The present invention relates to a film-like member support apparatus. The present invention relates more specifically to a support apparatus for a plate-like product such as an electronic device, a support body made of a synthetic resin and included in the plate-like product, a partially finished product in the process of manufacturing the plate-like product, and a film-like member used for manufacturing.
In recent years, a flexible device in which a functional element such as a semiconductor element, a display element, or a light-emitting element is provided over a flexible substrate has been developed and put to practical use. Typical examples of the flexible device include a lighting device, an image display device, a variety of semiconductor circuits including a semiconductor element such as a transistor, and the like. In addition, a variety of methods for manufacturing these devices have been proposed. A front or back surface of a flexible component or device is covered with a film-like support body made of a synthetic resin, for example, for purposes such as protecting internal elements and ensuring flexibility. The flexible component or device is processed through a variety of steps of transferring (transporting) a film-like member which is a partially finished product, attaching the film-like member to another member, mounting a component on the film-like member, and the like and is manufactured using a variety of members. A film-like member which serves as a support body in a plate-like product such as a flexible device is covered with protective sheets on both sides and supplied from a roll. Therefore, when the film-like member is cut into a desired size and the protective sheet on one side is peeled, the film-like member is deformed by warping because of an imbalance of internal stress.
In order to smooth out creases in a band-like film moving in a longitudinal direction, a film crease removing apparatus for smoothing out creases continuously by blowing air from an air vent onto the band-like film is proposed (Patent Document 1). The film crease removing apparatus can smooth out creases in a band-like member but cannot smooth out creases or deformation of each cut film. In the case of a film-like member which is sensitive to damage, a surface to be held by a holding means is often only one predetermined surface. In other words, both surfaces of a film substrate cannot be held by a holding means such as a transfer hand.
Furthermore, in order to smooth out creases in a cut film substrate, a method and an apparatus for removing creases from the film substrate are proposed (Patent Document 2), in which air is expelled from a porous member on a stage, the film substrate is placed thereon to attach it by suction, and a pressing gas is blown from above the film substrate. The crease removing method and apparatus disclosed in Patent Document 2 smooth out creases in a film substrate by synchronously swinging a pair of blow outlet pipes provided with a plurality of ejection nozzles. This swing mechanism is complex and might cause a breakdown or the like; therefore, as simple a mechanism as possible is preferable. Furthermore, the crease removing method and apparatus can smooth out creases in a lower surface of a film substrate but cannot hold the lower surface of the film substrate with a transfer hand or the like because the lower surface of the film substrate is in contact with an upper surface of the porous member.
[Patent Document 1] Japanese Published Patent Application No. 2011-66095
[Patent Document 2] Japanese Published Patent Application No. 2013-216429
The present invention was made in view of the above-described background and achieves the following object. An object of one embodiment of the present invention is to provide a film-like member support apparatus which is configured to be in contact with a film-like member to the minimum extent necessary for positioning the film-like member at a set position in a set shape. An object of another embodiment of the present invention is to provide a film-like member support apparatus capable of correcting the deformation of a film-like member.
A first embodiment of the present invention is a support apparatus for a film-like member having flexibility. The support apparatus includes a plurality of pads having a function of attaching a first surface of the film-like member thereto by suction, a plurality of first lift pins capable of stopping at a first extension amount, and a plurality of second lift pins capable of stopping at a second extension amount. The pads include an elastic member and are provided at end portions of the first lift pins and the second lift pins. The first surface of the film-like member is attached by suction to the pads.
A second embodiment of the present invention is the support apparatus for the film-like member of the first embodiment of the present invention in which the pads have different suction forces depending on the bearing position of the film-like member. A third embodiment of the present invention is the support apparatus for the film-like member of the first or second embodiment of the present invention in which the pads bear the first surface at points. A fourth embodiment of the present invention is the support apparatus for the film-like member of any one of the first to third embodiments of the present invention which includes a nozzle having a function of blowing pressurized air. The pads are capable of attaching the first surface of the film-like member thereto by suction while the nozzle is blowing the pressurized air onto a second surface of the film-like member.
