to w1 that is greater than about 0.3. In further embodiments, a transistor device may have a ratio of n1 to w1 that is in the range of about 0.2 to 1. In further embodiments, a transistor device may have a ratio of n1 to w1 that is in the range of about 0.3 to 1. In further embodiments, transistor device may have a ratio of n1 to w1 that is greater than 0.5. For example, the minimum dimension n1 of the n-type contact area of a device having a layout according to some embodiments may be about 2 μm for a device having a minimum dimension of the implanted cell area of 6 μm.


According to some embodiments, a transistor device may have a ratio of p1 to w1 that is greater than 0.2. In further embodiments, a transistor device may have a ratio of p1 to w1 that is greater than about 0.3. In further embodiments, a transistor device may have a ratio of p1 to w1 that is greater than about 0.5. In further embodiments, a transistor device may have a ratio of p1 to w1 that is in the range of about 0.2 to 0.5. In further embodiments, a transistor device may have a ratio of p1 to w1 that is in the range of about 0.2 to 1.


Some embodiments provide transistor devices having increased current densities. Current density is defined as the total current divided by the cross sectional area of the chip. For example, a wide bandgap transistor device according to some embodiments may be capable of current densities in excess of 200 A/cm2 and a blocking voltage of 1000 V or more. A wide bandgap transistor device according to further embodiments may be capable of a current of 100 A or greater at current densities in excess of 200 A/cm2, a forward voltage drop of less than 5 V and a blocking voltage of 1000 V or more. A wide bandgap transistor device according to still further embodiments may be capable of a current of 100 A or greater at current densities in excess of 300 A/cm2, a forward voltage drop of less than 5 V and a blocking voltage of 1000 V or more.


A semiconductor device according to some embodiments has a reverse blocking voltage in excess of 1000 volts and a current density greater than 200 amps per square centimeter at a current greater than 100 A.


A semiconductor device according to further embodiments has a reverse blocking voltage of 1000 volts or more and a forward current capability greater than 100 A at a forward voltage of 5 volts or less.


A metal-oxide semiconductor field effect transistor device according to some embodiments has a reverse blocking voltage of 1200 volts or more and a forward current capability greater than 100 A.


A metal-oxide semiconductor field effect transistor device according to some embodiments has a reverse blocking voltage of 1000 volts or more and a differential on-resistance less than 8 mOhms-cm2.


A semiconductor device having a blocking voltage less than 1000 V and configured to pass forward current at a current density greater than 200 amps per square centimeter at a forward voltage drop of 5 V or less.


Some embodiments may enable wide bandgap transistor devices to achieve drain currents of 100 Amps or higher at a drain to source voltage that is less than 4 Volts in a device having a cell pitch of less than 20 μm. Some embodiments may enable wide bandgap transistor devices to achieve drain currents of 100 Amps or higher at a drain to source voltage that is less than 4 Volts in a device having a cell pitch of less than 10 μm. Some embodiments may enable wide bandgap transistor devices to achieve drain currents of 80 Amps or higher at a drain to source voltage that is less than 5 Volts in a device having a cell pitch of less than 10 μm.


An IGBT device according to some embodiments with a voltage blocking capability of 10 kV or greater may have a specific on-resistance of less than 14 mOhm-cm2 with a forward voltage drop of 5.2 V or less at a current density of 100 A/cm2.


It will be appreciated that although some embodiments of the invention have been described in connection with silicon carbide IGBT and MOSFET devices having n-type drift layers, the present invention is not limited thereto, and may be embodied in devices having p-type substrates and/or drift layers. Furthermore, the invention may be used in many different types of devices, including but not limited to insulated gate bipolar transistors (IGBTs), MOS controlled thyristors (MCTs), insulated gate commutated thyristors (IGCTs), junction field effect transistors (JFETs), high electron mobility transistors (HEMTs), etc.


In the drawings and specification, there have been disclosed typical embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims
  • 1. A semiconductor device, comprising: a drift layer having a first conductivity type;a well region in the drift layer having a second conductivity type opposite the first conductivity type;a source region in the well region, the source region having the first conductivity type and defining a channel region in the well region, wherein the source region comprises a lateral source region adjacent the channel region and a plurality of source contact regions extending away from the lateral source region opposite the channel region;a body contact region having the second conductivity type between at least two of the plurality of source contact regions and in contact with the well region; anda source ohmic contact that is on at least one of the source contact regions and the body contact region, and that is not on the lateral source region, wherein the source ohmic contact is on the at least one of the source contact regions in a source contact region area and the source ohmic contact is on the body contact region in a body contact region area, and wherein a ratio of a minimum dimension p1 of the body contact region area to a minimum dimension w1 of the well region on a same plane as the body contact region area is greater than 0.2, wherein the body contact region comprises a plurality of body contact regions that are interspersed between the source contact regions and contact the source ohmic contact, and wherein ones of the plurality of body contact regions are not physically contacting other ones of the plurality of body contact regions.
  • 2. The semiconductor device of claim 1, wherein the plurality of body contact regions are spaced apart from the channel region by the lateral source region.
  • 3. The semiconductor device of claim 1, wherein a ratio of a minimum dimension n1 of the source contact region area to a minimum dimension w1 of the well region is greater than 0.2.
  • 4. The semiconductor device of claim 3, wherein the ratio of the minimum dimension n1 of the source contact region area to the minimum dimension w1 of the well region is between 0.3 and 1.
  • 5. The semiconductor device of claim 3, wherein the ratio of the minimum dimension n1 of the source contact region area to the minimum dimension w1 of the well region is greater than 0.5.
  • 6. The semiconductor device of claim 1, wherein the ratio of the minimum dimension p1 of the body contact region area to the minimum dimension w1 of the well region is greater than about 0.3.
  • 7. The semiconductor device of claim 1, wherein the ratio of the minimum dimension p1 of the body contact region area to the minimum dimension w1 of the well region is greater than about 0.5.
  • 8. The semiconductor device of claim 1, wherein the drift region comprises a wide bandgap semiconductor material having a baudgap greater than 2.0 V.
  • 9. The semiconductor device of claim 8, wherein the drift region comprises silicon carbide.
  • 10. The semiconductor device of claim 8, wherein the drift region comprises silicon carbide having at least one of a 2H, 4H and 6H polytype.
  • 11. The semiconductor device of claim 8, wherein the drift region comprises silicon carbide having at least one of a 3C and 15R polytype.
  • 12. The semiconductor device of claim 1, wherein the source region has a sheet resistance and the source ohmic contact has a contact resistance, wherein the plurality of source contact regions are arranged in a layout such that a ratio of the sheet resistance in ohms per square to the contact resistance in ohms per square area is greater than 1, wherein the square is equal in size to the square area.
  • 13. The semiconductor device of claim 1, wherein the device has a reverse blocking voltage in excess of 1000 volts and a current density greater than 700 amps per square centimeter.
