FinFETs and methods for forming the same

Information

  • Patent Grant
  • 8912602
  • Patent Number
    8,912,602
  • Date Filed
    Monday, April 12, 2010
    14 years ago
  • Date Issued
    Tuesday, December 16, 2014
    10 years ago
Abstract
A Fin field effect transistor includes a fin disposed over a substrate. A gate is disposed over a channel portion of the fin. A source region is disposed at a first end of the fin. A drain region is disposed at a second end of the fin. The source region and the drain region are spaced from the substrate by at least one air gap.
Description
TECHNICAL FIELD

The present application relates generally to the field of semiconductor devices, and more particularly, to Fin field effect transistors (FinFETs) and methods for forming the FinFETs.


BACKGROUND

The semiconductor integrated circuit (IC) industry has experienced rapid growth. Technological advances in IC materials and design have produced generations of ICs where each generation has smaller and more complex circuits than the previous generation. For example, the semiconductor industry ardently strives to decrease the size of memory cells. One strategy that has been employed includes the use of multiple gate transistors, otherwise known as FinFETs. A conventional FinFET device is fabricated using a silicon fin raised from the semiconductor substrate. The channel of the device is formed in the fin, and a gate is provided over (e.g., surrounding) the fin—for example, in contact with the top and the sidewalls of the fin. The gate surrounding the channel (e.g., fin) is beneficial in that allows control of the channel from three sides. Source/drain regions are formed at two ends of the fin. The fin including the source/drain regions contacts the substrate.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale and are used for illustration purposes only. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.



FIG. 1 is a schematic 3-D drawing illustrating an exemplary FinFET.



FIG. 2 is a schematic 3-D drawing illustrating another exemplary FinFET.



FIGS. 3A-3H are schematic 3-D drawings illustrating an exemplary method for forming a FinFET.



FIG. 4 is a schematic drawing illustrating an exemplary process for forming at least one oxide-containing layer insulating a fin from a substrate.





DETAILED DESCRIPTION

It is understood that the following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.


As noted, the conventional FinFET has the source/drain regions contacting the substrate. It is found that during the operation of the FinFET leakage paths are found between the source/drain regions of the fin and the substrate. It is also found that a conventional FinFET having shallow trench isolation (STI) for insulating the gate from the substrate suffers an etching loading effect. The etching loading effect causes fin-height variations.


To solve the leakage issue, formation of FinFETs on a silicon-on-insulator (SOI) substrate has been proposed. The process for forming the FinFETs on a SOI substrate, however, is expensive due to the cost for using the SOI substrate.


Embodiments of the disclosure relate to devices and methods for forming the devices by forming at least one air gap or at least one oxide-containing material to insulate source/drain regions of a fin from the substrate. The air gap or the oxide-containing material can eliminate leakage paths between the fin and the substrate thereby reducing leakage currents of the devices.



FIG. 1 is a schematic 3-D drawing illustrating an exemplary FinFET. In FIG. 1, a FinFET 100 can include a fin 110 disposed over a substrate 105 by at least one air gap, e.g., a gap 107. A gate 117 can include a gate dielectric 120 and a gate electrode 125. The gate 117 can be disposed over a channel portion of the fin 110. In some embodiments, the FinFET 100 can include a dielectric layer 115 formed to insulate the substrate 105 from the gate 117. A first source/drain region 130 is disposed at an end of the fin 110. A second source/drain region (not shown) is disposed at the other end of the fin 110. The source/drain regions are spaced from the substrate 105 by the air gap 107. The air gap 107 is formed to insulate the source/drain regions 130 from the substrate 105 to reduce leakage currents between the source/drain regions 130 and the substrate 105. In some embodiments for 32-nm technology, the distance “a” of the air gap 107 from the substrate 105 to the fin 110 can be about 200 nm. One skilled in the art can modify the distance “a” to achieve a desired electrical insulation between the source/drain region 130 and the substrate 105.


In some embodiments, the substrate 105 may comprise an elementary semiconductor including silicon or germanium in crystal, polycrystalline, or an amorphous structure; a compound semiconductor including silicon carbide, gallium arsenic, gallium phosphide, indium phosphide, indium arsenide, and indium antimonide; an alloy semiconductor including SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, and GaInAsP; any other suitable material; or combinations thereof. In at least one embodiment, the alloy semiconductor substrate may have a gradient SiGe feature in which the Si and Ge composition change from one ratio at one location to another ratio at another location of the gradient SiGe feature. In another embodiment, the alloy SiGe is formed over a silicon substrate. In yet another embodiment, a SiGe substrate is strained. Furthermore, the semiconductor substrate may be a semiconductor on insulator, such as a silicon on insulator (SOI), or a thin film transistor (TFT). In some examples, the semiconductor substrate may include a doped epi layer or a buried layer. In other examples, the compound semiconductor substrate may have a multilayer structure, or the substrate may include a multilayer compound semiconductor structure.


