The present disclosure relates to surgical instruments and, more particularly, to fluid collecting sheaths for endoscopic devices and systems.
Tissue resection may be performed endoscopically within an organ, such as a uterus, by inserting an endoscope (or hysteroscope) into the uterus and passing a tissue resection instrument through the endoscope (or hysteroscope) and into the uterus. With respect to such endoscopic tissue resection procedures, it often is desirable to distend the uterus with a fluid, for example, saline, sorbitol, or glycine. The inflow and outflow of the fluid during the procedure maintains the uterus in a distended state and flushes tissue and other debris from within the uterus to maintain a visible working space.
During a tissue resection procedure, for example, a pressure differential may cause fluid to leak out of the uterus through the opening through which the endoscope is inserted. Leaking fluid may travel down the length of the endoscope and drip onto the physician or the floor, presenting a hazard.
In accordance with an aspect of the present disclosure, a system includes an endoscope defining a proximal end, a distal end and an elongated shaft extending between the proximal end and the distal end of the endoscope. A fluid collecting sheath defines a proximal end and a distal end. The fluid collecting sheath is configured for insertion into a vaginal opening. The fluid collecting sheath includes fluid collecting apertures defined at the distal end of the fluid collecting sheath. A fluid line is in fluid communication with the fluid collecting apertures. A channel is formed in the fluid collecting sheath. The channel extends between the proximal end and the distal end of the fluid collecting sheath. The channel defines an opening therein. The channel of the fluid collecting sheath is configured to operably engage the elongated shaft of the endoscope by passing the elongated shaft of the endoscope through the opening of the channel.
In some aspects, the channel of the fluid collecting sheath fixedly engages the elongated shaft of the endoscope. The fluid collecting sheath and the endo scope move in concert with one another.
In some aspects, at least one drip flange is formed at the distal end of the fluid collecting sheath. The at least one drip flange directs fluid away from the channel of the fluid collecting sheath.
In some aspects, the system includes a collection vessel in fluid communication with the fluid line. The collection vessel receives fluid captured by the fluid collecting apertures.
In some aspects, a collar extends from the fluid line. The collar is configured to be secured to the endoscope. The collar may be at least partially elastic.
In some aspects, the fluid collecting sheath and the fluid line are a single integrally formed structure in which the fluid line extends within the fluid collecting sheath between the proximal end and the distal end of the fluid collecting sheath.
In some aspects, the opening of the channel is formed through an outer edge of the fluid collecting sheath.
In some aspects, the channel is configured to selectively expand in width.
In some aspects, the system includes a vacuum source in fluid communication with the fluid line. The vacuum source applies negative pressure to the fluid collecting apertures to draw fluid through the fluid line.
In some aspects, a single fluid collecting aperture may be defined at the distal end of the fluid collecting sheath.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate aspects and features of the present disclosure and, together with the detailed description below, serve to further explain the present disclosure, in which:
As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user. Further, to the extent consistent, any of the aspects and features detailed herein may be used in conjunction with any or all of the other aspects and features detailed herein.
Descriptions of technical features or aspects of an exemplary endoscopic system of the present disclosure should typically be considered as available and applicable to other similar features or aspects in another exemplary endoscopic system of the present disclosure. Accordingly, technical features described herein according to one exemplary endoscopic system of the present disclosure may be applicable to other exemplary endoscopic systems of the present disclosure, and thus duplicative descriptions may be omitted herein.
Exemplary endoscopic systems of the present disclosure will be described more fully below (e.g., with reference to the accompanying drawings). Like reference numerals may refer to like elements throughout the specification and drawings.
The endoscope described herein may be a hysteroscope.
In a hysteroscopy procedure, for example, the distal end 124 of endoscopic device 104 is inserted transvaginally through a patient's cervix and into the patient's uterus. The patient's cervix may expand circumferentially to accommodate the endoscopic device 104, and effectively create a seal about the endoscopic device 104. During a hysteroscopy, fluid (e.g., pressurized fluid) may leak from the uterus 311 (or uterus 411 in
A fluid line 202 extends from a distal end 214 of the fluid collecting sheath 200. The fluid line 202 forms a fluid drain 221 at the distal end 214 of the fluid collecting sheath 200. The fluid drain 221 is configured to drain fluid leaking through the patient's cervix 313 and passed into the patient's vagina 310. The suction or drain line 202 may be in fluid communication with a collection vessel 230. A vacuum source 240 may create negative pressure in the fluid line 202 to draw fluid into the fluid drain 221 or the fluid line 202 may transport fluid from the fluid collection sheath 200 to the collection vessel 230 under gravity.
