The present invention relates to a method and system for manufacturing thin film solar cells.
Solar cells are photovoltaic devices that convert sunlight directly into electrical power. The most common solar cell material is silicon, which is in the form of single or polycrystalline wafers. However, the cost of electricity generated using silicon-based solar cells is higher than the cost of electricity generated by the more traditional methods. Therefore, since early 1970's there has been an effort to reduce cost of solar cells for terrestrial use. One way of reducing the cost of solar cells is to develop low-cost thin film growth techniques that can deposit solar-cell-quality absorber materials on large area substrates and to fabricate these devices using high-throughput, low-cost methods. Group IIB-VIA compounds such as CdTe, Group IBIIIAVIA compounds and amorphous Group IVA materials such as amorphous Si and amorphous Si alloys are important thin film materials that are being developed.
Group IBIIIAVIA compound semiconductors comprising some of the Group IB (Cu, Ag, Au), Group IIIA (B, Al, Ga, In, Tl) and Group VIA (O, S, Se, Te, Po) materials or elements of the periodic table are excellent absorber materials for thin film solar cell structures. Especially, compounds of Cu, In, Ga, Se and S which are generally referred to as CIGS(S), or Cu(In,Ga)(S,Se)2 or CuIn1-xGax (SySe1-y)k, where 0≦x≦1, 0≦y≦1 and k is approximately 2, have already been employed in solar cell structures that yielded conversion efficiencies approaching 20%. Among the family of compounds, best efficiencies have been obtained for those containing both Ga and In, with a Ga amount in the 15-25%. Recently absorbers comprising Al have also been developed and high efficiency solar cells have been demonstrated using such absorbers.
The structure of a conventional Group IBIIIAVIA compound photovoltaic cell such as a Cu(In,Ga,Al)(S,Se,Te)2 thin film solar cell is shown in
Thin film photovoltaic devices may be manufactured in the form of monolithically integrated modules where electrical interconnection of individual solar cells with each other is achieved on a single substrate, such as a glass sheet, during the film deposition steps and a module with high voltage is obtained. Alternatively thin film solar cells may be manufactured individually as separate cells and then connected in series, through use of metallic ribbons, soldering or conductive epoxies, like crystalline Si solar cells, to obtain high voltage modules. In this case, solar cells often need to be large area, one dimension being greater than 1″, typically greater than 3″. Such large area requires deposition of finger patterns over the top conducting layer of the solar cell, such as the transparent layer 14 in
The finger patterns comprising at least one busbar and multiple fingers connecting to the busbar are generally formed by screen-printing a conductive ink typically a silver-based ink followed by a curing step to get rid of the solvent and to conjoin the silver particles together to the optimal packing density. The screen-printing technique has limitations in terms of its ability to produce narrow fingers. Typically the line width of a screen printed finger needs to be greater than 100 micrometers (μm) to obtain a continuous line. Such large finger widths dramatically increase the shadowing loss in solar cells. The curing temperature of the inks used for Si solar cell manufacturing is typically greater than 200° C. This temperature may need to be reduced to below 200° C. for thin film solar cells such as CIGS solar cells due to possible degradation problems with annealing at elevated temperatures. Although, at the present time many of the available inks require high temperatures to cure (such as greater than 200° C.) there are some low temperature curable inks available that typically cure at less than 150° C. Once cured, the inks themselves have conductivities that are 10-20 times the bulk material. For example a typical Ag-based ink when cured at it's appropriate curing temperature gives a bulk resistivity of about 20-40 micro-ohm-cm (μΩcm). Such high bulk resistivity causes high resistive loses along the fingers and the busbar during operation of the solar cell. A total power loss in a typical screen printed finger pattern comprising fingers and one or two busbars amounts to about 15-20% of the gross power generated by the solar cell. Out of this total, the finger resistive losses are typically 5-6%, the finger shadowing losses add up to about 6-7%, the busbar shadow losses amount to around 3% and the busbar resistive losses are typically less than 1% with an addition of a ribbon material, typically Sn-plated Cu, which is soldered on top of the busbar to enhance its effective conductivity.
As can be seen from the brief discussion above there is a need to develop new approaches for the formation of low resistance finger patterns on solar cells, at the same time keeping the shadow losses to a minimum.
A method of forming metallic connector patterns for solar cells, whereby an embosser having raised features shaped in the form of the metallic connector pattern is used to attach a portion of a metallic foil to a transparent conductive layer formed on a top transparent surface of a solar cell structure. The raised surfaces of the embosser press the metallic foil portion against the transparent conductive layer. Heat and pressure directed to the metallic foil portion attaches this portion to the underlying transparent conductive layer, and then the rest of the metallic foil is removed.
FIGS. 2B and 2BB show a step in the process of forming a finger pattern in accordance with the present invention.