  • 14. The semiconductor device of claim 1, wherein the semiconductor device comprises a field effect transistor.
  • 15. The semiconductor device of claim 1, wherein the semiconductor device comprises an insulated gate bipolar transistor.
  • 16. The semiconductor device of claim 1, wherein each of the plurality of body contact regions is laterally adjacent to the lateral source region.
  • 17. The semiconductor device of claim 16, further comprising a second lateral source region adjacent to ends of the plurality of body contact regions opposite the lateral source region, wherein the second lateral source region separates the plurality of body contact regions from a second channel.
  • 18. The semiconductor device of claim 1, wherein each of the plurality of body contact regions is in contact with the source ohmic contact.
  • 19. A semiconductor device, comprising: a drift layer having a first conductivity type;a well region having a second conductivity type that is opposite the first conductivity type;a source region in the well region, the source region having the first conductivity type;a body contact region having the second conductivity type in contact with the well region; anda source ohmic contact that is on the source region in a source contact region area and that is on the body contact region in a body contact region area;wherein a ratio of a smallest width dimension n1 of the source contact region area to a smallest width dimension w1 of the well region on a same plane as the source contact region area is greater than 0.3, wherein the body contact region is between both ends of the smallest width dimension w1.
  • 20. The semiconductor device of claim 19, wherein the ratio of the smallest width dimension n1 of the source contact region area to the smallest width dimension w1 of the well region is greater than 0.5.
  • 21. A semiconductor device, comprising: a drift layer having a first conductivity type;a well region having a second conductivity type that is opposite the first conductivity type;a source region in the well region, the source region having the first conductivity type;a body contact region having the second conductivity type in contact with the well region; anda source ohmic contact that is on the source region in a source contact area and that is on the body contact region in a body contact region area;wherein a ratio of a smallest width dimension p1 of the body contact region area to a smallest width dimension w1 of the well region on a same plane as the body contact region area is greater than 0.2, wherein the body contact region is between both ends of the smallest width dimension w1.
  • 22. The semiconductor device of claim 21, wherein the ratio of the smallest width dimension p1 of the body contact region area to the smallest width dimension w1 of the well region is greater than about 0.3.
  • 23. The semiconductor device of claim 21, wherein the ratio of the smallest width dimension p1 of the body contact region area to the smallest width dimension w1 of the well region is greater than about 0.5.
STATEMENT OF U.S. GOVERNMENT INTEREST

This invention was made with Government support under Contract No. DAAD19-01-C-0067 awarded by Army Research Laboratory. The Government has certain rights in the invention.

US Referenced Citations (239)
Number Name Date Kind
3439189 Petry Apr 1969 A
3629011 Tohi et al. Dec 1971 A
3924024 Naber et al. Dec 1975 A
4160920 Courier de Mere Jul 1979 A
4242690 Temple Dec 1980 A
4466172 Batra Aug 1984 A
4581542 Steigerwald Apr 1986 A
4644637 Temple Feb 1987 A
4811065 Cogan Mar 1989 A
4875083 Palmour Oct 1989 A
4927772 Arthur et al. May 1990 A
4945394 Palmour et al. Jul 1990 A
4946547 Palmour et al. Aug 1990 A
5011549 Kong et al. Apr 1991 A
5028977 Kenneth et al. Jul 1991 A
5032888 Seki Jul 1991 A
5111253 Korman et al. May 1992 A
5155289 Bowles Oct 1992 A
5170231 Fujii et al. Dec 1992 A
5170455 Goossen et al. Dec 1992 A
5184199 Fujii et al. Feb 1993 A
5192987 Khan et al. Mar 1993 A
5200022 Kong et al. Apr 1993 A
5210051 Carter, Jr. May 1993 A
5270554 Palmour Dec 1993 A
5292501 Degenhardt et al. Mar 1994 A
5296395 Khan et al. Mar 1994 A
5348895 Smayling et al. Sep 1994 A
5371383 Miyata et al. Dec 1994 A
5384270 Ueno Jan 1995 A
5385855 Brown et al. Jan 1995 A
RE34861 Davis et al. Feb 1995 E
5393993 Edmond et al. Feb 1995 A
5393999 Malhi Feb 1995 A
5396085 Baliga Mar 1995 A
5459107 Palmour Oct 1995 A
5468654 Harada Nov 1995 A
5479316 Smrtic et al. Dec 1995 A
5488236 Baliga et al. Jan 1996 A
5506421 Palmour Apr 1996 A
5510281 Ghezzo et al. Apr 1996 A
5510630 Agarwal Apr 1996 A
5523589 Edmond et al. Jun 1996 A
5539217 Edmond et al. Jul 1996 A
5545905 Muraoka et al. Aug 1996 A
5587870 Anderson et al. Dec 1996 A
5629531 Palmour May 1997 A
5703383 Nakayama Dec 1997 A
5710059 Rottner Jan 1998 A
5726463 Brown et al. Mar 1998 A
5726469 Chen Mar 1998 A
5734180 Malhi Mar 1998 A
5739564 Kosa et al. Apr 1998 A
5763905 Harris Jun 1998 A
5776837 Palmour Jul 1998 A
5804483 Harris Sep 1998 A
5814859 Ghezzo et al. Sep 1998 A
5831288 Singh et al. Nov 1998 A
5837572 Gardner et al. Nov 1998 A