An outer edge 212 of the fluid collecting sheath 200 is flexible to conform to and create a seal against walls of a patient's vagina 310 and, in some cases, about the cervix 313. The outer edge 212 is collapsible for insertion into the vagina 310. The outer edge 212 of the fluid collecting sheath 200 may act as a vaginal retractor to allow visualization of the patient's cervix 313 through the proximal orifice 220. The fluid collecting sheath 200 may taper in diameter in a distal-to-proximal direction.
The proximal orifice 220 may be flexible to expand and contract to various diameters to receive various sized elongated shafts 328 therein. The proximal orifice 220 may be dimensioned such that the endoscope 304 can move independently of the fluid collecting sheath 200. Alternatively, the fluid collecting sheath 200 may be removable, but securely fixed to the elongated shaft 328 of the endoscope 304, e.g., under resilient and/or friction fit engagement.
The fluid collecting sheath 400 defines a proximal end 416 and a distal end 414. The fluid collecting sheath 400 is configured for insertion into a vaginal opening 410. In use, the fluid collecting sheath 400 is inserted distal end 414 first. The fluid collecting sheath 400 includes fluid collecting apertures 421 defined at the distal end 414 of the fluid collecting sheath 400. A single fluid collecting aperture 421 or a plurality of fluid collecting apertures 421 may be defined at the distal end 414 of the fluid collecting sheath 400. A fluid line 402 is in fluid communication with the fluid collecting apertures 421. The fluid collecting apertures 421 are each positioned at a lower portion of the fluid collecting sheath 400 such that gravity directs fluid toward the fluid collecting apertures 421.
The fluid collecting apertures 421 may be positioned at a side of the fluid collecting sheath 400 substantially opposite from channel 403. As an example, the fluid collecting apertures 421 may be positioned at a lower portion of the fluid collecting sheath 400 such that gravity directs fluids toward the fluid collecting apertures 421. Fluid may additionally be pulled toward and drawn into the fluid collecting apertures 421 through negative pressure created in the fluid line 402 (e.g., by vacuum source 440).
A channel 403 is formed in the fluid collecting sheath 400. The channel 403 defines a substantially circular cross-sectional shape. The channel 403 extends between the proximal end 416 and the distal end 414 of the fluid collecting sheath 400. The channel 403 defines an elongated opening 405 therein along the length thereof. The opening 405 may be formed at an outer edge (e.g., an upper portion) of the fluid collecting sheath 400. The opening 405 is configured to allow the elongated shaft 428 of the endoscope 404 to pass transversely therethrough. The channel 403 of the fluid collecting sheath 400 is configured to operably engage the elongated shaft 428 of the endoscope 404 by passing the elongated shaft 428 of the endoscope 404 transversely through the opening 405 of the channel 403. Radial inward pressure may be applied to the elongated shaft 428 by the sidewalls defining the channel 403.
The channel 403 of the fluid collecting sheath 400 fixedly engages the elongated shaft 428 of the endoscope 404. The fluid collecting sheath 400 and the endoscope 404 move substantially in concert with one another. For example, advancing the endoscope 404 to distally advance the distal end 424 of the elongated shaft 428 will result in a corresponding distal advancement of the fluid collecting sheath 400. Alternatively, the fluid collecting sheath 400 may be configured to enable the endoscope 404 to move independently of the fluid collecting sheath 400.
The channel 403 is configured to selectively expand in width to accommodate and operatively connect with elongated shafts of endoscopes having various widths or diameters.
At least one drip flange (e.g., drip flanges 406 and/or 407) may be formed at the distal end 414 of the fluid collecting sheath 400. The at least one drip flange directs fluid away from the channel 403 of the fluid collecting sheath 400. For example, the at least one drip flange may be distally extending lip extending distally from the distal end 414 of the fluid collecting sheath 400. The distally extending lip including drip flanges 406 and 407 may extend distally around a distal end 434 of the channel 403, thus directing water away from the channel 403 and toward the fluid collecting apertures 421.
A collection vessel 430 is in fluid communication with the fluid line 402. The collection vessel 430 receives fluid captured by the fluid collecting apertures 421 after the captured fluid has passed through the fluid line 402.
