The present invention relates to an improved field effect transistor (FET), and more particularly to an improved metal-oxide-semiconductor field-effect transistor (MOSFET) having an inverted source/drain metallic contact, and methods for fabricating such an FET device.
In the semiconductor industry, there is a constant demand to increase the operating speed of integrated circuits (ICs). This increased demand is fueled by the need for electronic devices such as computers to operate at increasingly greater speeds. The demand for increased speed, in turn, has resulted in a continual size reduction of the semiconductor devices. Specifically, the channel length, junction depths, and/or gate dielectric thickness of field effect transistors (FETs) are reduced, which leads to increased density and number of FETS that can be fabricated on a given single semiconductor wafer.
However, the aggressive scaling or size reduction of the FETs also raises various technical issues relating to contact spacing and parasitic capacitance, which need to be addressed in order to meet the requirements for both device performance and manufacturing yield.
The present invention provides a solution to the contact spacing and parasitic capacitance issues by constructing an improved FET design. The improved FET design of the present invention is advantageously characterized by: (1) reduced number of source/drain (S/D) metal contacts, (2) reduced total contact layout area, (3) substantially the same effective contact area, (4) increased contact-to-gate distance, and (5) reduced gate-to-contact capacitance, in comparison with conventional FET designs. Further, the improved FET of the present invention is relatively easier to manufacture than the conventional FETs and can be fabricated at significantly increased product yield with reduced manufacturing costs.
The present invention, in one aspect, relates to a semiconductor device comprising:
a channel region located between a source region and a drain region;
a gate dielectric layer located over the channel region;
a gate electrode located over the gate dielectric layer;
a first dielectric layer located over and covering the source region, the drain region, and the gate electrode;
a second dielectric layer located over the first dielectric layer; and
at least one metallic contact electrically connected to either the source or the drain region, wherein the at least one metallic contact comprises a lower portion that is located in the first dielectric layer and an upper portion that is located in the second dielectric layer, and wherein the lower portion has a larger cross-sectional area than the upper portion.
The term “metallic” as used herein refers to a structure or component that is formed essentially of a conductive material containing at least one metal in an elemental form, an alloy form, or a compound form. Examples of such conductive material include, but are not limited to: elemental metals, metal alloys, metal nitrides, metal silicides, etc.
The term “cross-sectional area” as used herein refers to an area of a structure or component as cut by an imaginary plane that is substantially parallel to the surface of a semiconductor substrate upon which the structure or component is located.
A further aspect of the present invention relates to a method comprising:
forming a semiconductor device that comprises a source region, a drain region, a channel region, a gate dielectric layer located over the channel region, a gate electrode located over the gate dielectric layer, a first dielectric layer located over and covering the source region, the drain region, and the gate electrode, and a second dielectric layer located over the first dielectric layer;
selectively removing a portion of the first and second dielectric layers to form at least one contact hole that exposes either the source region or the drain region;
selectively removing a portion of the first dielectric layer along a sidewall of the at least one contact hole; and
filling the at least one contact hole with a metallic material to form at least one metallic contact that is electrically connected to either the source or the drain region, wherein the at least one metallic contact comprises a lower portion that is located in the first dielectric layer and an upper portion that is located in the second dielectric layer, and wherein the lower portion has a larger cross-sectional area than the upper portion.
A still further aspect of the present invention relates to a field effect transistor (FET) comprising an inverted source/drain metallic contact that has a lower portion located in a first, lower dielectric layer and an upper portion located in a second, upper dielectric layer, and wherein the lower portion of the inverted source/drain metallic contact has a larger cross-sectional area than the upper portion thereof.
Other aspects, features and advantages of the invention will be more fully apparent from the ensuing disclosure and appended claims.
In the following description, numerous specific details are set forth, such as particular structures, components, materials, dimensions, processing steps and techniques, in order to provide a thorough understanding of the present invention. However, it will be appreciated by one of ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well-known structures or processing steps have not been described in detail in order to avoid obscuring the invention.
It will be understood that when an element as a layer, region or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
The improved FET device of the present invention as well as exemplary processing steps for fabricating the same will now be described in greater detail by referring to the accompanying
Reference is first made to
The conventional FET device as shown in
The total effective contact area of the conventional FET device shown in
In contrast to the conventional FED device described hereinabove,
A metallic contact comprising an upper portion 46A and a lower portion 46B extend through the first and second dielectric layers 42 and 44, respectively, and is electrically connected with the drain (or source) metal silicide contact layer 34A in the drain (or source) region 34. The lower portion 46B of such a metallic contact has a larger cross-sectional area than the upper portion 46A. Therefore, the metallic contact is characterized by an inverted T-shape and is hereby referred to as an “inverted” metallic contact.
The total effective contact area of the improved FET device of the present invention, which is calculated as the cross-sectional area of the metallic contact 46 (=πr22), therefore ranges from about 0.03 μm2 to about 3.15 μm2. The total layout area consumed by the metallic contact 46 of the present invention, which is the area indicated by the dotted-line box in
When r2=2r1, the total effective contact area of the improved FET device of the present invention will be substantially the same as that of the conventional FET device. However, the total layer out area consumed by the metallic contact 46 is significantly smaller than, by about 20r12 or from about 0.05 μm2 to about 5 μm2, that of the conventional FET device, if assuming d2=3/2d1.
The FET device of the present invention allows use of a reduced number of S/D metal contacts and provides substantially the same effective contact area within a reduced total contact layout area. More importantly, the FET device of the present invention allows the S/D metal contacts to be spaced further away from the gate electrode (i.e., by at least ½ d1 or from about 0.0002 μm to about 2 μm), which in turn reduces the gate-to-contact capacitance, without increasing the total contact layout area.