5851908 Harris et al. Dec 1998 A
5877041 Fuller Mar 1999 A
5877045 Kapoor Mar 1999 A
5885870 Maiti et al. Mar 1999 A
5914500 Bakowski et al. Jun 1999 A
5917203 Bhatnagar et al. Jun 1999 A
5939763 Hao et al. Aug 1999 A
5960289 Tsui et al. Sep 1999 A
5969378 Singh Oct 1999 A
5972801 Lipkin et al. Oct 1999 A
5976936 Miyajima et al. Nov 1999 A
5977605 Bakowsky et al. Nov 1999 A
6020600 Miyajima et al. Feb 2000 A
6025233 Teresawa Feb 2000 A
6025608 Harris et al. Feb 2000 A
6028012 Wang Feb 2000 A
6040237 Bakowski et al. Mar 2000 A
6048766 Gardner et al. Apr 2000 A
6054352 Ueno Apr 2000 A
6054728 Harada et al. Apr 2000 A
6063698 Tseng et al. May 2000 A
6083814 Nilsson Jul 2000 A
6091108 Harris et al. Jul 2000 A
6096607 Ueno Aug 2000 A
6100169 Suvorov et al. Aug 2000 A
6104043 Hermansson et al. Aug 2000 A
6107142 Suvorov et al. Aug 2000 A
6117735 Ueno Sep 2000 A
6121633 Singh et al. Sep 2000 A
6133587 Takeuchi et al. Oct 2000 A
6136727 Ueno Oct 2000 A
6136728 Wang Oct 2000 A
6165822 Okuno et al. Dec 2000 A
6180958 Cooper, Jr. Jan 2001 B1
6190973 Berg et al. Feb 2001 B1
6204135 Peters et al. Mar 2001 B1
6204203 Narwankar et al. Mar 2001 B1
6211035 Moise et al. Apr 2001 B1
6218254 Singh et al. Apr 2001 B1
6218680 Carter, Jr. et al. Apr 2001 B1
6221700 Okuno et al. Apr 2001 B1
6228720 Kitabatake et al. May 2001 B1
6238967 Shiho et al. May 2001 B1
6239463 Williams et al. May 2001 B1
6239466 Elasser et al. May 2001 B1
6246076 Lipkin et al. Jun 2001 B1
6297100 Kumar et al. Oct 2001 B1
6297172 Kashiwagi Oct 2001 B1
6303508 Alok Oct 2001 B1
6316791 Schorner et al. Nov 2001 B1
6316793 Sheppard et al. Nov 2001 B1
6329675 Singh et al. Dec 2001 B2
6344663 Slater, Jr. et al. Feb 2002 B1
6344676 Yun et al. Feb 2002 B1
6365462 Baliga Apr 2002 B2
6365932 Kouno et al. Apr 2002 B1
6388271 Mitlehner et al. May 2002 B1
6399996 Chang et al. Jun 2002 B1
6420225 Chang et al. Jul 2002 B1
6429041 Ryu et al. Aug 2002 B1
6448160 Chang et al. Sep 2002 B1
6455892 Okuno et al. Sep 2002 B1
6475889 Ring Nov 2002 B1
6515303 Ring Feb 2003 B2
6524900 Dahlqvist et al. Feb 2003 B2
6534367 Peake et al. Mar 2003 B2
6548333 Smith Apr 2003 B2
6551865 Kumar et al. Apr 2003 B2
6573534 Kumar et al. Jun 2003 B1
6593620 Hshieh et al. Jul 2003 B1
6610366 Lipkin Aug 2003 B2
6627539 Zhao et al. Sep 2003 B1
6649497 Ring Nov 2003 B2
6653659 Ryu et al. Nov 2003 B2
6696705 Barthelmess et al. Feb 2004 B1
6703642 Shah Mar 2004 B1
6743703 Rodov et al. Jun 2004 B2
6767843 Lipkin et al. Jul 2004 B2
6861723 Willmeroth Mar 2005 B2
6936850 Friedrichs et al. Aug 2005 B2
6946739 Ring Sep 2005 B2
6956238 Ryu et al. Oct 2005 B2
6979863 Ryu Dec 2005 B2
7026650 Ryu et al. Apr 2006 B2
7074643 Ryu Jul 2006 B2
7118970 Das et al. Oct 2006 B2
7125786 Ring et al. Oct 2006 B2
7221010 Ryu May 2007 B2
7230275 Kumar et al. Jun 2007 B2
7253031 Takahashi Aug 2007 B2
7276747 Loechelt et al. Oct 2007 B2
7279115 Sumakeris Oct 2007 B1
7304363 Shah Dec 2007 B1
7365363 Kojima et al. Apr 2008 B2
7381992 Ryu Jun 2008 B2
7407837 Tsuji Aug 2008 B2
7528040 Das et al. May 2009 B2
7544963 Saxler Jun 2009 B2
7548112 Sheppard Jun 2009 B2
7649213 Hatakeyama et al. Jan 2010 B2
7687825 Zhang Mar 2010 B2
7728402 Zhang et al. Jun 2010 B2
7829402 Matocha et al. Nov 2010 B2
7855384 Yamamoto et al. Dec 2010 B2
8035112 Cooper et al. Oct 2011 B1
20010011729 Singh et al. Aug 2001 A1
20010050383 Hatade et al. Dec 2001 A1
20010055852 Moise et al. Dec 2001 A1
20020030191 Das et al. Mar 2002 A1
20020038891 Ryu et al. Apr 2002 A1
20020047125 Fukuda et al. Apr 2002 A1
20020072247 Lipkin et al. Jun 2002 A1
20020102358 Das et al. Aug 2002 A1
20020121641 Alok et al. Sep 2002 A1
20020125482 Friedrichs et al. Sep 2002 A1
20020125541 Korec et al. Sep 2002 A1
20030025175 Asano et al. Feb 2003 A1
20030107041 Tanimoto et al. Jun 2003 A1
20030137010 Friedrichs et al. Jul 2003 A1
20030178672 Hatakeyama et al. Sep 2003 A1
20030201455 Takahashi et al. Oct 2003 A1
20040016929 Nakatsuka et al. Jan 2004 A1
20040082116 Kub et al. Apr 2004 A1
20040183079 Kaneko et al. Sep 2004 A1
20040211980 Ryu Oct 2004 A1
20040212011 Ryu Oct 2004 A1
20040256659 Kim et al. Dec 2004 A1
20040259339 Tanabe et al. Dec 2004 A1
20050012143 Tanaka et al. Jan 2005 A1
20050104072 Slater, Jr. et al. May 2005 A1
20050139936 Li Jun 2005 A1
20050151138 Slater, Jr. et al. Jul 2005 A1
20050181536 Tsuji Aug 2005 A1
20050230686 Kojima et al. Oct 2005 A1
20050275055 Parthasarathy et al. Dec 2005 A1
20060011128 Ellison et al. Jan 2006 A1
20060060884 Ohyanagi et al. Mar 2006 A1
20060086997 Kanaya et al. Apr 2006 A1
20060211210 Bhat et al. Sep 2006 A1
20060216896 Saito et al. Sep 2006 A1
20060244010 Saxler Nov 2006 A1
20060255423 Ryu et al. Nov 2006 A1
20060261347 Ryu et al. Nov 2006 A1
20060261876 Agarwal et al. Nov 2006 A1
20060267021 Rowland et al. Nov 2006 A1
20060270103 Das et al. Nov 2006 A1
20070066039 Agarwal et al. Mar 2007 A1
20070120148 Nogome May 2007 A1
20070164321 Sheppard Jul 2007 A1
20070241427 Mochizuki et al. Oct 2007 A1
20070262324 Kaneko Nov 2007 A1
20080001158 Das et al. Jan 2008 A1
20080006848 Chen et al. Jan 2008 A1
20080029838 Zhang et al. Feb 2008 A1
20080048258 de Fresart et al. Feb 2008 A1