The fluid collecting sheath 400 and the fluid line 402 may be a single integrally formed structure in which the fluid line 402 extends within the fluid collecting sheath 400 between the proximal end 416 and the distal end 414 of the fluid collecting sheath (see, e.g.,
A vacuum source 440 may be in fluid communication with the fluid line 402. The vacuum source 440 may be connected with the collection vessel 430 to apply negative pressure to the fluid line 402 therethrough (see, e.g.,
According to one aspect of the disclosure, the fluid collecting sheath 400 can be removably coupled to the endoscope 404. For example, in use, the endoscope 404 may be inserted into a vaginal opening 410 prior to the insertion of the fluid collecting sheath 400. Subsequently, the fluid collecting sheath 400 may be inserted into the vaginal opening 410 and then removably coupled to the elongated shaft 428 of the endoscope 404 to secure the fluid collecting sheath 400 to the endoscope 404 without the need to remove the endoscope 404. This may be achieved by applying pressure to the fluid collecting sheath 400 to force the elongated shaft 428 of the endoscope 404 transversely into the channel 403 through opening 405. The fluid collecting sheath 400 may include or be formed of a material (e.g., a flexible polymer) allowing sufficient bending to allow opening 405 to open sufficiently to allow elongated shaft 428 of the endoscope 404 to be securely forced into channel 403. Thus, during use the fluid collecting sheath 400 may remain substantially fixed to the endoscope 404. The fluid collecting sheath 400 may also be decoupled from the elongated shaft 428 of the endoscope 404 and removed without the need to remove the endoscope 404 by reversing the attachment steps described above. Thus, the fluid collecting sheath 400 may be introduced or removed as needed without the need to also remove the endoscope 404.
Referring particularly to
The various endoscopic systems disclosed herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the surgeon and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the surgeon during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.
The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another surgeon (or group of surgeons) remotely control the instruments via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.
The robotic arms of the surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, etc.) which may complement the use of one or more of the endoscopic system s described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).
The master handles may include various sensors to provide feedback to the surgeon relating to various tissue parameters or conditions, e.g., tissue resistance due to manipulation, cutting or otherwise treating, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, etc. As can be appreciated, such sensors provide the surgeon with enhanced tactile feedback simulating actual operating conditions. The master handles may also include a variety of different actuators for delicate tissue manipulation or treatment further enhancing the surgeon's ability to mimic actual operating conditions.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
1585934 | Muir | May 1926 | A |
1666332 | Hirsch | Apr 1928 | A |