In some embodiments, the fin 110 can include semiconductor material such as silicon, silicon germanium, and/or other suitable materials. The fin 110 can include the channel of the FinFET 100 covered by the gate 117. In some embodiments, two ends of the fin 110 can be designated as the source/drain regions of the FinFET 100.


In some embodiments, a bottom surface 110a of the fin 110 is over the top surface 115a of the dielectric layer 115. The dielectric layer 115 can include dielectric materials such as silicon oxide, silicon nitride, silicon oxynitride, another dielectric material that is capable of insulating the substrate 105 from the gate 117, and/or the combinations thereof. In some embodiments, the dielectric layer 115 can include shallow trench isolation (STI) structures (not shown) formed over the substrate 105. In some embodiments for 32-nm technology, the dielectric layer 115 can have a thickness of about 1800 A.


The gate dielectric 120 can be formed below the gate electrode 125. The gate dielectric 120 can be a single layer or a multi-layer structure. In some embodiments for multi-layer structures, the gate dielectric 120 can include an interfacial layer and a high-k dielectric layer. The interfacial layer can include at least one dielectric material such as, silicon oxide, silicon nitride, silicon oxynitride, another dielectric material, and/or any combination thereof. The high-k dielectric layer can have at least one high k material including hafnium silicate, hafnium oxide, zirconium oxide, aluminum oxide, hafnium dioxide-alumina (HfO2—Al2O3) alloy, and/or combinations thereof. In some embodiments for 32-nm technology, the interfacial layer can have a thickness between about 8 Å and about 10 Å. The high-k dielectric layer can have a thickness of about 40 Å.


In some embodiments, the gate electrode 125 can include at least one material, such as polysilicon, silicon-germanium, a metal material including metal compounds such as, Mo, Cu, W, Ti, Ta, TiN, TaN, NiSi, CoSi, and/or other suitable conductive materials known in the art. In some embodiments for 32-nm technology, the gate electrode 125 can have a thickness of about 600 Å. In some embodiments, the FinFET 100 can include spacers on sidewalls of the fin 110.



FIG. 2 is a schematic 3-D drawing illustrating another exemplary FinFET. In FIG. 2, a FinFET 200 can include a fin 210 over a substrate 205. A gate 217 can include a gate dielectric 220 and a gate electrode 225. The gate 217 can be over a channel portion of the fin 210. A source/drain region 230 is disposed at an end of the fin 210. Another source/drain region (not shown) is disposed at the other end of the fin 210. At least one oxide-containing layer, e.g., oxide-containing layer 209, can be disposed between the source/drain regions of FinFET 200 and the substrate 205. In some embodiments, the oxide-containing layer 209 can be formed by oxidizing porous silicon with an oxygen-containing gas. The oxide-containing layer 209 is formed to insulate the source/drain regions of the FinFET 200 from the substrate 205 to reduce leakage currents therebetween. In some embodiments, an interface 211 between the fin 210 and the oxide-containing layer 209 is substantially planar. In some embodiments, the FinFET 200 can include a dielectric layer 215 formed to insulate the substrate 205 from the gate 217. Items of FIG. 2 that are the same or similar items in FIG. 1 are indicated by the same reference numerals, increased by 100.


The FinFETs 100 and/or 200 can be formed within a package which can be physically and electrically coupled with a printed wiring board or printed circuit board (PCB) to form an electronic assembly. The electronic assembly can be part of an electronic system such as computers, wireless communication devices, computer-related peripherals, entertainment devices, or the like.


Following are descriptions for exemplary methods for forming a FinFET. In some embodiments, a method for forming a FinFET can include forming a porous silicon portion between a fin and a substrate. A gate is formed over a channel portion of the fin. A source region can be formed at a first end of the fin. A drain region can be formed at a second end of the fin. In some embodiments, the porous silicon portion can be removed to form at least one air gap to insulate the fin from the substrate. In other embodiments, the porous silicon portion can be oxidized to form an oxide-containing material to insulate the fin from the substrate.



FIGS. 3A-3H are schematic 3-D drawings illustrating an exemplary method for forming a FinFET. In FIG. 3A, a P-type doped layer 305a is formed over a substrate 305 by an ion implantation 301. In some embodiments, the ion implantation 301 can use P-type dopant such as boron (B) for implantation. The P-type doped layer 305a can have a dopant concentration of about 1E15 cm−2 or more. In some embodiments for 32-nm technology, the P-type doped layer 305a can have a thickness of about 200 nm.


In FIG. 3B, the P-type doped layer 305a (shown in FIG. 3A) can be anodized to form a porous silicon layer 305b. In some embodiments, the P-type doped layer 305a can be immersed in a diluted hydrofluoride (HF) solution for the anodization process. The diluted HF solution can have a ratio of H2O to HF from about 100:1 or more. In some embodiments, the P-type doped layer 305a can be anodized in the diluted HF solution at a current density of about 15 mA/cm2 for about 30 seconds. One of ordinary skill in the art is able to select desired solutions and/or adjust the current density and time to achieve a desired porous silicon layer 305b.