20080105949 Zhang et al. May 2008 A1
20080191304 Zhang et al. Aug 2008 A1
20080230787 Suzuki et al. Sep 2008 A1
20080251793 Mazzola et al. Oct 2008 A1
20080277669 Okuno et al. Nov 2008 A1
20080296771 Das et al. Dec 2008 A1
20090008709 Yedinak et al. Jan 2009 A1
20090101918 Uchida et al. Apr 2009 A1
20090121319 Zhang et al. May 2009 A1
20090146154 Zhang et al. Jun 2009 A1
20090212301 Zhang et al. Aug 2009 A1
20090272982 Nakamura et al. Nov 2009 A1
20090289262 Zhang et al. Nov 2009 A1
20090321746 Harada et al. Dec 2009 A1
20100032685 Zhang et al. Feb 2010 A1
20100133549 Zhang et al. Jun 2010 A1
20100133550 Zhang et al. Jun 2010 A1
20100140628 Zhang Jun 2010 A1
20100163888 Saggio et al. Jul 2010 A1
20100244047 Hull et al. Sep 2010 A1
20100295062 Uchida et al. Nov 2010 A1
20110012132 Otsuka et al. Jan 2011 A1
20110018004 Shimizu et al. Jan 2011 A1
20110018040 Smith et al. Jan 2011 A1
20110101375 Zhang May 2011 A1
Foreign Referenced Citations (62)
Number Date Country
39 42 640 Aug 1990 DE
198 09 554 Sep 1998 DE
198 32 329 Feb 1999 DE
19900171 Jul 1999 DE
10036208 Feb 2002 DE
0 176 778 Apr 1986 EP
0 372 412 Jun 1990 EP
0 389 863 Oct 1990 EP
0637069 Feb 1995 EP
0735591 Oct 1996 EP
0837508 Apr 1998 EP
0 865 085 Sep 1998 EP
1 058 317 Dec 2000 EP
1 361 614 Nov 2003 EP
1 460 681 Sep 2004 EP
1 503 425 Feb 2005 EP
1 693896 Aug 2006 EP
1 806 787 Jul 2007 EP
1 845 561 Oct 2007 EP
2 015 364 Jan 2009 EP
2 124 257 Nov 2009 EP
60-240158 Nov 1985 JP
01117363 May 1989 JP
03034466 Feb 1991 JP
03157974 Jul 1991 JP
3-225870 Oct 1991 JP
08264766 Oct 1996 JP
H08340103 (A) Dec 1996 JP
09205202 Aug 1997 JP
11191559 Jul 1999 JP
11238742 Aug 1999 JP
11261061 Sep 1999 JP
11266017 Sep 1999 JP
11274487 Oct 1999 JP
2000049167 Feb 2000 JP
2000082812 Mar 2000 JP
2000-252478 Sep 2000 JP
02000252461 Sep 2000 JP
2000106371 Apr 2001 JP
2001252061 (A) Sep 2001 JP
2002-314099 Oct 2002 JP
WO 9603774 Feb 1996 WO
WO 9708754 Mar 1997 WO
WO 9717730 May 1997 WO
WO 9739485 Oct 1997 WO
WO 9802916 Jan 1998 WO
WO 9802924 Jan 1998 WO
WO 9808259 Feb 1998 WO
WO 9832178 Jul 1998 WO
WO9963591 Dec 1999 WO
WO 0013236 Mar 2000 WO
WO 0178134 Oct 2001 WO
WO 2004020706 Mar 2004 WO
WO 2004079789 Sep 2004 WO
WO 2005020308 Mar 2005 WO
WO 2006135031 Dec 2006 WO
WO 2007040710 Apr 2007 WO
WO 2007135940 (A1) Nov 2007 WO
WO 2009128382 Oct 2009 WO
WO2010004715 Jan 2010 WO
WO 2010004715 (A1) Jan 2010 WO
WO 2010074275 Jul 2010 WO
Non-Patent Literature Citations (152)
Entry
Treu et al. in “A Surge Current Stable and Avalanche Rugged SiC Merged pn Schottky Diode Blocking 600 V Especially Suited for PFC Applications”, 2005, Materials Science Forum, vol. 527-529, Abstract.
Tone et al. in “4H—SiC Normally-Off Vertical Junction Field-Effect Transistor With High Current Density”, 2003, Electron Device Letters, IEEE, vol. 24, Issue 7, pp. 463-465.
Salem et al. in “High-Temperature High-Power Operation of a 100 A SiC DMOSFET Module”, 2009, Applied Power Electronics Conference and Exposition, APEC 2009. Twenty-Fourth Annual IEEE, pp. 653-657.
Miura et al. in “Successful Development of 1.2 kV 4H—SiC MOSFETs with the Very Low on-Resistance of 5 mOhmcm2”, 2006, Power Semiconductor Devices and IC's 2006, ISPSD 2006, IEEE International Symposium, pp. 1-4.
Agarwal et al. in “700-V Asymmetrical 4H—SiC Gate Turn-Off Thyristors (GTO's)”, 1997, Electron Device Letters,vol. 18, Issue 11, pp. 518-520.
Agarwal et al. in “9kV, 1 cm×1 cm SiC Super GTO Technology Development for Pulse Power”, 2009, Pulsed Power Conference, PPC '09, IEEE, pp. 264-269.
Definition of overlap. (n.d.) The American Heritage® Dictionary of the English Language, Fourth Edition. (2003). Retrieved Feb. 6, 2013 from http://www.thefreedictionary.com/overlap.
“Insulated-gate bipolar transistor.” Wikipedia, the Free Encyclopedia. Web. Jun. 21, 2010. http://en.wikipedia.org.
A.K. Agarwal, J.B. Casady, L.B. Rowland, W.F. Valek, and C.D. Brandt, “1400 V 4H—SiC Power MOSFET's,” Materials Science Forum vols. 264-268, pp. 989-992, 1998.
A.K. Agarwal, J.B. Casady, L.B. Rowland, W.F. Valek, M.H. White, and C.D. Brandt, “1.1 kV 4H—SiC Power UMOSFET's,” IEEE Electron Device Letters, vol. 18, No. 12, pp. 586-588, Dec. 1997.
A.K. Agarwal, N.S. Saks, S.S. Mani, V.S. Hegde and P.A. Sanger, “Investigation of Lateral RESURF, 6H—SiC MOSFETs,” Materials Science Forum, vols. 338-342, pp. 1307-1310, 2000.
A.K. Agarwal, S. Seshadri, and L.B. Rowland, “Temperature Dependence of Fowler-Nordheim Current in 6H-and 4H—SiC MOS Capacitors,” IEEE Electron Device Letters, vol. 18, No. 12, Dec. 1997, pp. 592-594.
A.V. Suvorov, L.A. Lipkin, G.M. Johnson, R. Singh and J.W. Palmour, “4H—SiC Self-Aligned Implant-Diffused Structure for Power DMOSFETs,” Materials Science Forum vols. 338-342, pp. 1275-1278, 2000.
Agarwal et al. “A Critical Look at the Performance Advantages and Limitations of 4H—SiC Power UMOSFET Structures,” 1996 IEEE ISPSD and IC's Proc. , May 20-23, 1996, pp. 119-122.
Asano et al., “Dynamic Characteristics of 6.2kV High Voltage 4H—SiC pn Diode with Low Loss”, Transactions of the Institute of Electrical Engineers of Japan, Part D Inst. Electr. Eng. Japan, vol. 123D, No. 5, May 2003, pp. 623-627, XP8124184.