1831786 | Duncan | Nov 1931 | A |
2708437 | Hutchins | May 1955 | A |
3297022 | Wallace | Jan 1967 | A |
3686706 | Finley | Aug 1972 | A |
3734099 | Bender et al. | May 1973 | A |
3791379 | Storz | Feb 1974 | A |
3812855 | Banko | May 1974 | A |
3835842 | Iglesias | Sep 1974 | A |
3850162 | Iglesias | Nov 1974 | A |
3945375 | Banko | Mar 1976 | A |
3980252 | Tae | Sep 1976 | A |
3995619 | Glatzer | Dec 1976 | A |
3996921 | Neuwirth | Dec 1976 | A |
4011869 | Seiler, Jr. | Mar 1977 | A |
4108182 | Hartman et al. | Aug 1978 | A |
4146405 | Timmer et al. | Mar 1979 | A |
4198958 | Utsugi | Apr 1980 | A |
4203444 | Bonnell et al. | May 1980 | A |
4210146 | Banko | Jul 1980 | A |
4246902 | Martinez | Jan 1981 | A |
4247180 | Norris | Jan 1981 | A |
4258721 | Parent et al. | Mar 1981 | A |
4261346 | Wettermann | Apr 1981 | A |
4294234 | Matsuo | Oct 1981 | A |
4316465 | Dotson, Jr. | Feb 1982 | A |
4369768 | Vukovic | Jan 1983 | A |
4392485 | Hiltebrandt | Jul 1983 | A |
4414962 | Carson | Nov 1983 | A |
4449538 | Corbitt et al. | May 1984 | A |
4493698 | Wang et al. | Jan 1985 | A |
4517977 | Frost | May 1985 | A |
4543965 | Pack et al. | Oct 1985 | A |
4567880 | Goodman | Feb 1986 | A |
4589414 | Yoshida et al. | May 1986 | A |
4601284 | Arakawa et al. | Jul 1986 | A |
4601290 | Effron et al. | Jul 1986 | A |
4606330 | Bonnet | Aug 1986 | A |
4630598 | Bonnet | Dec 1986 | A |
4644952 | Patipa et al. | Feb 1987 | A |
4649919 | Thimsen et al. | Mar 1987 | A |
4700694 | Shishido | Oct 1987 | A |
4706656 | Kuboto | Nov 1987 | A |
4718291 | Wood et al. | Jan 1988 | A |
4737142 | Heckele | Apr 1988 | A |
4749376 | Kensey et al. | Jun 1988 | A |
4756309 | Sachse et al. | Jul 1988 | A |
4819635 | Shapiro | Apr 1989 | A |
4844064 | Thimsen et al. | Jul 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4856919 | Takeuchi et al. | Aug 1989 | A |
4867157 | McGurk-Burleson et al. | Sep 1989 | A |
4924851 | Ognier et al. | May 1990 | A |
4940061 | Terwilliger et al. | Jul 1990 | A |
4950278 | Sachse et al. | Aug 1990 | A |
4955882 | Hakky | Sep 1990 | A |
4971034 | Doi et al. | Nov 1990 | A |
4986827 | Akkas et al. | Jan 1991 | A |
4998527 | Meyer | Mar 1991 | A |
4998914 | Wiest et al. | Mar 1991 | A |
5007917 | Evans | Apr 1991 | A |
5027792 | Meyer | Jul 1991 | A |
5037386 | Marcus et al. | Aug 1991 | A |
5105800 | Takahashi et al. | Apr 1992 | A |
5106364 | Hayafuji et al. | Apr 1992 | A |
5112299 | Pascaloff | May 1992 | A |
5116868 | Chen et al. | May 1992 | A |
5125910 | Freitas | Jun 1992 | A |
5133713 | Huang et al. | Jul 1992 | A |
5152744 | Krause et al. | Oct 1992 | A |
5158553 | Berry et al. | Oct 1992 | A |
5163433 | Kagawa et al. | Nov 1992 | A |
5169397 | Sakashita et al. | Dec 1992 | A |
5176677 | Wuchinich | Jan 1993 | A |
5195541 | Obenchain | Mar 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5244459 | Hill | Sep 1993 | A |
5254117 | Rigby et al. | Oct 1993 | A |
5269785 | Bonutti | Dec 1993 | A |
5270622 | Krause | Dec 1993 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5288290 | Brody | Feb 1994 | A |
5304118 | Trese et al. | Apr 1994 | A |
5312399 | Hakky et al. | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5312430 | Rosenbluth et al. | May 1994 | A |
5320091 | Grossi et al. | Jun 1994 | A |
5347992 | Pearlman et al. | Sep 1994 | A |
