Flattening machine

Information

  • Patent Grant
  • 6343980
  • Patent Number
    6,343,980
  • Date Filed
    Monday, November 1, 1999
    24 years ago
  • Date Issued
    Tuesday, February 5, 2002
    22 years ago
Abstract
Three columns 10, 20, 30 are set up in an approximately triangle arrangement. A saddle 51, which fixes a main spindle 50 thereto, is held in contact with a side face of the column 10, 20 or 30 or a brace 40 which unitarily connects two or three of the columns 10, 20, 30. A plurality of chucking tables 4a, 4b are installed in an indexing table 2a. When a work piece 5b attracted onto one chucking table 4b is carried to a position below the main spindle 50, the other chucking table 4a is located at a loading-unloading position. Since the main spindle 50 is located at a geometrical gravity center of a triangle defined by the columns 10, 20, 30, a reaction force which is generated during machining is uniformly distributed to each of the columns 10, 20, 30. Consequently, the columns 10, 20, 30 are prevented from deformation which causes inclination of the main spindle 50, and the machined work piece has superior flatness.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a flattening machine for grinding or polishing a disc-shaped work piece such as a semiconductor wafer or a glass disc.




1. Field of the Invention




A conventional vertical spindle type surface grinding machine has a grinding wheel fixed to a slider which is provided movably along a column of a cantilever or gantry-type frame. The grinding wheel is fed along a vertical axis by cylindrical linear actuator, a ball screw or the like so as to descend the slider.




2. Brief Description of the Prior Art




When the slider which a main spindle is fixed thereto is fed along the column of the cantilever-type frame, the slider is likely to take pitching or yawing motion with respect to a guide way of the column due to disturbances such as offset between the guide way and the slider or fluctuation of an external force applied to the slider. Such motion causes even slight inclination of the main spindle. Thermal unbalance also causes inclination of the main spindle. Due to the inclination of the main spindle, the grinding wheel irregularly deviates from a position facing to a work piece, so as to deteriorate dimensional accuracy of a ground work piece such as a semiconductor wafer or an optical glass disc which is expected to be finished with high flatness.




Inclination of the main spindle occurs, when a central axis of a guide way system, a direction of a driving force of a slider feeding member and a rotation axis of the main spindle are not aligned on the same line.




In this regard, Japanese Patent Application Laid-Open 8-276358 proposed the structure that a direction of a driving force of a slider feeding member is held on nearly the same line with a central axis of a guide way. According to this structure, a slider is hardly inclined with respect to a feeding direction. Even when the slider is inclined, its inclination angle is suppressed to a small value. In addition, a rotation axis of a grinding wheel is preferably aligned on nearly the same line with a scale line of a detector for detecting a position of the grinding wheel. Such alignment enables accurate detection of a position of the grinding wheel without substantial errors even when the main spindle is inclined.




Japanese Patent Application Laid-Open 6-155257 proposed the structure that a tripodal outer frame for supporting a main spindle is supported at the apex of a trigonal pyramid under the condition that a direction of a resultant of machining forces applied to the grinding wheel is aligned with a rotation axis. According to this structure, a supporting member for the grinding wheel can be designed to a constitution rigid enough to suppress distortion or deformation caused by various machining forces to a minimum level. A rotation axis of a motor for rotating a work piece and a grinding wheel can be concentrically aligned with axes of the work piece and the grinding wheel, so as to effectively eliminate bending moments or vibrations which likely occur during feeding.




However, when a center line of a guide way, a direction of a driving force of a slider feeding system, a rotation axis of a grinding wheel and a scale line of a detector for detecting a position of a grinding wheel are aligned on the same line as disclosed in Japanese Patent Application Laid-Open 8-276358, the grinding wheel is located at a position surrounded with a gantry-type frame at both sides. Therefore, troublesome operations are obliged to maintain and check the grinding wheel, and a space necessary for changing an abraded grinding wheel to a new one is hardly kept. Consequently, it is difficult to improve both performance of the grinding machine and workability during change of grinding wheels. Frontward or backward inclination of a main spindle also puts harmful influences on grinding results, since the main spindle is supported with the gantry-type frame having tow columns standing up on a bed.