The film-like member support apparatus of the present invention is configured to be in contact with the film film-like member to the minimum extent necessary and can therefore position the film-like member at a set position in a set shape without damage. Furthermore, the deformation of the film-like member can be corrected; therefore, a correction apparatus and a correction step do not need to be additionally provided.
A film-like member support apparatus in a first embodiment of the present invention (hereinafter referred to as a support apparatus 1) will be described below with reference to drawings.
In the case where different hands or fingers, which are holding means for transfer or processing, are used in different processes, it is necessary to provide a stage for temporarily placing the members for changing the holding means. The film-like member support apparatus of the present invention can support and position the film-like member at a set position and a set angle in a set shape in such a case, and can also correct the deformation of the film-like member. Note that the support apparatus in the present invention and this embodiment can be applied not only to manufacturing the above-described plate-like product but also to supporting a variety of film-like objects. In other words, the film-like member support apparatus 1 refers to a stage for standby for operations such as processing the film-like member and mounting components in the film-like member, a stage for changing a holding means to another transfer apparatus or robot hand for transfer (transportation) to the next process, a stage for temporary standby or storage for time control, or the like. Alternatively, it refers to a stage for changing the position or angle of the film-like member or correcting the deformation thereof. Therefore, the film-like member support apparatus 1 in the present invention or this embodiment is not limited by the following functions or intended uses described in Embodiment 1.
The frame 3 is a main body of the support apparatus 1. As illustrated in
In that case, the height adjustment mechanism serves as a mechanism for adjusting the length in the horizontal direction; thus, the protruding height of the lift pins is also referred to as an extension amount in the present invention and this embodiment. An upper portion of the lift pin 5 penetrates through a through-hole 7 formed in an upper plate stage 6. The upper plate stage 6 is fixed to the frame 3 by a fixing unit (not illustrated). In this example, the upper plate stage 6 is, but not limited to, a rectangular plate made of a transparent synthetic resin. The upper plate stage 6 is a stage for bearing the film-like member 2, and when the film-like member 2 is dropped for some reason, the upper plate stage 6 can receive the film-like member 2 at a close position. Unless the film-like member 2 is significantly deformed or the protruding height of the lift pins 5 is small, the film-like member 2 is not brought into contact with the upper plate stage 6.
In Embodiment 1, six lift pins 5 are provided, all of which are normally set at the same height. However, in this example, two lift pins 5 located in the middle are set at a height lower by height h than that of the lift pins 5 at both ends. The through-hole 9 of each of the lift pins 5 is connected to a vacuum pump 15 by a pipe conduit 14. The pipe conduit 14 is provided with a throttle valve, a regulator, a pressure sensor, a check valve, or the like (not illustrated) as necessary. The throttle valve adjusts the force of suction of air from the pad 10. The throttling amount is fixed once adjusted depending on the type of the film-like member 2. In other words, the suction force for fixing the film-like member 2 by suction is constant. However, the present invention is not limited thereto, and the suction force is not necessarily constant.
In the above-described structure, the lower surface of the film-like member 2 is held by a holding hand (not illustrated) of a transfer apparatus and placed on the lift pins 5 of the support apparatus 1. At that time, each of the pads 10 withdraws air from the vicinity of the upper end surface 12 of the pad 10 by air suction by the vacuum pump 15. Therefore, when the film-like member 2 is placed close to the vicinity of the upper end surface, the film-like member 2 is attached by suction to the upper end surface 12 of the lift pin 5. As a result, the film-like member 2 is supported and fixed onto the upper end surface 12 of each of the six lift pins 5 such that the center thereof is downwardly curved as indicated by a solid line.