In some embodiments using a P-type substrate, the ion implantation 301 may be saved if the P-type substrate can provide a desired amount of electron-hole pairs for anodization. In some embodiments using an N-type substrate, the substrate 305 can be exposed to a light source for generating a desired amount of electron-hole pairs while anodizing the substrate 305. The light source can be, for example, an ultraviolet (UV) light source, an infrared (IR) light source, a visible light source, a laser light source, an electroluminescence light source, a sonoluminescence light source, a triboluminescence light source, a radiation source, other suitable light source, and/or combinations thereof. In some embodiments, the exposure can be performed through the anodization process. In some other embodiments, the exposure time can vary depending on the concentration of the chemical, e.g., HF, of the anodization process, the current of the anodization process, a desired depth of the anodization process, other factor, and/or combinations thereof. In some embodiments using an anodization current of about 20 mA and an anodization solution having 100:5 HF solution for forming a 20-nm anodized depth, the time is about 60 second. The intensity of the light source can be from about 400 candelas (CD) to about 700 CD. From the foregoing, one of skill in the art is able to select the type of the substrate 305 and modify the process for anodizing the substrate 305 accordingly. The scope of this application is not limited thereto.


In FIG. 3C, a fin layer 310 can be formed over the porous silicon layer 305b. The fin layer 310 is provided to form at least one fin over the porous silicon layer 305b. In some embodiments, the fin layer 310 can include at least one material, such as silicon, germanium, compound semiconductor (silicon carbide, gallium arsenide, indium arsenide, or indium phosphide), other semiconductor materials, and/or combinations thereof. In some embodiments, the fin layer 310 can be formed by epitaxial processes, CVD processes, other methods that are capable of forming the fin layer 310, and/or combinations thereof. In some embodiments for 32-nm technology, the fin layer 310 can have a thickness of about 600 nm.


In FIG. 3D, processes are provided to remove portions of the fin layer 310 and the porous silicon layer 305b (shown in FIG. 3C) to define at least one fin 310a and the porous silicon portion 305c. In some embodiments, the processes can include such as photolithography, wet etching, dry etching (e.g., reactive ion etch (RIE)), plasma etching, and/or other suitable processes. In some embodiments, the processes can etch through the porous silicon layer 305b to remove a portion of the substrate 305. In some embodiments, the processes to define the fin 310a and the porous silicon portion 305c can be referred to as a STI etching process.


In FIG. 3E, a dielectric layer 315 can be formed over the substrate 305 and adjacent to the porous silicon portion 305c. The top surface of the dielectric layer 315 can be below the bottom surface of the fin 310a. In some embodiments for forming a plurality of fins 310a, isolation features (not shown) can substantially fill the region(s) between the fins. The isolation features may provide a substantially planar top surface of the device. For example, the top surface of the isolation features and the top surface of the plurality of fins may be co-planar and provide a single planar surface on the substrate. The isolation features may be formed by filling the region between the fins with insulating material and performing a chemical mechanical polish (CMP) process to planarize the surface. The isolation features may be referred to as shallow trench isolation (STI) features. The isolation features may include an insulating material. Example insulating materials include silicon oxide, silicon nitride, silicon oxynitride, fluoride-doped silicate glass (FSG), a low-k dielectric material, and/or other suitable compositions. In some embodiments, portions of the isolation features can be removed to form the dielectric layer 315. The isolation features may be removed using wet etch, dry etch, plasma etching, and/or other suitable processes. The process for forming the dielectric layer 315 can be referred to as a gap-fill process.


In FIG. 3F, a gate dielectric 320 can be formed over the structure illustrated in FIG. 3E. The gate dielectric 320 can include a single layer or a multi-layer structure. In some embodiments for forming a multi-layer structure, the gate dielectric 320 can include an interfacial dielectric layer and a high-k dielectric layer. The interfacial dielectric layer may be formed by any suitable process and any suitable thickness. For example, the interfacial dielectric layer may include at least one material, such as silicon oxide, silicon nitride, silicon oxynitride, other gate dielectric materials, and/or combinations thereof. The interfacial dielectric layer can be formed by thermal processes, CVD processes, ALD processes, epitaxial processes, and/or combinations thereof.


In some embodiments, the high-k dielectric layer can be formed over the interfacial layer. The high-k dielectric layer can include high-k dielectric materials such as HfO2, HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, other suitable high-k dielectric materials, and/or combinations thereof. The high-k material may further be selected from metal oxides, metal nitrides, metal silicates, transition metal-oxides, transition metal-nitrides, transition metal-silicates, oxynitrides of metals, metal aluminates, zirconium silicate, zirconium aluminate, silicon oxide, silicon nitride, silicon oxynitride, zirconium oxide, titanium oxide, aluminum oxide, hafnium dioxide-alumina alloy, other suitable materials, and/or combinations thereof. The high-k dielectric layer may be formed by any suitable process, such as ALD, CVD, PVD, RPCVD, PECVD, MOCVD, sputtering, plating, other suitable processes, and/or combinations thereof.