Ayalew, T, “Dissertation of Tesfaye Ayalew”, Section 4.4.3.1 MPS Diode Structure, SiC Semiconductor Devices Technology, Modeling, and Simulation, 2006.
Baliga “Insulated Gate Biopolar Transistor” Power Semiconductor Devices. PWS Publishing Company, Boston, MA. 426-502 (1996).
Baliga “Power MOSFET” Power Semiconductor Devices. PWS Publishing Company, Boston, MA 335-425 (1996).
Baliga, Power Semiconductor Devices, Chapter 7, PWS Publishing, 1996.
Bhatnagar et al. “Comparison of 6H—SiC, 3C—SiC, and Si for Power Devices,” IEEE Transactions on Electron Devices, vol. 40, No. 3, Mar. 1993, pp. 645-655.
Buchner et al., “Laser Recrystallization of Polysilicon for Improved Device Quality”, Springer Proceedings in Physics, vol. 35, Polycrystalline Semiconductors, pp. 289-294.
Capano, M.A., et al., Ionization Energies and Electron Mobilities in Phosphorus—and Nitrogen-Implanted 4H—Silicon Carbide, IEEE ICSCRM Conference 1999, Research Triangle Park, North Carolina (Oct. 10-13, 1999).
Chakraborty et al. “Interface Properties of N2O-annealed SiO2/SiC system,” Proceedings IEEE Hong Kong Electron Devices Meeting. Jun. 24, 2000, pp. 108-111.
Chang et al. “Observation of a Non-stoichiometric Layer at the Silicon Dioxide—Silicon Carbide Interface: Effect of Oxidation Temperature and Post-Oxidation Processing Conditions,” Mat. Res. Soc. Symp. Proc. vol. 640, 2001.
Chen et al. “Theoretical Analysis of Current Crowding Effect in Metal/AlGaN/GaN Schottky Diodes and Its Reduction by Using Polysilicon in Anode, ”Chin. Phys. Lett., vol. 24, No. 7 (2007) pp. 2112-2114.
Chinese Office Action dated Jan. 22, 2010, corresponding to Chinese Patent Application No. 200780029460.5, 7 pages.
Cho et al. “Improvement of charge trapping by hydrogen post-oxidation annealing in gate oxide of 4H—SiC methel-oxide-semiconductor capacitors,” Applied Physics Letters. vol. 77, No. 8, pp. 1215-1217 (Aug. 21, 2000).
Chung et al. “Effects of anneals in ammonia on the interface trap density near athe band edges in 4H—silicon carbide metal-oxide-semiconductor capacitors,” Applied Physics Letters. vol. 77, Nov. 27, 2000, pp. 3601-3603.
Chung et al., “The Effect of Si:C Source Ratio on SiO2/SiC Interface State Density for Nitrogen Doped 4H and 6H—SiC,” Materials Science Forum. (2000) vols. 338-342, pp. 1097-1100.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2004/004982, dated Jul. 22, 2004.
International Search Report for PCT/US01/30715.
International Search Report for PCT/US01/42414, dated Apr. 23, 2002.
International Search Report for PCT/US02/11691 dated Dec. 4, 2002.
D. Alok, E. Arnold, and R. Egloff, “Process Dependence of Inversion Layer Mobility in 4H—SiC Devices,” Materials Science Forum, vols. 338-342, pp. 1077-1080, 2000.
Dahlquist et al. “A 2.8kV, Forward Drop JBS Diode with Low Leakage,” Materials Science Forum, vols. 338-342, (2000) pp. 1179-1182.
Das, Mrinal K. Graduate thesis entitled, Fundamental Studies of the Silicon Carbide MOS Structure. Purdue University, 1999.
Dastidar, Sujoyita, A Study of P-Type Activation in Silicon Carbide, Thesis (Purdue University, May 1998).
De Meo et al., “Thermal Oxidation of SiC in N2O”, J. Electrochem. Soc., vol. 141, 1994, pp. L150-L152.
del Prado et al. “Full Composition Range Silicon Oxynitride Films Deposited by ECR-PECVD at Room Temperatures,” Thin Solid Films. vol. 343-344 (1999) p. 437-440.
Dimitrijev et al., “Nitridation of Silicon-Dioxide Films Grown on 6H Silicon Carbide”, IEEE Electronic Device Letters, vol. 18, No. 5, May 5, 1997, pp. 175-177.
European Search Report for corresponding EP patent application No. 09177558.5 dated Feb. 22, 2010.
European Search Report for corresponding EP patent application No. 09163424.6 dated Apr. 9, 2010.
European Search Report; Application No. EP07120038; Jun. 16, 2008.
Extended European Search Report (12 pages) corresponding to European Application No. 07112298; Dated Feb. 18, 2009.
Fisher, C.A. et al., “The performance of high-voltage field relieved Schottky barrier diodes”, IEE Proceedings, vol. 132:6, Pt. I, pp. 257-260 (Dec. 1985).
Fukuda et al. “Improvement of SiO2/4H—SiC Interface Using High-Temperature Hydrogen Annealing at Low Pressure and Vacuum Annealing,” Jpn J. Appl. Phys. vol. 38, Apr. 1999, pp. 2306-2309.
Fukuda et al. “Improvement of SiO2/4H—SiC Interface by Using High Temperature Hydrogen Annealing at 1000° C.,” Extended Abstracts of the International Conference on Solid State Devices and Materials. Japan Society of Applied Physics, Tokyo, Japan, Sep. 1998.
G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, M. Di Ventra, S.T. Pantelides, L.C. Feldman, and R.A. Weller, “Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide,” Applied Physics Letters, vol. 76, No. 13, pp. 1713-1715, Mar. 2000.
G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, and J.W. Palmour, “Improved Inversion Channel Mobility for 4H—SiC MOSETs Following High Temperature Anneals in Nitric Oxide,” IEEE Electron Device Letters, vol. 22, No. 4, Apr. 2001.
H.F. Li, S. Dimitrijev, H.B. Harrison, D. Sweatman, P.T. Tanner. “Improving SiO2 Grown on P-Type 4H—SiC by NO Annealing,” Materials Science Forum. vols. 264-268 (1998) pp. 869-872.
http://www.elec.gla.ac.uk; The Insulated Gate Bipolar Transistor (IGBT); Feb. 14, 2007.
Hubei, K, “Hybrid design improves diode robustness and boosts efficiency,” Compoundsemiconductor.net, 2006.
Hull et al., “Drift-Free 10-kV, 20-A 4H-SiC PiN Diodes,” Journal of Electronic Materials, vol. 34, No. 4, 2005, pp. 341-344.
International Preliminary Report on Patentability (9 pages) corresponding to International Application No. PCT/US2007/010192; Mailing Date: Sep. 23, 2008.
International Search Report and Written Opinion (13 pages) corresponding to International Application No. PCT/US2008/010538; Mailing Date: Dec. 22, 2008.