If there is no suction force from the pad 10, the film-like member 2 unwound from a roll, for example, normally curls up because the inner side thereof is under compressive stress and the outer side thereof is under tensile stress even after it is cut into a rectangular shape. As illustrated in
However, as described above, owing to the six pads 10, the film-like member 2 is made slightly downwardly curved in the middle (the solid line in
Therefore, the suction force cannot be set stronger than or equal to an allowable value. In such a case, the suction force is supplemented by at least one air nozzle 24 placed over the film-like member 2. The air nozzle 24 linearly ejects uniform compressed air toward the upper surface of the film-like member 2, thereby applying its dynamic pressure so that the film-like member 2 becomes downwardly curved. The film-like member 2 in an arc shape (the imaginary line) is changed in shape in a portion subjected to the ejection and in its vicinity by the dynamic pressure due to the ejection of compressed air from the air nozzle 24. The shape of the film-like member 2 is changed to a flat shape as illustrated in
The position and the number of air nozzles 24 should be determined by the material, characteristics, deformation amount, or the like of the film-like member 2 but may be determined according to experimental results obtained in advance using the film-like member 2 which is to be actually produced. The structure, function, and the like of the air nozzle 24 are disclosed in Japanese Published Patent Application No. H10-337503 or the like and are therefore not described here. Note that the air nozzle 24 having a plurality of ejection outlets arranged linearly may be replaced as appropriate with a plurality of commonly used air nozzles each having a single ejection outlet. In other words, the air nozzle 24 does not need to have a special structure or function, and the number and position thereof should be determined as needed by the deformed shape or position of the film-like member 2.
In each of the support apparatuses 1, 20, and 25 described in Embodiments 1 and 2, the six lift pins 5 have the same specifications. A support apparatus 30 in Embodiment 3 illustrated in
Even when the film-like member 2 tends to be convexly curved in the middle as illustrated in
All the support apparatuses 1, 20, 25, and 30 described above in Embodiments 1 to 3 are based on the premise that they do not move. However, these support apparatuses 1, 20, 25, and 30 may be capable of moving uniaxially, biaxially, or triaxially and capable of controlling the move by NC or the like when necessary in a plate-like product manufacturing system. In other words, the support apparatuses 1, 20, 25, and 30 may have a function of a transfer apparatus. Furthermore, the support apparatuses 1, 20, 25, and 30 described in Embodiments 1 to 3 hold the film-like member 2 horizontally thereover, but may bear the film-like member 2 upright (vertically) or thereunder. In other words, the support apparatus of the present invention may transfer and support a film-like member upright when it is large, in view of space efficiency or gravity, and although not illustrated, such cases are also included in the scope of the present invention.
1, 20, 25, 30: film-like member support apparatus, 2: film-like member, 3: frame, 5, 26, 28: lift pin, 6: upper plate stage, 10, 27, 29: pad, 12: upper end surface, 14: pipe conduit, 15: vacuum pump, and 24: air nozzle.
This application is based on Japanese Patent Application serial no. 2014-095582 filed with Japan Patent Office on May 3, 2014, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2014-095582 | May 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8367440 | Takayama et al. | Feb 2013 | B2 |
20150059986 | Komatsu et al. | Mar 2015 | A1 |
20150059987 | Kumakura et al. | Mar 2015 | A1 |
20150060933 | Ohno et al. | Mar 2015 | A1 |
20150075720 | Hirakata et al. | Mar 2015 | A1 |
20150151531 | Ohno et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
H10-337503 | Dec 1998 | JP |
2001-209192 | Aug 2001 | JP |
2005-022844 | Jan 2005 | JP |
2007-103609 | Apr 2007 | JP |
2011-066095 | Mar 2011 | JP |
2013-041989 | Feb 2013 | JP |
2013-191601 | Sep 2013 | JP |
2013-216429 | Oct 2013 | JP |
Entry |
---|
International Search Report (Application No. PCT/IB2015/052801) dated Aug. 18, 2015. |
Written Opinion (Application No. PCT/IB2015/052801) dated Aug. 18, 2015. |
Number | Date | Country | |
---|---|---|---|
20150314424 A1 | Nov 2015 | US |