1. Field of the Invention
The subject invention relates to filling valve apparatuses for filling a container with a fluid, such as filling a bottle with a beverage.
2. Description of Related Art
Beverage filling machines typically include a large number of filling valve apparatuses, such as 40, 60, 72, 100, 120, or 130 filling valve apparatuses on any one beverage filling machine. Each of the filling valve apparatuses operate in sequence to fill a series of containers with a desired beverage, for example. There are numerous configurations of filling valve apparatuses and a variety of different methods for performing the filling operation. However, one common feature relates to the gases being vented from the container during the filling of the container with the fluid. The venting is typically accomplished through the use of a movable or stationary vent tube.
Examples of movable vent tubes are disclosed in U.S. Pat. Nos. 4,979,546 and 5,884,677, which may move between a closed position blocking the flow of fluid into the container and an open position allowing the flow of fluid into the container. As the fluid flows into the container the gases within the container are vented up through the vent tube until the container reaches a predetermined fill level. At this point, the vent tube is blocked to prevent any further ventilation of the gases, which in turn will automatically stop the flow of fluid. The fluid, however, can have a tendency to leak or drip into the container. As known to those skilled in the art, this leaking or dripping creates a host of problems.
One solution to reduce or even eliminate the leaking or dripping is to install a screen within the flow opening of the filling valve apparatus. Both the '546 and '677 patents disclose filling valve apparatuses having screens movably mounted to the vent tube. Surface tension is created between the screen and the fluid material, which operates to hold the fluid material within the holes of the screen. Screens however can have drawbacks. The screens are an added expense, can be difficult to install, will clog over time, and are subject to servicing.
Another solution to reduce or eliminate the leaking or dripping is to form a fluid trap in the filling valve apparatus. U.S. Pat. No. 4,442,873 discloses a filling valve apparatus with a fluid trap, which eliminates the need for a screen. These types of designs, however, traditionally suffer from slow fill rates. Also, the flow of fluid can become agitated, which can cause foaming and a number of other problems.
Accordingly, it would be desirable to develop a filling valve apparatus that eliminates the use of a screen and maintains fast fill rates while retaining a laminar flow of the fluid passing into the container. Further, it would be advantageous to develop a filling valve apparatus that can be easily and quickly installed and serviced.
The subject invention includes a filling valve apparatus for filling a container with a fluid. The apparatus comprises a body portion defining an aperture for directing the fluid into the container with the body portion defining a sealing seat about the aperture and having an inner wall. The inner wall extends below the seat outboard of the aperture to define a trap for the fluid. A cage extends from the body portion with the cage having an inner wall mating with the inner wall of the body portion to define a continuous inner surface. A movable member has a seal movably disposed within the body portion between a closed position with the seal seated against the sealing seat for blocking a flow of the fluid into the container and an open position with the seal spaced from the sealing seat for allowing the fluid to flow into the container. The movable member has an outer surface that is complementary in configuration with the continuous inner surface to define a smooth passageway for the fluid as the fluid is directed through the aperture and into the container thereby ensuring a laminar flow of the fluid between the inner and outer surfaces and into the container.
The subject invention also includes a filling valve apparatus comprising a valve assembly selectively mounted to the body portion and extending outwardly therefrom. The valve assembly including the cage and a stem movably mounted to the cage with the stem defining an upper vent tube and having a seal seated against the body portion when the stem is in a closed position and spaced from the body portion when the stem is in an open position. A cap assembly is selectively mounted to the valve assembly. The cap assembly includes a cap and a spring with the cap having a seal engaging the stem when the stem is in the closed position. A lower vent tube assembly is selectively mounted to the upper vent tube of the stem with the lower vent tube assembly including a ball cage and a check ball disposed within the ball cage for selectively sealing the upper and lower vent tubes.
Accordingly, the subject invention eliminates the use of a screen through the use of a trap. The subject invention ensures quick fill rates and laminar flow by uniquely configuring the components to provide a smooth uninterrupted passageway. The subject invention also compartmentalizes the filling valve apparatus into distinct components, thereby increasing the efficiency for installation and servicing of the filling valves.
Other advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate like or corresponding parts throughout the several views, a filling valve apparatus for filling a container 12 with a fluid 14 is generally shown at 10 in
The filling valve apparatus 10 includes a body portion 20 having a mounting flange 22, which abuts the beverage filling machine. The body portion 20 also defines an aperture 24 for directing the fluid 14 into the container 12. The body portion 20 defines a sealing seat 28 about the aperture 24 and has an inner wall 26. The inner wall 26 extends below the seat 28 outboard of the aperture 24 to define a trap for the fluid 14. As best shown in
A cage 38 extends from the body portion 20 and into the tank 16. Preferably, the cage 38 is a separate component mounted within a machined groove in the body portion 20. The cage 38 includes a lip 40 that is trapped between the body portion 20 and the tank 16 when the filling valve apparatus 10 is installed on the tank 16 which in turn secures the cage 38 to the body portion 20 and the tank 16. It should be appreciated that the cage 38 could be an integral part of the body portion 20. The cage 38 extends through the fluid 14 in the tank 16 up to the headspace 18. The cage 38 includes a number of openings 42 for allowing the fluid 14 to flow into the cage 38 and down into the body portion 20. The cage 38 has an inner wall 44 mating with the inner wall 26 of the body portion 20 to define a continuous inner surface 26, 44.