5350390 | Sher | Sep 1994 | A |
5364395 | West, Jr. | Nov 1994 | A |
5374253 | Burns, Sr. et al. | Dec 1994 | A |
5390585 | Ryuh | Feb 1995 | A |
5392765 | Muller | Feb 1995 | A |
5395313 | Naves et al. | Mar 1995 | A |
5403276 | Schechter et al. | Apr 1995 | A |
5409013 | Clement | Apr 1995 | A |
5409453 | Lundquist et al. | Apr 1995 | A |
5411513 | Ireland et al. | May 1995 | A |
5421819 | Edwards et al. | Jun 1995 | A |
5425376 | Banys et al. | Jun 1995 | A |
5429601 | Conley et al. | Jul 1995 | A |
5435805 | Edwards et al. | Jul 1995 | A |
5443476 | Shapiro | Aug 1995 | A |
5449356 | Walbrink et al. | Sep 1995 | A |
5456673 | Ziegler et al. | Oct 1995 | A |
5456689 | Kresch et al. | Oct 1995 | A |
5483951 | Frassica et al. | Jan 1996 | A |
5490819 | Nicholas et al. | Feb 1996 | A |
5490860 | Middle et al. | Feb 1996 | A |
5492537 | Vancaillie | Feb 1996 | A |
5498258 | Hakky et al. | Mar 1996 | A |
5527331 | Kresch et al. | Jun 1996 | A |
5549541 | Muller | Aug 1996 | A |
5556378 | Storz et al. | Sep 1996 | A |
5563481 | Krause | Oct 1996 | A |
5569164 | Lurz | Oct 1996 | A |
5569254 | Carlson et al. | Oct 1996 | A |
5569284 | Young et al. | Oct 1996 | A |
5575756 | Karasawa et al. | Nov 1996 | A |
5586973 | Lemaire et al. | Dec 1996 | A |
5591187 | Dekel | Jan 1997 | A |
5601583 | Donahue et al. | Feb 1997 | A |
5601603 | Illi | Feb 1997 | A |
5602449 | Krause et al. | Feb 1997 | A |
5603332 | O'Connor | Feb 1997 | A |
5630798 | Beiser et al. | May 1997 | A |
5649547 | Ritchart et al. | Jul 1997 | A |
5669927 | Boebel et al. | Sep 1997 | A |
5672945 | Krause | Sep 1997 | A |
5674179 | Bonnet et al. | Oct 1997 | A |
5676497 | Kim | Oct 1997 | A |
5695448 | Kimura et al. | Dec 1997 | A |
5702420 | Sterling et al. | Dec 1997 | A |
5709698 | Adams et al. | Jan 1998 | A |
5730752 | Alden et al. | Mar 1998 | A |
5733298 | Berman et al. | Mar 1998 | A |
5741286 | Recuset | Apr 1998 | A |
5741287 | Alden et al. | Apr 1998 | A |
5749885 | Sjostrom et al. | May 1998 | A |
5749889 | Bacich et al. | May 1998 | A |
5759185 | Grinberg | Jun 1998 | A |
5772634 | Atkinson | Jun 1998 | A |
5775333 | Burbank et al. | Jul 1998 | A |
5782849 | Miller | Jul 1998 | A |
5807240 | Muller et al. | Sep 1998 | A |
5807282 | Fowler | Sep 1998 | A |
5810770 | Chin et al. | Sep 1998 | A |
5810861 | Gaber | Sep 1998 | A |
5814009 | Wheatman | Sep 1998 | A |
5833643 | Ross et al. | Nov 1998 | A |
5840060 | Beiser et al. | Nov 1998 | A |
5857995 | Thomas et al. | Jan 1999 | A |
5873886 | Larsen et al. | Feb 1999 | A |
5899915 | Saadat | May 1999 | A |
5911699 | Anis et al. | Jun 1999 | A |
5911722 | Adler et al. | Jun 1999 | A |
5913867 | Dion | Jun 1999 | A |
5916229 | Evans | Jun 1999 | A |
5925055 | Adrian et al. | Jul 1999 | A |
5928163 | Roberts et al. | Jul 1999 | A |
5928249 | Saadat et al. | Jul 1999 | A |
5944668 | Vancaillie et al. | Aug 1999 | A |
5947990 | Smith | Sep 1999 | A |
5951490 | Fowler | Sep 1999 | A |
5956130 | Vancaillie et al. | Sep 1999 | A |
5957832 | Taylor et al. | Sep 1999 | A |
6001116 | Heisler et al. | Dec 1999 | A |
6004320 | Casscells et al. | Dec 1999 | A |
6007513 | Anis et al. | Dec 1999 | A |
6024751 | Lovato et al. | Feb 2000 | A |
6032673 | Savage et al. | Mar 2000 | A |
6039748 | Savage et al. | Mar 2000 | A |