In FIG. 3G, a gate 327 including a gate electrode 325 over a gate dielectric 320a can be formed over the fin 310a and the dielectric layer 315. In some embodiments, the gate electrode 325 can include metallic materials such as Ti, TiN, TaN, Ta, TaC, TaSiN, W, WN, MoN, MoON, RuO2, and/or other suitable materials. The gate electrode 325 may include one or more layers formed by physical vapor deposition (PVD), CVD, ALD, plating, and/or other suitable processes. In at least one embodiment, the gate electrode 325 includes a work function metal layer such that it provides an N-metal work function or P-metal work function of a metal gate. P-type work function materials include compositions such as ruthenium, palladium, platinum, cobalt, nickel, and conductive metal oxides, and/or other suitable materials. N-type metal materials include compositions such as hafnium, zirconium, titanium, tantalum, aluminum, metal carbides (e.g., hafnium carbide, zirconium carbide, titanium carbide, aluminum carbide), aluminides, and/or other suitable materials.


Referring again to FIG. 3G, source/drain regions 330 can be formed by implanting p-type or n-type dopants depending on the desired transistor configuration. In some embodiments for forming an NMOSFET, an n+ implant forms source/drain regions 330 associated with the transistor. The implant can include an n+ implant such as phosphorus, arsenic, antimony, or other suitable dopant. In some embodiments for forming a PMOSFET, a p+ implant forms source/drain regions 330 associated with the transistor. The implant can include a p+ implant such as boron (B) or other suitable dopant.


In FIG. 3H, the porous silicon portion 305c (shown in FIG. 3G) can be removed to form at least one air gap, e.g., air gap 337, between the fin 310a and the substrate 305. The removing process can include wet and/or dry etching processes that have a desired etching selectivity for the porous silicon portion 305c to other materials around it. In some embodiments, the porous silicon portion 305c can be removed by using diluted HF solutions (H2O to HF about 500:1 or more), ammonia hydroxide-hydrogen peroxide-water mixtures (APM), other solutions that can desirably remove the porous silicon portion 305c, and/or the combinations thereof. As shown in FIG. 3G, in some embodiments, at least a portion of the sidewall of the porous silicon portion 305c is exposed. An etching solution can reach the porous silicon portion 305c, substantially removing the porous silicon portion 305c. It is noted that the air gap 337 can insulate the source/drain region 330 from the substrate 305, eliminating leakage paths between the source/drain region 330 and the substrate 305.



FIG. 4 is a schematic drawing illustrating an exemplary process for forming an oxide-containing layer insulating a fin from a substrate. In FIG. 4, items that are the same or similar items in FIGS. 3A-3G are indicated by the same reference numerals, increased by 100. These items can formed by the processes described above in conjunction in FIGS. 3A-3G. In some embodiments, after forming the porous silicon portion 305c (shown in FIG. 3G), a process 435 can be performed to form an oxide-containing material 439 by reacting the porous silicon portion 305c with an oxygen-containing gas such as oxygen. The process 435 can include, for example, a rapid thermal oxidation (RTO) process, thermal process, other processes that can desirably form the oxide-containing layer, and/or the combinations thereof. Due to the porosity of the porous silicon portion 305c, the oxygen-containing gas can desirably flow into the region of the porous silicon portion 305c under the gate 327. The amount of oxygen-containing gas under the gate 327 can be substantially equal to that under the source/drain region 330. The porous silicon portion 305c under the gate 327 can be simultaneously oxidized. After the oxidation, the interface between the oxide-containing layer 439 and the fin 430a can be substantially planar and substantially free from any tips formed at the interface. It is noted that the oxide-containing material 439 insulates the substrate 405 from the source/drain region 430. The oxide-containing material 439 can eliminate leakage paths between the substrate 405 and the source/drain region 430.


It is noted that the process 435 to oxidize the porous silicon portion 305c can be adjusted. In at least one embodiment, the process 435 can be performed after the definition of the fin 410a, which can be referred to as the definition of the fin 310a described above in conjunction with FIG. 3D. In another embodiment, the process 435 can be performed after the formation of the dielectric layer 415, which can be referred to as the formation of the dielectric layer 315 described above in conjunction with FIG. 3E. In yet another embodiment, the process 435 can be performed after the formation of the gate dielectric, which can be referred to as the formation of the gate dielectric 320 described above in conjunction with FIG. 3F. One of ordinary skill in the art is able to adjust the oxidation process 435 to obtain a desired oxide-containing layer 439.


The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.