On the other hand, with a grinding machine wherein supporting columns are constructed to a trigonal pyramid as disclosed in Japanese Patent Application Laid-Open 6-155257, it is impossible to design the trigonal pyramid frame so as to support a main spindle unit with an area broad enough to guarantee the stiffness necessary for supporting the main spindle. Inferior stiffness causes inclination of the main spindle and deterioration of dimensional accuracy of a ground work piece, especially when a wafer or the like is machined by a rotary grinder which is likely to be affected by an unbalanced load.




SUMMARY OF THE INVENTION




The present invention is aimed at machining wafers or the like to precisely flattened surface with extremely high accuracy while inhibiting inclination of a main spindle. The precise working is attained by setting the main spindle at a geometric gravity center of a triangle defined by three columns which are located near a work piece loading-unloading equipment, so as to uniformly distribute machining force to each of the three columns during machining and to hold a space necessary for operations such as maintenance and checking, change of work pieces.




The flattening machine according to the present invention comprises three columns set up in triangular relationship, a saddle which can move along a vertical direction in state direct or indirect contact with a side face of one column, a main spindle fixed to the saddle at a position equal to a geometrical gravity center of a triangle defined by the three columns, and an indexing table which provides a plurality of chucking tables thereon. When a single or a plurality of chucking tables carries a work piece(s) at a position below the saddle, the other chucking table(s) is located at a loading-unloading position(s).




The indexing table may be either a rotary or reciprocative type. In the case where the indexing table is a rotary type, one of the three columns may be set up through a central opening of the indexing table, while the other two columns are set up near a periphery of the indexing table. In another case of rotary type, two columns may be constructed to a gantry-type frame encompassing a rotary indexing table which is located at a position on a loading-unloading line. In the case where the indexing table is a reciprocative type, two columns are constructed to a gantry-type frame, and the indexing table is provided in reciprocative state between the gantry-type frame and the rest column.




The other features of the present invention will be apparent from the following explanation consulting with the attached drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view illustrating a flattening machine having three columns, one of which is set up at a center of a rotary indexing table;





FIG. 2

is a perspective view illustrating a flattening machine having two main spindles and three chucking tables;





FIG. 3

is a perspective view illustrating a flattening machine having two main spindles and four chucking tables;





FIG. 4

is a perspective view illustrating a flattening machine having a reciprocative indexing table;





FIG. 5

is a plan view illustrating the positional relationship of a rotary indexing table with three columns near a bed of a flattening machine;





FIG. 6

is a perspective view illustrating the flattening machine shown in

FIG. 5

;





FIG. 7

is a horizontal sectional view of the flattening machine shown in

FIGS. 5 and 6

along a plane passing through a saddle;





FIG. 8A

is a side sectional view of the flattening machine shown in

FIGS. 5 and 6

;





FIG. 8B

is a front view of the flattening machine shown in FIGS.


5


and


6


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




A flattening machine according to the present invention is designed to a proper structure in response to stock removal of a work piece, surface condition of a work piece before machining, objective flatness to be attained by machining, performance of the machine, etc.




A basic structure of the flattening machine shown in

FIG. 1

has an indexing table


2




a


provided on a bed


1


. An opening


3


extending along a vertical direction is formed at a center of the indexing table


2




a


. A first column


10


is set up through the opening


3


. A second column


20


and a third column


30


are set up as the remaining two columns near a periphery of the indexing table


2




a


. At least two chucking tables


4




a


,


4




b


are installed on the indexing table


2




a


, so as to hold work pieces


5




a


,


5




b


, respectively.

FIG. 1

shows the state that the chucking table


4




a


is at a loading-unloading position, while the other chucking table


4




b


is at a machining position. A wafer


5




b


chucked to the chucking table


4




b


is machined, while another wafer


5




a


is loaded onto or unloaded from the chucking table


4




a.