Therefore, the FET device of the present invention solves the contact spacing problem and the parasitic capacitance problem typically associated with aggressive scaling or size reduction of the FETs and allows fabrication of smaller and faster high performance integrated circuit (IC) devices at reduced costs.
While the embodiment of the invention as specifically illustrated in
The FET device of the present invention can be readily fabricated by any suitable method. Specifically,
The semiconductor substrate 30 may comprise any semiconductor material including, but not limited to: Si, SiC, SiGe, SiGeC, Ge alloys, GaAs, InAs, InP, as well as other III-V or II-VI compound semiconductors. The semiconductor substrate 30 may also comprise an organic semiconductor structure, a layered semiconductor structure such as Si/SiGe, a silicon-on-insulator structure or a SiGe-on-insulator structure. The semiconductor substrate 30 may be doped, undoped, or contain doped and undoped regions therein (not shown). The doped device regions are typically known as “wells”. The semiconductor substrate 30 may be strained, unstrained, or contain regions of strained and unstrained semiconductor materials therein. Moreover, the semiconductor substrate 30 may have a single crystallographic surface orientation or multiple crystallographic surface orientations.
Further, the semiconductor substrate 30 may contain one or more shallow trench isolation regions (not shown) to provide isolation between doped device regions. The shallow trench isolation regions can be readily formed utilizing a conventional trench isolation process well known to those skilled in the art. For example, lithography, etching and filling of the trench with a trench dielectric may be used in forming the trench isolation region.
A first dielectric layer 42 is formed over the FET device, as shown in
Subsequently, a second dielectric layer 44 is formed over the first dielectric layer 42, as shown in
After deposition of the second dielectric layer 44, a portion of the first and second dielectric layers 42 and 44 are selectively removed, for example, by photolithography and etching, to form a contact hole 45 that exposes an upper surface of the drain (or source) metal silicide contact layer 34A in the drain (or source) region 34. Specifically, a photoresist (not shown) is applied to the entire structure over the second dielectric layer 44. The photoresist can be applied by any suitable technique, including, but not limited to: coating or spin-on techniques. A mask (not shown), which is patterned with the shape of the contact hole to be formed, is provided over the photoresist, and the mask pattern is transferred to the photoresist using a photolithographic process, which creates recesses in the uncovered regions of the photoresist. The patterned photoresist is subsequently used to create the same pattern of recesses in the first and second dielectric layers 42 and 44, using a reactive ion etching (RIE) process or any other suitable dry or wet etching techniques. The photoresist is subsequently stripped after formation of the contact hole 45, as shown in
Next, a second etching step is carried out to selectively etch the first dielectric layer 42 along a sidewall of the contact hole 45 in a lateral direction, thereby expanding the contact hole 45 sideways into the first dielectric layer 42 and forming a narrower, upper portion 45A and a wider, lower portion 45B, as shown in
After formation of the expanded contact hole 45, a metallic material is deposited into the expanded contact hole 45 to form an inverted source/drain metallic contact with an integral upper portion 46A of a relatively small cross-sectional area and a lower portion 46B of a relatively large cross-sectional area, as shown in
The processing steps described hereinabove therefore form an improved FET device with an inverted source/drain metallic contact, which is characterized by a reduced total layout area, which ranges from about 0.05 μm2 to about 5 μm2, and a reduced gate-to-contact capacitance, which is less than about 0.3 femtoFarads per micron of channel width.
In summary, the present invention fulfills the need for further scaling of FETs in fabricating high speed, high performance IC devices at relatively lower costs.
While
Number | Name | Date | Kind |
---|---|---|---|
4599790 | Kim et al. | Jul 1986 | A |
4675715 | Lepselter et al. | Jun 1987 | A |
5112763 | Taylor et al. | May 1992 | A |
5118382 | Cronin et al. | Jun 1992 | A |
5254490 | Kondo | Oct 1993 | A |
5328553 | Poon | Jul 1994 | A |
5470768 | Yanai et al. | Nov 1995 | A |
5654218 | Lee | Aug 1997 | A |
5677210 | Park et al. | Oct 1997 | A |
6042975 | Burm et al. | Mar 2000 | A |
6083845 | Yang et al. | Jul 2000 | A |
6096590 | Chan et al. | Aug 2000 | A |
6103619 | Lai | Aug 2000 | A |
6121648 | Evans, Jr. | Sep 2000 | A |
6130482 | Iio et al. | Oct 2000 | A |
6139995 | Burm et al. | Oct 2000 | A |
6188098 | Amanuma | Feb 2001 | B1 |
6228729 | Ni | May 2001 | B1 |
6274468 | Hsu | Aug 2001 | B1 |
6495434 | Rhodes | Dec 2002 | B1 |
6593217 | Fujisawa | Jul 2003 | B1 |
6767811 | Rhodes | Jul 2004 | B2 |
20020031901 | Sadjadi et al. | Mar 2002 | A1 |
20020173096 | Okudaira | Nov 2002 | A1 |
20040063289 | Ohta | Apr 2004 | A1 |
20040113212 | Lee et al. | Jun 2004 | A1 |
20040155269 | Yelehanka et al. | Aug 2004 | A1 |
20040175877 | Lin et al. | Sep 2004 | A1 |
20040203215 | Tsai et al. | Oct 2004 | A1 |
20040214390 | Chen et al. | Oct 2004 | A1 |
20040245583 | Horiuchi et al. | Dec 2004 | A1 |
20070170433 | Son et al. | Jul 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070092990 A1 | Apr 2007 | US |