Claims
  • 1. A Fin field effect transistor (FinFET) comprising: a fin disposed over a substrate;a gate disposed over a channel portion of the fin, wherein the gate comprises: a gate dielectric layer; anda gate electrode layer over the gate dielectric layer;a source region disposed at a first end of the fin;a drain region disposed at a second end of the fin, wherein the source region and the drain region are spaced from the substrate by at least one air gap;a dielectric layer for insulating the gate from the substrate, wherein the gate dielectric layer contacts a portion of the dielectric layer; anda porous silicon region between the substrate and the fin.
  • 2. A Fin field effect transistor (FinFET) comprising: a fin disposed over a substrate;a gate disposed over a channel portion of the fin, wherein the gate comprises: a gate dielectric layer; anda gate electrode layer over the gate dielectric layer;a source region disposed at a first end of the fin;a drain region disposed at a second end of the fin, wherein the source region and the drain region are spaced from the substrate by at least one air gap; anda dielectric layer for insulating the gate from the substrate, wherein the gate dielectric layer contacts a portion of the dielectric layer, and wherein the dielectric layer does not extend over a portion of the substrate beneath the fin.
  • 3. A semiconductor device comprising: a plurality of fin field effect transistors (FinFETs), wherein each FinFET comprises:a fin over a substrate;a porous silicon region between the substrate and the fin;a gate over a channel portion of the fin, wherein the gate comprises: a gate dielectric layer; anda gate electrode layer over the gate dielectric layer;a source region at a first end of the fin; anda drain region at a second end of the fin, wherein the source region and the drain region are spaced from the substrate by at least one air gap which extends under less than an entirety of the gate;an isolation feature separating one of the plurality of FinFETs from another of the plurality of FinFETs; anda dielectric layer for insulating the gate from the substrate, wherein the gate dielectric layer contacts a portion of the dielectric layer.
  • 4. The FinFET of claim 1, wherein a bottom surface of the fin is over a top surface of the dielectric layer.
  • 5. The FinFET of claim 1, wherein the source and the drain are physically separated from the dielectric layer.
  • 6. The FinFET of claim 1, wherein the air gap has a thickness of about 200 nanometers (nm).
  • 7. The FinFET of claim 1, wherein the gate dielectric layer comprises: an interfacial layer having a thickness ranging from 8 Angstroms (Å) to 10 Å; anda high k dielectric layer having a thickness of about 40 Å.
  • 8. The FinFET of claim 1, wherein the dielectric layer does not extend over a portion of the substrate beneath the fin.
  • 9. The FinFET of claim 2, wherein a bottom surface of the fin is over a top surface of the dielectric layer.
  • 10. The FinFET of claim 2, wherein the source and the drain are physically separated from the dielectric layer.
  • 11. The FinFET of claim 2, wherein the air gap has a thickness of about 200 nanometers (nm).
  • 12. The FinFET of claim 2, wherein the gate dielectric layer comprises: an interfacial layer having a thickness ranging from 8 Angstroms (Å) to 10 Å; anda high k dielectric layer having a thickness of about 40 Å.
  • 13. The semiconductor device of claim 3, wherein a bottom surface of the fin of each of the plurality of FinFETs is over a top surface of the dielectric layer.
  • 14. The semiconductor device of claim 3, wherein the source and the drain of each of the plurality of FinFETs are physically separated from the dielectric layer.
  • 15. The semiconductor device of claim 3, wherein the isolation feature comprises silicon oxide, silicon nitride, silicon oxynitride, or fluoride-doped-silicate glass.
  • 16. The semiconductor device of claim 3, wherein the isolation feature is in the dielectric layer.
  • 17. The semiconductor device of claim 3, wherein the gate dielectric layer comprises an interfacial layer having a thickness ranging from 8 Angstroms (Å) to 10 Å.
  • 18. The semiconductor device of claim 17, wherein the interfacial layer comprises silicon oxide, silicon nitride or silicon oxynitride.
  • 19. The semiconductor device of claim 3, wherein the gate dielectric layer comprises a high k dielectric layer having a thickness of about 40 Å.
  • 20. The semiconductor device of claim 3, wherein the air gap has a thickness of about 200 nanometers (nm).
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority of U.S. Application Ser. No. 61/169,152, filed on Apr. 14, 2009, which is incorporated herein by reference in its entirety The present application is related to U.S. patent application Ser. No. 12/707,788, filed on Feb. 18, 2010, titled MEMORY POWER GATING CIRCUIT AND METHODS; Ser. No. 12/758,426, filed on Apr. 12, 2010, titled FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/731,325, filed on Mar. 25, 2010, titled ELECTRICAL FUSE AND RELATED APPLICATIONS; Ser. No. 12/724,556, filed on Mar. 16, 2010, titled ELECTRICAL ANTI-FUSE AND RELATED APPLICATIONS; Ser. No. 12/757,203, filed on Apr. 9, 2010, titled STI STRUCTURE AND METHOD OF FORMING BOTTOM VOID IN SAME; Ser. No. 12/797,839, filed on Jun. 10, 2010, titled FIN STRUCTURE FOR HIGH MOBILITY MULTIPLE-GATE TRANSISTOR; Ser. No. 12/831,842, filed on Jul. 7, 2010, titled METHOD FOR FORMING HIGH GERMANIUM CONCENTRATION SiGe STRESSOR; Ser. No. 12/761,686, filed on Apr. 16, 2010, titled FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/766,233, filed on Apr. 23, 2010, titled FIN FIELD EFFECT TRANSISTOR; Ser. No. 12/757,271, filed on Apr. 9, 2010, titled ACCUMULATION TYPE FINFET, CIRCUITS AND FABRICATION METHOD THEREOF; Ser. No. 12/694,846, filed on Jan. 27, 2010, titled INTEGRATED CIRCUITS AND METHODS FOR FORMING THE SAME; Ser. No. 12/638,958, filed on Dec. 14, 2009, titled METHOD OF CONTROLLING GATE THICKNESS IN FORMING FINFET DEVICES; Ser. No. 12/768,884, filed on Apr. 28, 2010, titled METHODS FOR DOPING FIN FIELD-EFFECT TRANSISTORS; Ser. No. 12/731,411, filed on Mar. 25, 2010, titled INTEGRATED CIRCUIT INCLUDING FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/775,006, filed on May 6, 2010, titled METHOD FOR FABRICATING A STRAINED STRUCTURE; Ser. No. 12/886,713, filed Sep. 21, 2010, titled METHOD OF FORMING INTEGRATED CIRCUITS; Ser. No. 12/941,509, filed Nov. 8, 2010, titled MECHANISMS FOR FORMING ULTRA SHALLOW JUNCTION; Ser. No. 12/900,626, filed Oct. 8, 2010, titled TRANSISTOR HAVING NOTCHED FIN STRUCTURE AND METHOD OF MAKING THE SAME; Ser. No. 12/903,712, filed Oct. 13, 2010, titled FINFET AND METHOD OF FABRICATING THE SAME; 61/412,846, filed Nov. 12, 2010, 61/394,418, filed Oct. 19, 2010, titled METHODS OF FORMING GATE DIELECTRIC MATERIAL and 61/405,858, filed Oct. 22, 2010, titled METHODS OF FORMING SEMICONDUCTOR DEVICES.