International Search Report and Written Opinion (14 pages) corresponding to International Application No. PCT/US2010/020071; Mailing Date: Mar. 26, 2010.
International Search Report and Written Opinion (14 pages) corresponding to International Application No. PCT/US2009/065251; Mailing Date: Jun. 1, 2010.
International Search Report and Written Opinion (16 pages) corresponding to International Application No. PCT/US2009/003089; Mailing Date: Aug. 20, 2009.
International Search Report and Written Opinion for PCT/US2007/014139; Feb. 4, 2008.
International Search Report and Written Opinion for PCT/US2010/025053 mailed on Jul. 2, 2010.
International Search Report and Written Opinion, International Application No. PCT/US2009/000734, Apr. 23, 2009.
International Search Report, PCT/US2008/008574, Sep. 26, 2008.
Invitation to Pay Additional Fees for PCT/US2007/010192; Oct. 29, 2007.
Invitation to Pay Additional Fees for PCT/US2010/025053 mailed on May 3, 2010.
J. Tan, J.A. Cooper, Jr., and Mr. R. Melloch, “High-Voltage Accumulation-Layer UMOSFETs in 4H—SiC,” IEEE Electron Device Letters, vol. 19, No. 12, pp. 487-489, Dec. 1998.
J.B. Casady, A.K. Agarwal, L.B. Rowland, W.F. Valek, and C.D. Brandt, “900 V DMOS and 1100 V UMOS 4H—SiC Power FETs,” IEEE Device Research Conference, Ft. Collins, CO Jun. 23-25, 1997.
J.N. Shenoy, J.A. Cooper and M.R. Meelock, “High-Voltage Double-Implanted Power MOSFETs in 6H—SiC,” IEEE Electron Device Letters, vol. 18, No. 3, pp. 93-95, Mar. 1997.
J.T. Richmond, S. Ryu, A.K. Agarwal and J.W. Palmour, “Hybrid 4H—SiC MOS Gated Transistor (MGT)” (admitted prior art).
Jamet, et al. “Physical properties of N2O and NO-nitrided gate oxides grown on 4H SiC,” Applied Physics Letters. vol. 79, No. 3, Jul. 16, 2001, pp. 323-325.
K. Ueno and Tadaaki Oikawa, “Counter-Doped MOSFET's of 4H—SiC,” IEEE Electron Device Letters, vol. 20, No. 12, pp. 624-626, Dec. 1999.
K. Ueno, R. Asai, and T. Tsuji. “4H-SiC MOSFET's Utilizing the H2 Surface Cleaning Technique.” IEEE Electron Device Letters, vol. 19, No. 7, Jul. 1998, pp. 244-246.
Katsunori Ueno, Tatsue Urushidani, Kouicki Hahimoto, and Yasukazu Seki. “The Guard-Ring Termination for the High-Voltage SiC Schottky Barrier Diodes”. IEEE Electron Device Letters. vol. 16. No. 7, Jul. 1995, pp. 331-332.
Kinoshita et al., “Guard Ring Assisted RESURF: A New Termination Structure Providing Stable and High Breakdown Voltage for SiC Power Devices,” Tech. Digest of ISPSD '02, pp. 253-256.
Kobayashi et al. “Dielectric Breakdown and Current Conduction of Oxide/Nitride/Oxide Multi-Layer Structures,” 1990 IEEE Symposium on VLSI Technology. pp. 119-120.
Krishnaswami et al., “High Temperature characterization of 4H—SiC bipolar junction transistors”, Materials Science Forum, Aedermannsfdorf, CH, vol. 527-529, Jan. 1, 2006, pp. 1437-1440, XP009138720, ISSN: 0255-5476.
L.A. Lipkin and J.W. Palmour, “Low interface state density oxides on p-type SiC,” Materials Science Forum vols. 264-268, pp. 853-856, 1998.
Lai et al., “Interface Properties of N2O-Annealed NH3-Treated 6H—SiC MOS Capacitor,” Proc. 1999 IEEE Hong Kong Electron Devices Meeting, Jun. 26, 1999, pp. 46-49.
Leonhard et al. “Long term stability of gate-oxides on n- and p-type silicon carbide studied by charge injection techniques,” Materials Science Engineering, vol. 46, No. 1-3, Apr. 1997, pp. 263-266.
Levinshtein et al., “On the homogeneity of the turn-on process in high voltage 4H—SiC thyristors”, Solid-State Electronics, vol. 49, No. 2, Feb. 1, 2005, pp. 233-237, XP004645018 Elsevier Science Publishers, Barking (GB) ISSN: 0038-1101.
Lipkin et al. “Insulator Investigation on SiC for Improved Reliability,” IEEE Transactions on Electron Devices. vol. 46, No. 3, Mar. 1999, pp. 525-532.
Lipkin et al. “Challenges and State-of-the-Art Oxides in SiC,” Mat. Res. Soc. Symp. Proc. vol. 640, 2001, pp. 27-29.
Losee et al., “Degraded Blocking Performance of 4H—SiC Rectifiers Under High dV/dt Conditions”, Proceedings of 17th International Symposium on Power Semiconductor Devices & IC's, 4 pages (May 23-26, 2005). XP010820730.
Losee et al., “High-Voltage 4H—SiC PiN Rectifiers with Single-Implant, Multi-Zone JTE Termination”, Power Semiconductor Devices and ICs, 2004 Proceedings. ISPSB '04. The 16th International Symposium on Kitakyushu Int. Conf. Center, Japan May 24-27, 2004, Piscataway, NJ, USA, IEEE, May 24, 2004, pp. 301-304, XP010723398.
M. Das et al., “A 13 kV 4H—SiC N-Channel IGBT with Low Rdiff, on and Fast Switching” presented at: International Conference on Silicon Carbide and Related Materials )ICSCRM), Otsu, Japan, Oct. 14-19, 2007.
M. K. Das, L.A. Lipkin, J.W. Palmour, G.Y. Chung, J.R. Williams, K. McDonald, and L.C. Feldman, “High Mobility 4H—SiC Inversion Mode MOSFETs Using Thermally Grown, NO Annealed SiO2,” IEEE Device Research Conference, Denver, CO Jun. 19-21, 2000.
M.A. Capano, S. Ryu, J.A. Cooper, Jr., M.R. Melloch, K. Rottner, S. Karlsson, N. Nordell, A. Powell, and D.E. Walker, Jr., “Surface Roughening in Ion Implanted 4H—Silicon Carbide,” Journal of Electronic Materials, vol. 28, No. 3, pp. 214-218, Mar. 1999.
M.K. Das, J.A. Cooper, Jr., M.R. Melloch, and M.A. Capano, “Inversion Channel Mobility in 4H- and 6H—SiC MOSFETs,” IEEE Semiconductor Interface Specialists Conference, San Diego, CA, Dec. 3-5, 1998.