The columns


10


,


20


and


30


are unitarily connected at their upper parts with a brace


40


. Such connection of the three columns


10


,


20


,


30


enhances stiffness of the structure along every direction. A saddle


51


, to which a main spindle


50


is fixed thereto as shown in

FIG. 7

, is provided in state movable along a vertical direction at the brace


40


. The main spindle


50


is located at a geometrical gravity center of a triangle defined by the columns


10


,


20


and


30


. Such location of the main spindle


50


enables uniform distribution of machining force, which is generated during machining the work piece


5




b


, to each of the columns


10


,


20


,


30


, so as to inhibit deformation of the columns


10


,


20


,


30


which would cause inclination of the main spindle


50


.




A plurality of main spindles may be installed instead of a single main spindle. For instance, a flattening machine shown in

FIG. 2

has three chucking tables


4




a


,


4




b


,


4




c


installed in an indexing table


2




a


, and two main spindles


50




b


,


50




c


provided at a brace


40


. This flattening machine has four columns to constitute two triangles. That is, each triangle is constituted by two common columns and one remainder column. The main spindles


50




b


,


50




c


are located at the gravity centers of the two triangles, respectively.




The main spindle


50




b


may be used for rough machining, while the other main spindle


50




c


may be used for finishing. A grinding wheel


53


for each purpose is fixed to each of the main spindles


50




b


and


50




c


. Each chucking table


4




a


,


4




b


,


4




c


is successively moved to a loading position, a rough machining position, a finishing position and then an unloading position by intermittent rotation of the indexing table


2




a


with every angle of 120 degrees. Since the rough machining and finishing operations are performed in series, work pieces


5




a


, Sb,


5




c


are effectively ground to objective flatness in a short period of time.




Furthermore chucking tables may be provided, as far as the indexing table


2




a


has a capacity necessary for provision of several chucking tables. For instance,

FIG. 3

shows provision of four chucking tables


4




a


to


4




d


on an indexing table


2




a


. The same grinding wheels


53


are fixed to main spindles


50




b


,


50




c


. The chucking tables


4




a


and


4




c


make one couple, while the chucking tables


4




b


and


4




d


make the other couple. The indexing table


2




a


is intermittently rotated every angle of


180


degrees, so as to attain double performance compared with the flattening machine shown in FIG.


1


.




A reciprocative indexing table


2




b


may be installed in the flattening machine according to the present invention, as shown in

FIG. 4. A

first column


10


and a second column


20


are located at one side of the indexing table


2




b


, while a third column


30


is located at the opposite side. These columns


10


,


20


,


30


are unitarily connected together with a brace


40


having sides fixed to upper parts of the columns


10


,


20


,


30


, so as to construct a triangular frame superior in stiffness. A saddle


51


(shown in

FIG. 7

) is provided at the brace


40


, in the manner such that a main spindle


50


is located at a geometrical gravity center of a triangle defined by the columns


10


,


20


and


30


.




Since the structure shown in

FIG. 4

allows connection of the columns


10


,


20


,


30


to a bed


1


with a broad touch area, the flattening machine as a whole exhibits superior stiffness. Due to the superior stiffness, the flattening machine keeps its original profile against big machining force which is generated during machining a big-size work piece


5


without inclination of the columns


10


,


20


,


30


. As a result, excellent machining accuracy is assured under stable conditions.




The reciprocative indexing table


2




b


enhances freedom of design and installation of surroundings around the indexing table


2




b


, compared with a rotary indexing table


2




a


(as shown in FIGS.


1


-


3


). In case of the rotary indexing table


2




a


, since vacuum for attracting work pieces


5




a


-


5




c


with chucking tables


4




a


-


4




d


as well as a driving force for rotating chucking tables


4




a


-


4




d


must be transmitted to the indexing table


2




a


through a rotary joint or the like, vacuum piping and driving means likely restrict arrangement of parts, resulting in elevation of an assembly cost. On the other hand, vacuum piping and driving means are directly communicated with the chucking table


4


installed in the reciprocative indexing table


2




b


outside the machine, so that the flattening machine superior in stiffness can be offered at a low cost.




Another type of reciprocative indexing table


2




b


may be located between first and second columns


10


,


20


and a third column


30


shown in

FIGS. 1-3

, when there is sufficient space between the first and second columns


10


,


20


and the third column


30


. Such reciprocative indexing table


2




b


performs advantages both of the rotary and reciprocative types.