US Referenced Citations (178)
Number Name Date Kind
5581202 Yano et al. Dec 1996 A
5658417 Watanabe et al. Aug 1997 A
5767732 Lee et al. Jun 1998 A
5963789 Tsuchiaki Oct 1999 A
6065481 Fayfield et al. May 2000 A
6121786 Yamagami et al. Sep 2000 A
6210999 Gardner et al. Apr 2001 B1
6299724 Fayfield et al. Oct 2001 B1
6503794 Watanabe et al. Jan 2003 B1
6613634 Ootsuka et al. Sep 2003 B2
6622738 Scovell Sep 2003 B2
6642090 Fried et al. Nov 2003 B1
6706571 Yu et al. Mar 2004 B1
6713365 Lin et al. Mar 2004 B2
6727557 Takao Apr 2004 B2
6740247 Han et al. May 2004 B1
6743673 Watanabe et al. Jun 2004 B2
6762448 Lin et al. Jul 2004 B1
6791155 Lo et al. Sep 2004 B1
6828646 Marty et al. Dec 2004 B2
6830994 Mitsuki et al. Dec 2004 B2
6858478 Chau et al. Feb 2005 B2
6872647 Yu et al. Mar 2005 B1
6940747 Sharma et al. Sep 2005 B1
6949768 Anderson et al. Sep 2005 B1
6964832 Moniwa et al. Nov 2005 B2
7009273 Inoh et al. Mar 2006 B2
7018901 Thean et al. Mar 2006 B1
7026232 Koontz et al. Apr 2006 B1
7067400 Bedell et al. Jun 2006 B2
7078312 Sutanto et al. Jul 2006 B1
7084079 Conti et al. Aug 2006 B2
7084506 Takao Aug 2006 B2
7112495 Ko et al. Sep 2006 B2
7153744 Chen et al. Dec 2006 B2
7157351 Cheng et al. Jan 2007 B2
7190050 King et al. Mar 2007 B2
7193399 Aikawa Mar 2007 B2
7247887 King et al. Jul 2007 B2
7265008 King et al. Sep 2007 B2
7265418 Yun et al. Sep 2007 B2
7297600 Oh et al. Nov 2007 B2
7300837 Chen et al. Nov 2007 B2
7315994 Aller et al. Jan 2008 B2
7323375 Yoon et al. Jan 2008 B2
7338614 Martin et al. Mar 2008 B2
7351622 Buh et al. Apr 2008 B2
7358166 Agnello et al. Apr 2008 B2
7361563 Shin et al. Apr 2008 B2
7374986 Kim et al. May 2008 B2
7394116 Kim et al. Jul 2008 B2
7396710 Okuno Jul 2008 B2
7407847 Doyle et al. Aug 2008 B2
7410844 Li et al. Aug 2008 B2
7425740 Liu et al. Sep 2008 B2
7442967 Ko et al. Oct 2008 B2
7456087 Cheng Nov 2008 B2
7494862 Doyle et al. Feb 2009 B2
7508031 Liu et al. Mar 2009 B2
7528465 King et al. May 2009 B2
7534689 Pal et al. May 2009 B2
7538387 Tsai May 2009 B2
7550332 Yang Jun 2009 B2
7598145 Damlencourt et al. Oct 2009 B2
7605449 Liu et al. Oct 2009 B2
7682911 Jang et al. Mar 2010 B2
7759228 Sugiyama et al. Jul 2010 B2
7795097 Pas Sep 2010 B2
7798332 Brunet Sep 2010 B1
7820513 Hareland et al. Oct 2010 B2
7851865 Anderson et al. Dec 2010 B2
7868317 Yu et al. Jan 2011 B2
7898041 Radosavljevic et al. Mar 2011 B2
7923321 Lai et al. Apr 2011 B2
7923339 Meunier-Beillard et al. Apr 2011 B2
7960791 Anderson et al. Jun 2011 B2
7985633 Cai et al. Jul 2011 B2
7989846 Furuta Aug 2011 B2
7989855 Narihiro Aug 2011 B2
8003466 Shi et al. Aug 2011 B2
8043920 Chan et al. Oct 2011 B2
8076189 Grant Dec 2011 B2
8101475 Oh et al. Jan 2012 B2
20030080361 Murthy et al. May 2003 A1
20030109086 Arao Jun 2003 A1
20030234422 Wang et al. Dec 2003 A1
20040075121 Yu et al. Apr 2004 A1
20040129998 Inoh et al. Jul 2004 A1
20040192067 Ghyselen et al. Sep 2004 A1
20040219722 Pham et al. Nov 2004 A1
20040259315 Sakaguchi et al. Dec 2004 A1
20050020020 Collaert et al. Jan 2005 A1
20050051865 Lee et al. Mar 2005 A1