Ma et al. “Fixed and trapped charges at oxide-nitride-oxide heterostructure interfaces formed by remote plasma enhanced chemical vapor deposition,” J. Vac. Sci. Technol. B. vol. 11, No. 4, Jul./Aug. 1993, pp. 1533-1540.
Mondal et al. “An Integrated 500-V Power DSMOSFET/Antiparallel Rectifier Device with Improved Diode Reverse Recovery Characteristics,” IEEE Electron Device Letters, vol. 23, No. 9, Sep. 2002, pp. 562-564.
Motorola Power MOSFET Transistor Databook, 4th edition. Motorola, INc., 1989, pp. 2-5-4-2-5-7.
Mutin, P. Herbert, “Control of the Composition and Structure of Silicon Oxycarbide and Oxynitride Glasses Derived from Polysiloxane Precursors,” Journal of Sol-Gel Science and Technology. vol. 14 (1999) pp. 27-38.
Myer-Ward et al. “Turning of Basal Plane Dislocations During Epitaxial Growth on 4 off-axis 4h-SiC” 7th European Conference on Silicon Carbide and Related Materials, Barcelona-Spain, Sep. 7-11, 2008 retrieved from http://ecscrm08.com/invited—presentations.html, retrieved Jul. 1, 2009.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, International Search Report, Written Opinion of the International Searching Authority, PCT/US2010/026632, Date of Mailing: Oct. 8, 2010, 16 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, International Search Report, Written Opinion of the International Searching Authority, PCT/US2010/035713, Date of Mailing: Jul. 27, 2010, 14 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, International Search Report, Written Opinion of the International Searching Authority, PCT/US2010/042075, Date of Mailing: Sep. 24, 2010, 15 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, PCT/US2010/028612, Jun. 17, 2010.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration; International Search Report; Written Opinion of the International Searching Authority, PCT/US2008/004239, Mar. 2, 2009.
P.J. Tobin, Y. Okada, S. A. Ajuria, V. Lakhotia, W.A. Feil, and R. I. Hedge, “Furnace formation of silicon oxynitride thin dielectrics in nitrous oxide (N20): The role of nitric oxide (NO).” Journal of Applied Physics. vol. 75, No. 3, Feb. 1, 1994, pp. 1811-1817.
P.M. Shenoy and B.J. Baliga, “The Planar 6H—SiC ACCUFET: A New High-Voltage Power MOSFET Structure,” IEEE Electron Device Letters, vol. 18, No. 12, pp. 589-591, Dec. 1997.
P.T. Lai, Supratic Chakraborty, C.L. Chan, and Y.C. Cheng, “Effects of nitridation and annealing on interface properties of thermally oxidized SiO2/SiC metal-oxide-semiconductor system,” Applied Physics Letters, vol. 76, No. 25, pp. 3744-3746, Jun. 2000.
Palmour et al. “SiC Device Technology: Remaining Issues,” Diamond and Related Materials. vol. 6, 1997, pp. 1400-1404.
Palmour J: “Silicon Carbide npnp Thyristors”, NASA Technical Briefs—Electronics and Computers, Dec. 1, 2000, John H. Glenn Research Center, Cleveland, Ohio (US); XP-002567723, http://www.techbriefs.com/component/content/article/7031-lew-16750?tmpl=component&print=1&page= retrieved on Feb. 10, 2010).
Panknin et al., “Electrical and microstructural properties of highly boron-implantation doped 6H—SiC”, Journal of Applied Physics 89:6, pp. 3162-3167 (Mar. 15, 2001).
Pantelides et al., “Atomic-Scale Engineering of the SiC—SiO2 Interface,” Materials Science Forum. (2000) vols. 338-342, pp. 1133-1136.
Patel, R., et al., Phosphorus-Implanted High-Voltage N.sup.+ P 4H—SiC Junction Rectifiers, Proceedings of 1998 International Symposium on Poer Semiconductor Devices & ICs, pp. 387-390 (Kyoto).
Q. Zhang et al. “12 kV 4H—SiC p-IGBTs with Record Low Specific On-Resistance” presented at: International Conference on Silicon Carbide and Related Materials (ICSCRM), Otsu, Japan, Oct. 14-19, 2007.
R. Schörner, P. Friedrichs, D. Peters, and D. Stephani, “Significantly Improved Performance of MOSFETs on Silicon Carbide Using the 15R-SiC Polytype,” IEEE Electron Device Letters, vol. 20, No. 5, pp. 241-244, May 1999.
R. Schörner, P. Friedrichs, D. Peters, H. Mitlehner, B. Weis, and D. Stephani, “Rugged Power MOSFETs in 6H—SiC with Blocking Capability up to 1800 V,” Materials Science Forum vols. 338-342, pp. 1295-1298, 2000.
Ranbir Singh, Sei-Hyung Ryu and John W. Palmour, “High Temperature, High Current, 4H—SiC Accu-DMOSFET,” Materials Science Forum vols. 338-342, pp. 1271-1274, 2000.
Rao et al. “Al and N Ion Implantations in 6H—SiC,” Silicon Carbide and Related Materials. 1995 Conf, Kyoto, Japan. Published 1996.
Rao et al. “P-N Junction Formation in 6H—SiC by Acceptor Implantation into N-Type Substrate,” Nuclear Instruments and Methods in Physics Research B. vol. 106, 1995, pp. 333-338.
Rao et al. “Silane overpressure post-implant annealing of A1 dopants in SiC: Cold wall CVD apparatus” Applied Surface Science 252: 3837-3842 (2006).
Rao, “Maturing ion-implantation technology and its device applications in SiC”, Solid State Electronics 47:2, pp. 213-222, Elsevier Science Publishers (Feb. 2003).
Ryu et al. Article and Presentation: “27 mΩ-cm2, 1.6 kV Power DiMOSFETs in 4H—SiC,” Proceedings of the 14 International Symposium on Power Semiconductor Devices & ICs 2002, Jun. 4-7, 2002, Santa Fe, NM.
S. Sridevan and B. Jayant Baliga, “Lateral N-Channel Inversion Mode 4H—SiC MOSFET's,” IEEE Electron Device Letters, vol. 19, No. 7, pp. 228-230, Jul. 1998.
S. Sridevan, P.K. McLarty, and B.J. Baliga, “On the Presence of Aluminum in Thermally Grown Oxides on 6H—Silicon Carbide,” IEEE Electron Device Letters, vol. 17, No. 3, pp. 136-138, Mar. 1996.
S.M. Sze Semiconductor Devices, Physics and Technology. 2nd Edition, © 2002 John Wiley and Sons, p. 130.
S.M. Sze Semiconductor Devices. Physics and Technology. 2nd Edition, © 2002 John Wiley and Sons, p. 130.
S.T. Pantelides, “Atomic Scale Engineering of SiC Dielectric Interfaces,” DARPA/MTO High Power and ONR Power Switching MURI Reviews, Rosslyn, VA, Aug. 10-12, 1999.