The constitution and function of the flattening machine will be concretely explained, as for the flattening machine having two columns


10


,


20


located at opposite sides of a rotary indexing table


2




a


as shown in FIG.


5


. Due to such location of the columns


10


,


20


, enlargement of the indexing table


2




a


in size is avoided, and the flattening machine is designed in compact size compared with the constitution shown in FIG.


1


.




The first column


10


and the second column


20


are located at opposite sides of the rotary indexing table


2




a


on a bed


1


as shown in

FIG. 5

, and unitarily connected together at their upper parts with a brace


40


as shown in

FIG. 6

, so as to construct a gantry-type frame superior in stiffness. A horizontally directed dent is formed at a center of a side face of the brace


40


, as shown in FIG.


7


. The dent is used as a part of a space


41


for receiving a saddle


51


. V-shaped grooves


42


extending along a vertical direction at both sides of the saddle receiving space


41


are formed at the side face of the brace


40


.




V-shaped ridges


52


, which are inserted into corresponding V-shaped grooves


42


, are formed at the saddle


51


. The saddle


51


is pressed onto the first and second columns


10


,


20


by press means incorporated in a second brace


31


fixed to a third column


30


. The V-shaped ridges


52


are inserted into the corresponding V-shaped grooves


42


by pressing the saddle


51


, and location of a main spindle


50


fixed to the saddle


51


is determined at a geometrical gravity center of a triangle defined by columns


10


,


20


,


30


.




The saddle


51


held in this way is located at a position above an outside radius part of a chucking table


4




b


installed in an indexing table


2




a


as shown in FIG.


5


. The other chucking table


4




a


is located at a loading-unloading position in front of the first and second columns


10


,


20


.




A main spindle


50


having a lower end to which a grinding wheel


53


is fixed is provided at the saddle


51


, as shown in

FIG. 8A. A

hydraulic cylinder


54


as a linear actuator is mounted on the saddle


51


. V-shaped grooves


42


are formed at a side face of the brace


40


along a distance between upper and lower ends of the brace


40


, as shown in

FIG. 8B

which is a view illustrating the saddle


51


and the brace


40


from the side of the third column


30


. Each V-shaped groove


42


offers a broad guide face for guide of the saddle


51


through V-shaped ridges


52


. The broad guide face in co-operation with the tripodal structure effectively improves stiffness of the machine as a whole.




A work piece


5




a


is mounted on or taken off the chucking table


4




a


by a loading-unloading manipulator (not shown). The mounted work piece


5




a


is attracted onto the chucking table


4




a


and carried to a position below the saddle


51


by rotation of the indexing table


2




a.






The work piece


5




b


at the position below the saddle


51


is rotated at a high speed by rotation of the chucking table


4




b


and machined with a predetermined depth of cut by a grinding wheel


53


. During machining, the saddle


51


is fed downwards along the V-shaped grooves


42


by the hydraulic cylinder


54


, so as to perform cutting motion.




In the flattening machine according to the present invention, three columns


10


,


20


,


30


are unitarily connected together with the brace


40


to construct a tripodal gantry-type frame, and the main spindle


50


is located at a geometrical gravity center of a triangle defined by the columns


10


,


20


,


30


. Due to this constitution, a machining force applied to the main spindle


50


during machining is uniformly distributed to each of the columns


10


,


20


,


30


, without inclination of columns which often occurs in a conventional cantilever-type frame. The saddle


51


is held in contact with the brace


40


with a broad touch area due to insertion of the V-shaped ridges


52


into the V-shaped grooves


42


. Consequently, the main spindle


50


fixed to the saddle


51


is held with extremely high stiffness without inclination even when a great reaction force is applied during machining, so that the work piece


5




b


is finished to surface conditions superior in flatness.




The flattening machine according to the present invention as above-mentioned has a main spindle located at a geometrical gravity center of a triangle defined by three columns, so as to uniformly distribute a machining force to each of the columns during grinding or polishing and to inhibit inclination of columns which causes deflection or eccentricity of the main spindle. In addition, since the saddle is held in direct or indirect contact with a brace with a broad touch area, the saddle is fed downwards or upwards without substantial change of its attitude to the column. Therefore, a machined work piece has superior flatness.