20050082616 Chen et al. Apr 2005 A1
20050153490 Yoon et al. Jul 2005 A1
20050170593 Kang et al. Aug 2005 A1
20050212080 Wu et al. Sep 2005 A1
20050221591 Bedell et al. Oct 2005 A1
20050224800 Lindert et al. Oct 2005 A1
20050233598 Jung et al. Oct 2005 A1
20050266698 Cooney et al. Dec 2005 A1
20050280102 Oh et al. Dec 2005 A1
20060038230 Ueno et al. Feb 2006 A1
20060068553 Thean et al. Mar 2006 A1
20060091481 Li et al. May 2006 A1
20060091482 Kim et al. May 2006 A1
20060091937 Do May 2006 A1
20060105557 Klee et al. May 2006 A1
20060128071 Rankin et al. Jun 2006 A1
20060138572 Arikado et al. Jun 2006 A1
20060151808 Chen et al. Jul 2006 A1
20060153995 Narwankar et al. Jul 2006 A1
20060166475 Mantl Jul 2006 A1
20060214212 Horita et al. Sep 2006 A1
20060258156 Kittl Nov 2006 A1
20070001173 Brask et al. Jan 2007 A1
20070004218 Lee et al. Jan 2007 A1
20070015334 Kittl et al. Jan 2007 A1
20070020827 Buh et al. Jan 2007 A1
20070024349 Tsukude Feb 2007 A1
20070029576 Nowak et al. Feb 2007 A1
20070048907 Lee et al. Mar 2007 A1
20070076477 Hwang et al. Apr 2007 A1
20070085134 Anderson et al. Apr 2007 A1
20070093010 Mathew et al. Apr 2007 A1
20070093036 Cheng et al. Apr 2007 A1
20070096148 Hoentschel et al. May 2007 A1
20070120156 Liu et al. May 2007 A1
20070122953 Liu et al. May 2007 A1
20070122954 Liu et al. May 2007 A1
20070128782 Liu et al. Jun 2007 A1
20070132053 King et al. Jun 2007 A1
20070145483 Ono Jun 2007 A1
20070145487 Kavalieros et al. Jun 2007 A1
20070152276 Arnold et al. Jul 2007 A1
20070166929 Matsumoto et al. Jul 2007 A1
20070178637 Jung et al. Aug 2007 A1
20070221956 Inaba Sep 2007 A1
20070236278 Hur et al. Oct 2007 A1
20070241414 Narihiro Oct 2007 A1
20070247906 Watanabe et al. Oct 2007 A1
20070254440 Daval Nov 2007 A1
20080001171 Tezuka et al. Jan 2008 A1
20080036001 Yun et al. Feb 2008 A1
20080042209 Tan et al. Feb 2008 A1
20080050882 Bevan et al. Feb 2008 A1
20080085580 Doyle et al. Apr 2008 A1
20080085590 Yao et al. Apr 2008 A1
20080095954 Gabelnick et al. Apr 2008 A1
20080102586 Park May 2008 A1
20080124878 Cook et al. May 2008 A1
20080227241 Nakabayashi et al. Sep 2008 A1
20080265344 Mehrad et al. Oct 2008 A1
20080290470 King et al. Nov 2008 A1
20080296632 Moroz et al. Dec 2008 A1
20080318392 Hung et al. Dec 2008 A1
20090026540 Sasaki et al. Jan 2009 A1
20090039388 Teo et al. Feb 2009 A1
20090066763 Fujii et al. Mar 2009 A1
20090108351 Yang et al. Apr 2009 A1
20090155969 Chakravarti et al. Jun 2009 A1
20090166625 Ting et al. Jul 2009 A1
20090181477 King et al. Jul 2009 A1
20090200612 Koldiaev Aug 2009 A1
20090239347 Ting et al. Sep 2009 A1
20090321836 Wei et al. Dec 2009 A1
20100155790 Lin et al. Jun 2010 A1
20100163926 Hudait et al. Jul 2010 A1
20100187613 Colombo et al. Jul 2010 A1
20100207211 Sasaki et al. Aug 2010 A1
20100308379 Kuan et al. Dec 2010 A1
20110018065 Curatola et al. Jan 2011 A1
20110108920 Basker et al. May 2011 A1
20110129990 Mandrekar et al. Jun 2011 A1
20110195555 Tsai et al. Aug 2011 A1
20110195570 Lin et al. Aug 2011 A1
20110256682 Yu et al. Oct 2011 A1