A movable member 46, having a seal 48 mounted thereto, is movably disposed within the body portion 20. As is discussed in greater detail below, the movable member 46 moves between a closed position with the seal 32 seated against the sealing seat 28 for blocking a flow of the fluid 14 into the container 12 and an open position with the seal 32 spaced from the sealing seat 28 for allowing the fluid 14 to flow into the container 12. The seal 32 also engages a portion of the curved aperture wall 30 when in the closed position. The movable member 46 includes a flange 50 with the flange 50 having a distal end. As discussed in greater detail below, the distal end remains within the trap below the sealing seat 28 during the movement of the movable member 46 between the closed and open positions for preventing gases from leaking around the trap during an operation of the apparatus. Preferably, the seal 48 is mounted to the movable member 46 within the flange 50 by an insert 52.
The illustrated embodiment discloses the filling valve apparatus 10 configured to fill bottles 12 with a liquid beverage 14. In this illustrated embodiment, the movable member 46 is further defined as a stem 46 movably mounted within the cage 38. The stem 46 includes a bell-shaped portion 54 and an upper vent tube 56 extending from the bell-shaped portion 54. The bell-shaped portion 54 and the upper vent tube 56 have aligned bores for ventilating gases during an operation of the apparatus. The flange 50 is preferably an integral part of the bell-shaped portion 54.
The cage 38 includes an intermediate support 58 and the bell-shaped portion 54 includes a narrower section that slides within the intermediate support 58. The bell-shaped portion 54 also includes a notch that selectively engages the intermediate support 58 to provide a stop for the stem 46 when the stem 46 is in the open position. The cage 38 also includes an exterior recess 60 formed at a top thereof (see
The cage 38, stem 46, seal 48, and upper vent tube 56 define a unitary valve or cartridge assembly 62 selectively mounted to the body portion 20. The valve assembly 62 also includes a guide block 64 secured to the upper vent tube 56. Preferably, the seal 48 and guide block 64 of the valve assembly 62 are formed of a polymeric material. The guide block 64 includes an opening such that the upper vent tube 56 can extend therethrough. A fastener 66, such as a clip, secures the guide block 64 to the upper vent tube 56 such that the guide block 64 and stem 46 move as a single unit. A spring 68 is disposed within the cage 38 to continuously bias the stem 46 toward the open position. The spring 68 engages the guide block 64 at one end and the intermediate support 58 at the other end. Hence, the spring 68 reacts against the cage 38 on one end and the stem 46 on the other end. The cage 38, stem 46, seal 48, upper vent tube 56, and guide block 64 are all interconnected to define a pre-assembled unitary valve assembly 62.
The filling valve apparatus 10 also includes a cap or charging assembly 70 selectively mounted to the valve assembly 62. The cap assembly 70 includes a cap 72 and a spring 74 secured to the cap 72. The cap 72 has a seal 76 engaging the stem 46 when the stem 46 is in the closed position (see
The filling valve apparatus 10 further includes a lower vent tube assembly 82 mounted to the stem 46. In the illustrated embodiment, the lower vent tube assembly 82 is mounted to the bell-shaped portion 54 of the stem 46. The lower vent tube assembly 82 includes a bore aligned with the bores of the bell-shaped portion 54 and the upper vent tube 56 for ventilating the gases within the container 12 during an operation of the filling valve apparatus 10. The lower vent tube assembly 82 also includes a deflector 84 for redirecting any fluid 14 toward the walls of the container 12. Preferably, the stem 46 includes a locking device 86 and the lower vent tube assembly 82 includes an integral groove 88 engaging the locking device 86 when the lower vent tube assembly 82 is mounted to the stem 46. Even more preferably, the locking device 86 is at least one seal 86 disposed within the bell-shaped portion 54 of the stem 46. In the embodiment illustrated, the locking device 86 includes a pair of seals 86 that are secured to the stem 46 by the insert 52.
As also shown in
The check ball 94 is spherical and defines a radius of curvature. The ball seat 92 of the ball cage 90 includes a radius of curvature that is complementary in configuration with the radius of curvature of the check ball 94 for preventing gases from leaking into the bores during an operation of the apparatus. In particular, the radii of curvature ensure a proper and adequate seal between the check ball 94 and the ball cage 90, thereby reducing or eliminating the seepage of gases into the bores and the resultant leakage of fluid 14 into the container 12. This is an improvement over prior art ball cage/check ball assemblies that can, at times, allow seepage of gases.