Claims
  • 1. A flattening machine comprising:three columns vertically set up to construct a triangular prism-shaped frame; a saddle movable along a vertical direction in contact with a side face of one of said columns or a brace which unitarily connects two or three of said columns at their upper parts; a main spindle fixed to said saddle at a geometrical gravity center of the triangular frame defined by said columns; and an indexing table with a plurality of chucking tables installed thereon; wherein a work piece on at least one of said chucking tables is located below said main spindle, while at least one other of said chucking tables is located at a loading-unloading position.
  • 2. The flattening machine as claimed in claim 1, wherein the indexing table is of a rotary type, and one of the three columns is set up through a central opening of said rotary indexing table, while the remaining columns are set up near a periphery of said indexing table.
  • 3. The flattening machine as claimed in claim 1, wherein the indexing table is of a reciprocative type, two of the three columns are constructed to a gantry-type frame encompassing said reciprocative indexing table, and said reciprocative indexing table is located between the gantry-type frame and the remaining column.
  • 4. The flattening machine as claimed in claim 1, wherein the indexing table is of a rotary type, two of the three columns are unitarily connected with the brace to construct a gantry-type frame encompassing said rotary indexing table, and the saddle is pressed onto said gantry-type frame by press means provided at a remaining column.
  • 5. A flattening machine comprising:three columns set up in a substantially triangular arrangement; a saddle movable along a vertical direction in contact with a side face of one of said columns or a brace which unitarily connects two or three of said columns at their upper parts; a main spindle fixed to said saddle at a geometrical gravity center of a triangle defined by said columns; and an indexing table with a plurality of chucking tables installed thereon; wherein a work piece on at least one of said chucking tables is located below said main spindle, while at least one other of said chucking tables is located at a loading-unloading position; and wherein the indexing table is of a rotary type, and one of the three columns is set up through a central opening of said rotary indexing table, while two of the three columns are set up near a periphery of said indexing table.
  • 6. A flattening machine comprising:three columns set up in a substantially triangular arrangement; a saddle movable along a vertical direction in contact with a side face of one of said columns or a brace which unitarily connects two or three of said columns at their upper parts; a main spindle fixed to said saddle at a geometrical gravity center of a triangle defined by said columns; and an indexing table with a plurality of chucking tables installed thereon; wherein a work piece on at least one of said chucking tables is located below said main spindle, while at least one other of said chucking tables is located at a loading-unloading position; and wherein the indexing table is of a reciprocative type, two of the three columns are constructed to a gantry-type frame encompassing said reciprocative indexing table, and said reciprocative indexing table is located between said gantry-type frame and a remaining column.
  • 7. A flattening machine comprising:three columns set up in a substantially triangular arrangement; a saddle movable along a vertical direction in contact with a side face of one of said columns or a brace which unitarily connects two or three of said columns at their upper parts; a main spindle fixed to said saddle at a geometrical gravity center of a triangle defined by said columns; and an indexing table with a plurality of chucking tables installed thereon; wherein a work piece on at least one of said chucking tables is located below said main spindle, while at least one other of said chucking tables is located at a loading-unloading position; and wherein the indexing table is of a rotary type, two of the columns are unitarily connected with the brace to construct a gantry-type frame encompassing said rotary indexing table, and the saddle is pressed onto said gantry-type frame by press means provided at a remaining column.
Priority Claims (1)
Number Date Country Kind
10-051042 Mar 1998 JP
PCT Information
Filing Document Filing Date Country Kind
PCT/JP99/00491 WO 00
Publishing Document Publishing Date Country Kind
WO99/44787 9/10/1999 WO A
US Referenced Citations (3)
Number Name Date Kind
5718619 Merrill et al. Feb 1998 A
5784932 Gilberti Jul 1998 A
5950503 Amendolea Sep 1999 A
Foreign Referenced Citations (4)
Number Date Country
05309535 Nov 1993 JP
06155257 Jun 1994 JP
08276358 Oct 1996 JP
99044787 Sep 1999 WO