20120086053 Tseng et al. Apr 2012 A1
Foreign Referenced Citations (8)
Number Date Country
1945829 Apr 2004 CN
101179046 May 2005 CN
1011459116 Jun 2009 CN
2007-194336 Aug 2007 JP
10-2005-0119424 Dec 2005 KR
1020070064231 Jun 2007 KR
497253 Aug 2002 TW
WO2007115585 Oct 2007 WO
Non-Patent Literature Citations (19)
Entry
Chui, King-Jien, et al., “Source/Drain Germanium Condensation for P-Channel Strained Ultra-Thin Body Transistors”, Silicon Nano Device Lab, Dept. of Electrical and Computer Engineering, National University of Singapore; IEEE 2005.
Office Action dated May 2, 2012 from corresponding application No. CN 201010196345.0.
Office Action dated May 4, 2012 from corresponding application No. CN 201010243667.6.
Lenoble, Damien, STMicroelectronics, Crolles Cedex, France, “Plasma Doping as an Alternative Route for Ultra-Shallow Junction Integration to Standard CMOS Technologies”, Semiconductor Fabtech—16th Edition, pp. 1-5.
Shikida, Mitsuhiro, et al., “Comparison of Anisotropic Etching Properties Between KOH and TMAH Solutions”, IEEE Xplore, Jun. 30, 2010, pp. 315-320.
Anathan, Hari, et al., “FinFet SRAM—Device and Circuit Design Considerations”, Quality Electronic Design, 2004, Proceedings 5th International Symposium (2004); pp. 511-516.
Jha, Niraj, Low-Power FinFET Circuit Design, Dept. of Electrical Engineering, Princeton University n.d.
Kedzierski, J., et al., “Extension and Source/Drain Design for High-Performance FinFET Devices”, IEEE Transactions on Electron Devices, vol. 50, No. 4, Apr. 2003, pp. 952-958.
Liow, Tsung-Yang et al., “Strained N-Channel FinFETs with 25 nm Gate Length and Silicon-Carbon Source/Drain Regions for Performance Enhancement”, VLSI Technology, 2006, Digest of Technical Papers, 2006 Symposium on VLSI Technology 2006; pp. 56-57.
Quirk et al., Semiconductor Manufacturing Technology, Oct. 2001, Prentice Hall, Chapter 16.
McVittie, James P., et al., “SPEEDIE: A Profile Simulator for Etching and Deposition”, Proc. SPIE 1392, 126 (1991).
90 nm Technology. retrieved from the internet <URL:http://tsmc.com/english/dedicatedFoundry/technology/90nm.htm, 2012.
Merriam Webster definition of substantially retrieved from the internet <URL:http://www.merriam-webster.com/dictionary/substantial>, 2012.
Smith, Casey Eben, Advanced Technology for Source Drain Resistance, Diss. University of North Texas, 2008.
Liow, Tsung-Yang et al., “Strained N-Channel FinFETs Featuring in Situ Doped Silicon-Carbon Si1-YCy Source Drain Stressors with High Carbon Content”, IEEE Transactions on Electron Devices 55.9 (2008): 2475-483.
Office Action dated Mar. 28, 2012 from corresponding application No. CN 201010228334.6.
Notice of Decision on Patent dated Mar. 12, 2012 from corresponding application No. 10-2010-0072103.
OA dated Mar. 27, 2012 from corresponding application No. KR10-2010-0094454.
OA dated Mar. 29, 2012 from corresponding application No. KR10-2010-0090264.
Related Publications (1)
Number Date Country
20100258870 A1 Oct 2010 US
Provisional Applications (1)
Number Date Country
61169152 Apr 2009 US