As shown in
Turning to
The continuous inner surface 26, 44 further includes a second substantially vertical section 106 extending from the curved section 100 of the inner surface 26, 44. The continuous inner surface 26, 44 further includes a pocket section 108 extending from the second vertical section 106 of the inner surface 26, 44 to further define the trap for the fluid 14. Similarly, the outer surface 96 further includes a second substantially vertical section 110 extending from the curved section 104 of the outer surface 96. The second vertical section 110 of the outer surface 96 is aligned with the second vertical section 106 of the inner surface 26, 44 to further define the smooth passageway.
In the preferred embodiment, the inner wall 44 of the cage 38 defines the first vertical section 98 and the curved section 100 of the inner surface 26, 44. The inner wall 26 of the body portion 20 defines the second vertical section 106 and the pocket section 108 of the inner surface 26, 44. The bell-shaped portion 54 of the movable member 46 defines the outer surface 96 having the first vertical section 102 and the curved section 104. The flange 50 of the bell-shaped portion 54 further defines the outer surface 96 and the smooth passageway. In particular, the flange 50 defines the second substantially vertical section 110 of the outer surface 96 which is aligned with the second vertical section 106 of the inner surface 26, 44 to further define the smooth passageway.
The sealing seat 28 is preferably aligned vertically with the first vertical section 98 of the inner surface 26, 44 such that the trap is entirely disposed outboard of the first vertical section 98 of the inner surface 26, 44. This geometrical orientation operates to ensure a smooth laminar flow of the fluid 14. The first vertical section 98 and the curved section 100 of the inner surface 26, 44 define a first radius. Similarly, the first vertical section 102 and the curved section 104 of the outer surface 96 define a second radius. In the preferred embodiment, the second radius is equal to the first radius such that this geometrical relationship further ensures a smooth laminar flow of the fluid 14.
Referring to
As shown in
Turning to
The stem 46 is then moved downwardly to return to the position shown in
Turning to
The flange 50 of the alternative bell-shaped portion 120 includes a plurality of orifices 122 for allowing the fluid or liquid 14 to flow through the orifices 122 for increasing a control of the fluid or liquid passing through the aperture 24 and into the container 12. Hence, when the filling valve apparatus 10 is in the open position, such as shown in
Each of the orifices 122 include a peripheral wall of an appropriate size and configuration for providing a requisite surface tension between the peripheral wall and the fluid or liquid 14 for preventing gases from leaking through the orifices 122 during an operation of the filling valve apparatus 10. In other words, the surface tension of the liquid 14 within the orifices 122 is strong enough to prevent liquid 14 from leaking through the orifices 122 when the filling valve apparatus 10 is in the intermediate fill position, such as shown in
As best shown in
A brief discussion of the operation of the filling valve apparatus 10 utilizing the alternative bell-shaped portion 120 is now discussed.
Turning to
The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. As is now apparent to those skilled in the art, many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
The subject patent application is a continuation-in-part of U.S. patent application Ser. No. 11/079,157, filed on Mar. 14, 2005, which claims priority to and all the benefits of U.S. Provisional Patent Applications Ser. Nos. 60/552,788 and 60/552,772, both of which were filed on Mar. 12, 2004.
Number | Name | Date | Kind |
---|---|---|---|
2796892 | Meyer | Jun 1957 | A |
4014372 | Dichiara | Mar 1977 | A |
4206789 | Jordan et al. | Jun 1980 | A |
4398575 | Brandon | Aug 1983 | A |
4431037 | Schevey et al. | Feb 1984 | A |
4442873 | Yun | Apr 1984 | A |
4445549 | Bernhard | May 1984 | A |
4750533 | Yun | Jun 1988 | A |
4979546 | LaWarre, Sr. et al. | Dec 1990 | A |
5085255 | LaWarre et al. | Feb 1992 | A |
5139058 | Yun | Aug 1992 | A |
5273084 | Monnig | Dec 1993 | A |
5425402 | Pringle | Jun 1995 | A |
5634500 | Clusserath et al. | Jun 1997 | A |
5884677 | McKaughan | Mar 1999 | A |
5992455 | Koller et al. | Nov 1999 | A |
6131624 | Paradies | Oct 2000 | A |
6135166 | Paradies et al. | Oct 2000 | A |
6135167 | Kiholm | Oct 2000 | A |
6179016 | Neacker et al. | Jan 2001 | B1 |
6399901 | Nishino et al. | Jun 2002 | B1 |
6463964 | Clusserath | Oct 2002 | B2 |
6470922 | Sindermann | Oct 2002 | B2 |
20020003005 | Martin | Jan 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20060137762 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
60552788 | Mar 2004 | US | |
60552772 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11079157 | Mar 2005 | US |
Child | 11331916 | US |