6042552 | Cornier | Mar 2000 | A |
6068641 | Varsseveld | May 2000 | A |
6086542 | Glowa et al. | Jul 2000 | A |
6090094 | Clifford, Jr. et al. | Jul 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6113594 | Savage | Sep 2000 | A |
6119973 | Galloway | Sep 2000 | A |
6120147 | Vijfvinkel et al. | Sep 2000 | A |
6120462 | Hibner et al. | Sep 2000 | A |
6132448 | Perez et al. | Oct 2000 | A |
6149633 | Maaskamp | Nov 2000 | A |
6156049 | Lovato et al. | Dec 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159209 | Hakky | Dec 2000 | A |
6203518 | Anis et al. | Mar 2001 | B1 |
6217543 | Anis et al. | Apr 2001 | B1 |
6224603 | Marino | May 2001 | B1 |
6244228 | Kuhn et al. | Jun 2001 | B1 |
6258111 | Ross et al. | Jul 2001 | B1 |
6277096 | Cortella et al. | Aug 2001 | B1 |
6315714 | Akiba | Nov 2001 | B1 |
6358200 | Grossi | Mar 2002 | B1 |
6358263 | Mark et al. | Mar 2002 | B2 |
6359200 | Day | Mar 2002 | B1 |
6402701 | Kaplan et al. | Jun 2002 | B1 |
6428486 | Ritchart et al. | Aug 2002 | B2 |
6471639 | Rudischhauser et al. | Oct 2002 | B2 |
6494892 | Ireland et al. | Dec 2002 | B1 |
6585708 | Maaskamp | Jul 2003 | B1 |
6610066 | Dinger et al. | Aug 2003 | B2 |
6626827 | Felix et al. | Sep 2003 | B1 |
6632182 | Treat | Oct 2003 | B1 |
6656132 | Ouchi | Dec 2003 | B1 |
6712773 | Viola | Mar 2004 | B1 |
6824544 | Boebel et al. | Nov 2004 | B2 |
6837847 | Ewers et al. | Jan 2005 | B2 |
7025720 | Boebel et al. | Apr 2006 | B2 |
7025732 | Thompson et al. | Apr 2006 | B2 |
7150713 | Shener et al. | Dec 2006 | B2 |
7226459 | Cesarini et al. | Jun 2007 | B2 |
7249602 | Emanuel | Jul 2007 | B1 |
7510563 | Cesarini et al. | Mar 2009 | B2 |
7763033 | Gruber et al. | Jul 2010 | B2 |
7922737 | Cesarini et al. | Apr 2011 | B1 |
8025656 | Gruber et al. | Sep 2011 | B2 |
8061359 | Emanuel | Nov 2011 | B2 |
8062214 | Shener | Nov 2011 | B2 |
8419626 | Shener-Irmakoglu et al. | Apr 2013 | B2 |
8465421 | Finkman et al. | Jun 2013 | B2 |
8528563 | Gruber | Sep 2013 | B2 |
8574253 | Gruber et al. | Nov 2013 | B2 |
8647349 | Gruber et al. | Feb 2014 | B2 |
8663264 | Cesarini et al. | Mar 2014 | B2 |
8678999 | Isaacson | Mar 2014 | B2 |
8834487 | Gruber et al. | Sep 2014 | B2 |
8840625 | Adams et al. | Sep 2014 | B2 |
8840626 | Adams et al. | Sep 2014 | B2 |
8852085 | Shener-Irmakoglu et al. | Oct 2014 | B2 |
8893722 | Emanuel | Nov 2014 | B2 |
8911424 | Weadock | Dec 2014 | B2 |
8932208 | Kendale et al. | Jan 2015 | B2 |
8951274 | Adams | Feb 2015 | B2 |
9060760 | Sullivan et al. | Jun 2015 | B2 |
9060800 | Cesarini et al. | Jun 2015 | B1 |
9060801 | Cesarini et al. | Jun 2015 | B1 |
9066745 | Cesarini et al. | Jun 2015 | B2 |
9072431 | Adams et al. | Jul 2015 | B2 |
9089358 | Emanuel | Jul 2015 | B2 |
9095366 | Sullivan | Aug 2015 | B2 |
9125550 | Shener-Irmakoglu et al. | Sep 2015 | B2 |
9155454 | Sahney | Oct 2015 | B2 |
9259233 | Gruber et al. | Feb 2016 | B2 |
RE47285 | Loske | Mar 2019 | E |
10369259 | Kleiner | Aug 2019 | B2 |
20070185380 | Kucklick | Aug 2007 | A1 |
20080058842 | Emanuel | Mar 2008 | A1 |
20080097468 | Adams et al. | Apr 2008 | A1 |
20080097469 | Gruber et al. | Apr 2008 | A1 |
20080097470 | Gruber et al. | Apr 2008 | A1 |
20080097471 | Adams et al. | Apr 2008 | A1 |
20080135053 | Gruber et al. | Jun 2008 | A1 |
20080146872 | Gruber et al. | Jun 2008 | A1 |