Senzaki et al. “Effects of Pyrogenic Reoxidation Annealing on Inversion Channel Mobility of 4H—SiC Metal-Oxide-Semiconductor Field-Effect Transistor Fabricated on (1120) Face”, Japanese Journal of Applied Physics, Japan Society of Applied Physics, Tokyo, JP; vol. 40, No. 11B, Part 2; Nov. 2001, pp. L1201-L1203.
Singh, R. and J.W. Palmour, “Planer Terminations in 4H—SiC Schottky Diodes with Low Leakage and High Yields,” IEEE International Symposium on Power Semiconductor Devices and ICs, 1997, pp. 157-160.
Stengl et al., “Variation of Lateral Doping—A New Concept to Avoid High Voltage Breakdown of Planar Junctions”, International Electron Devices Meeting; Washington, Dec. 1-4, 1985; pp. 154-157, XP002013050.
Stengl et al., Variation of Lateral Doping as a Field Terminator for High-Voltage Power Devices, IEEE Transactions on Electron Devices; vol. ED-33, No. 3, Mar. 1986, pp. 426-428, XP000836911.
Streetman “Bipolar Junction Transistors” Solid State Electronic Devices. Prentice Hall, Englewood Cliffs, NJ. 228-284 (1980).
Sugawara et al., “3.6 kV 4H—SiC JBS Diodes with Low RonS”. Materials Science Forum, vols. 338-342:2, pp. 1183-1186 (2000). XP-000944901.
Sundaresan et al., “Ultra-low resistivity A1+ implanted 4H—SiC obtained by microwave annealing and a protective graphite cap”, Solid-State Electronics vol. 52, 2008, pp. 140-145, XP022360431.
Suzuki et al. “Effect of Post-oxidation-annealing in Hydrogen on SiO2/4H—SiC Interface,” Materials Science Forum, vols. 338-342 (2000) 1073-6.
Sze, S.M. Physics of Semiconductor Devices, John Wiley & Sons, p. 383-390, 1981.
Thomas et al., “Annealing of Ion Implantation Damage in SiC Using a Graphite Mask”, Material Research Society Symposium Y Proceedings vol. 572, Spring 1999, pp. 45-50.
Treu et al. “A Surge Current Stable and Avalanche Rugged SiC Merged pn Schottky Diode Blocking 600V Especially Suited for PFC Applications” Materials Science Forum vols. 527-529: 1155-1158 (2006).
V.R. Vathulya and M.H. White, “Characterization of Channel Mobility on Implanted SiC to Determine Polytype Suitability for the Power DIMOS Structure,” Electronic Materials Conference, Santa Barbara, CA, Jun. 30-Jul. 2, 1999.
V.R. Vathulya, H. Shang, and M.H. White, “A Novel 6H—SiC Power DMOSFET with Implanted P-Well Spacer,” IEEE Electronic Device Letters, vol. 20, No. 7, Jul. 1999, pp. 354-356.
V.V. Afanasev, M. Bassler, G. Pensl, and M. Schulz, “Intrinsic SiC/SiO2 Interface States,” Phy. Stat. Sol. (a), vol. 162, pp. 321-337, 1997.
Vassilevski et al., “Protection of selectively implanted and patterned silicon carbide surfaces with graphite capping layer during post-implantation annealing,” Institute of Physics Publishing, Semicond. Sci. Technol. 20 (2005) 271-278.
Vassilevski et al., “High Voltage Silicon Carbide Schottky Diodes with Single Zone Junction Termination Extension”, Materials Science Forum, 2007 Trans Tech Publications, vols. 556-557 (2007) pp. 873-876, XP8124186.
Wang et al. “High Temperature Characteristics of High-Quality SiC MIS Capacitors with O/N/O Gate Dielectric,” IEEE Transactions on Electron Devices. vol. 47, No. 2, Feb. 2000, pp. 458-462.
Williams et al. “Passivation of the 4H—SiC/SiO2 Interface with Nitric Oxide,” Materials Science Forum. vols. 389-393 (2002), pp. 967-972.
Xu et al. “Improved Performance and Reliability of N2O-Grown Oxynitride on 6H—SiH,” IEEE Electron Device Letters. vol. 21, No. 6, Jun. 2000, p. 298-300.
Y. Li et al., “High Voltage (3 kV) UMOSFETs in 4H—SiC,” Transactions on Electron Devices, vol. 49, No. 6, Jun. 2002.
Y. Wang, C. Weitzel, and M. Bhatnagar, “Accumulation-Mode SiC Power MOSFET Design Issues,” Materials Science Forum, vols. 338-342, pp. 1287-1290.
Yilmaz, “Optimization and Surface Charge Sensitivity of High Voltage Blocking Structures with Shallow Junctions,” IEEE Transactions on Electron Devices, vol. 38, No. 3, Jul. 1991, pp. 1666-1675.
Zhang et al. “Design and Fabrication of High Voltage IGBTs on 4H—SiC”, Power Semiconductor Devices and IC's, 2006 IEEE International Symposium on Naples, Italy; Jun. 4-8, 2006; pp. 1-4.
Zhang et al., “A 10-kV Monolithic Darlington Transistor with βforced of 336 in 4H—SiC,” IEEE Electron Device Letters, vol. 30, No. 2, pp. 142-144, XP011240662.
International Search Report Corresponding to International Application No. PCT/US12/27255; Date of Mailing: Jun. 13, 2012; 10 Pages.
Chang in “500-V n-channel insulated-gate biopolar transistor with a trench gate structure”, 1989 Electron Devices, IEEE Transactions, vol. 36, Issue 9, pp. 1824-1829.
Definition of overlap. (n.d.) The American Heritage® Dictionary of the English Language, Fourth Edition. (2003). Retrieved Jan. 11, 2013 from http://www.thefreedictionary.com/overlap.
Tamaki et al. in “Optimization of ON-State and Switching Performances for 15-20-kV 4H—SiC IGBTs”, Electron Devices, IEEE Transactions, vol. 55, Issue 8, pp. 1920-1927.
Zhang et al. in “12 kV 4H—SiC p-IGBT with Record Low Specific On-Resistance”, 2008, Material Science Forum, vol. 600-603, Abstract.
Notification Concerning Transmittal of International Preliminary Report on Patentability, Application No. PCT/US2012/027255, Date of Mailing: Nov. 21, 2013, 7 Pages.
Ito et al. “Simultaneous Formation of Ni/Al Ohmic Contacts to Both n- and p-Type 4H—SiC” Journal of Electronic Materials 37:11 pp. 1674-1680 (2008).
Extended European Search Report for corresponding European Application No. 12782380.7, mailed Oct. 7, 2014 (7 pages).
Office Action for corresponding Japanese Patent Application No. 2014-509288, mailed Nov. 26, 2014 (5 pages).
Related Publications (1)
Number Date Country
20120280252 A1 Nov 2012 US