In one embodiment, the present invention forms a highly conductive metallic foil finger pattern on a solar cell structure without causing excessive shadow loss. This is achieved by transferring a highly conductive metal foil on the surface of the solar cell in the form of a finger pattern and employing a transparent conductive layer which has adhesive characteristics to attach the finger pattern on the solar cell surface. The transparent conductive layer is substantially transparent in a wavelength range of 0.45-1.2 micrometers, having an optical transmission of more than about 70%. The method will now be discussed by describing a method of forming a finger pattern or grid pattern on the device 10 which is shown in detail in
Referring to
In forming the finger pattern over the top surface 20A of the device 10, a transparent conductive material 21 is first deposited in a patterned manner onto the top surface 20A. The pattern of the transparent conductive material 21 may substantially match the pattern of, at least, the fingers to be formed. Further, the pattern of the transparent conductive material 21 may preferably match the pattern of the busbar to be formed on the top surface 20A.
As shown in
The invention may also be practiced by providing an adhesive and conductive layer (not shown) on the bottom surface 100 of the metallic foil 22. This adhesive and conductive layer may cover substantially the whole of the bottom surface 100 or may be patterned so that it is present under the portion of the metallic foil that will later be transferred onto the top surface 20A. In this case there may not be a need for the formation of transparent conductive material 21 on the top surface 20A, and the metallic foil 22 with the adhesive and conductive layer on its bottom surface 100 may be pushed directly on the top surface 20A to form the finger pattern 22A as depicted in FIG. 2BB. The adhesive and conductive layer is preferably transparent to visible light but may also be opaque since its excess may remain attached to the unused portion 22B of the metallic foil 22 when the embosser pulls away from the device. Since the width of the adhesive and conductive layer would be nearly equivalent to the width of the fingers thus formed, the adhesive and conductive layer would not cause any shadow losses in this case.
The metallic foil 22 needs to be soft enough to be cut by the embosser 23 and should have conductivity of about less than one tenth of the transparent conductive material 21 preferably less than 5 μΩcm. The material make up of the foil may include but is not limited to Al, Cu, Ag, Au, W, Ni, Mo and their combinations thereof The metal foil thickness may be less than 100 μm, preferably in the range of 0.1-40 μm and more preferably in the range of 1-20 μm. The lower thickness values and finger width values may give rise to current levels inside the fingers that are close to the electro-migration limits and hence may need to be avoided. The electro-migration stability of the material can also be improved by the addition of dopants including Cu, Si, Ge to increase grain size of the Al and offer grain boundary adhesion protection.
The transparent conductive material 21 may consist of an organic base with conductive metal or metal oxide particles dispersed in it. The organic base may be epoxy, silicone, EVA, or other transparent materials that can stand the temperature requirements with minimal outgassing during the device encapsulation processes. Lower cure temperatures are preferred for example from room temperature to 150° C. range. Conductive particle materials include but not limited to, ITO, ZnO, SnO, ZnSnO, AlZnO, InZnO, CdSnO, GaZnO, carbon, carbon nanotubes, metallic nano rods etc. Preferably the opaque particles such as metallic particles are nano-structured to improve the conductivity maintaining a high open space between them and thus high transparency. This is accomplished since the particles crosslink to form closed loop structures with high conductivity while leaving open spaces that are transparent. Specifically in such cases a binder material is added on in a subsequent step to planarize the cross linked particles forming a level free surface 24 for subsequent processing and good adhesion to the metal foil 22. The width “W” of the transparent conductive material 21 may range from 1 mm down to 50 μm, preferably in the range of 75-400 μm. The thickness of the transparent conductive material 21 may be in the range of 5-10000 nm, preferably 50-1000 nm. The transparent conductive material 21 may be printed in one step or several steps using slot die printing, screen printing, gravure printing, flexographic printing, spin coating or other liquid coating processes.
In the cell 36C of
Although the present invention is described with respect to certain preferred embodiments, modifications thereto will be apparent to those skilled in the art.
The present application claims priority from U.S. Provisional Appln. No. 60/886,078 filed Jan. 22, 2007, the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3492167 | Nobuo et al. | Jan 1970 | A |
4165241 | Yerkes et al. | Aug 1979 | A |
4400409 | Izu et al. | Aug 1983 | A |
4517739 | Lenaerts et al. | May 1985 | A |
4518815 | Yamazaki | May 1985 | A |
4586988 | Nath et al. | May 1986 | A |
4623688 | Flanagan | Nov 1986 | A |
4680422 | Stanbery | Jul 1987 | A |
4695674 | Bar-on | Sep 1987 | A |
4697041 | Okaniwa | Sep 1987 | A |
4751149 | Vijayakumar et al. | Jun 1988 | A |
5447824 | Mutsaers et al. | Sep 1995 | A |
5453134 | Arai et al. | Sep 1995 | A |
5504133 | Murouchi et al. | Apr 1996 | A |
5688366 | Ichinose et al. | Nov 1997 | A |
5980679 | Severin et al. | Nov 1999 | A |
6444400 | Cloots et al. | Sep 2002 | B1 |
6444899 | Kubota | Sep 2002 | B2 |
7026079 | Louwet et al. | Apr 2006 | B2 |
7276658 | Dubbeldam | Oct 2007 | B2 |
20050202589 | Basol | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
03131679 | Jun 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20080173390 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
60886078 | Jan 2007 | US |