20080146873 | Adams et al. | Jun 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080249366 | Gruber et al. | Oct 2008 | A1 |
20080249534 | Gruber et al. | Oct 2008 | A1 |
20080249553 | Gruber et al. | Oct 2008 | A1 |
20080262308 | Prestezog et al. | Oct 2008 | A1 |
20090005750 | West | Jan 2009 | A1 |
20090082628 | Kucklick et al. | Mar 2009 | A1 |
20090270812 | Litscher et al. | Oct 2009 | A1 |
20090270895 | Churchill et al. | Oct 2009 | A1 |
20090270896 | Sullivan et al. | Oct 2009 | A1 |
20090270897 | Adams et al. | Oct 2009 | A1 |
20090270898 | Chin et al. | Oct 2009 | A1 |
20100010299 | Bakos et al. | Jan 2010 | A1 |
20100010310 | Weisenburgh, II | Jan 2010 | A1 |
20100087798 | Adams et al. | Apr 2010 | A1 |
20100152647 | Shener et al. | Jun 2010 | A1 |
20110034943 | Churchill et al. | Feb 2011 | A1 |
20110077674 | Sullivan et al. | Mar 2011 | A1 |
20110118544 | Adams et al. | May 2011 | A1 |
20110166419 | Reif et al. | Jul 2011 | A1 |
20120067352 | Gruber et al. | Mar 2012 | A1 |
20120078038 | Sahney et al. | Mar 2012 | A1 |
20120123359 | Reed | May 2012 | A1 |
20130023840 | Loske | Jan 2013 | A1 |
20130131452 | Kuroda et al. | May 2013 | A1 |
20140003183 | Song | Jan 2014 | A1 |
20140005479 | Loske | Jan 2014 | A1 |
20170035949 | Loske | Feb 2017 | A1 |
20180132702 | Begg | May 2018 | A1 |
20180271354 | Tilson | Sep 2018 | A1 |
20190246881 | Aull | Aug 2019 | A1 |
20200323422 | Duan | Oct 2020 | A1 |
20210186469 | Johnsen | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
3339322 | May 1984 | DE |
3206381 | Jul 1986 | DE |
3601453 | Sep 1986 | DE |
3615694 | Nov 1987 | DE |
4038398 | Jun 1992 | DE |
4440035 | May 1996 | DE |
19633124 | May 1997 | DE |
19751632 | Sep 1999 | DE |
102006022827 | Dec 2006 | DE |
0310285 | Apr 1989 | EP |
0327410 | Aug 1989 | EP |
0557044 | Aug 1993 | EP |
0582295 | Feb 1994 | EP |
0606531 | Jul 1994 | EP |
0621008 | Oct 1994 | EP |
0806183 | Nov 1997 | EP |
1681022 | Jul 2006 | EP |
2093353 | Sep 1982 | GB |
2311468 | Oct 1997 | GB |
2001075416 | Mar 2001 | JP |
2002529185 | Sep 2002 | JP |
2002538889 | Nov 2002 | JP |
2003245247 | Sep 2003 | JP |
1006944 | Mar 1999 | NL |
8101648 | Jun 1981 | WO |
9211816 | Jul 1992 | WO |
9307821 | Apr 1993 | WO |
9315664 | Aug 1993 | WO |
9426181 | Nov 1994 | WO |
9505777 | Mar 1995 | WO |
9510981 | Apr 1995 | WO |
9510982 | Apr 1995 | WO |
9522935 | Aug 1995 | WO |
9530377 | Nov 1995 | WO |
9611638 | Apr 1996 | WO |
9626676 | Sep 1996 | WO |
9709922 | Mar 1997 | WO |
9717027 | May 1997 | WO |
9719642 | Jun 1997 | WO |
9724071 | Jul 1997 | WO |
9734534 | Sep 1997 | WO |
9735522 | Oct 1997 | WO |
9809569 | Mar 1998 | WO |
9810707 | Mar 1998 | WO |
9846147 | Oct 1998 | WO |
9903407 | Jan 1999 | WO |
9903409 | Jan 1999 | WO |
9907295 | Feb 1999 | WO |
9911184 | Mar 1999 | WO |
9939648 | Aug 1999 | WO |
9944506 | Sep 1999 | WO |
9960935 | Dec 1999 | WO |
0012010 | Mar 2000 | WO |
0028890 | May 2000 | WO |
0033743 | Jun 2000 | WO |
0044295 | Aug 2000 | WO |
0047116 | Aug 2000 | WO |
0057797 | Oct 2000 | WO |
0135831 | May 2001 | WO |
0158368 | Aug 2001 | WO |
0195810 | Dec 2001 | WO |
02069808 | Sep 2002 | WO |
03022164 | Mar 2003 | WO |
03077767 | Sep 2003 | WO |
2005060842 | Jul 2005 | WO |
2005096963 | Oct 2005 | WO |
2006105283 | Oct 2006 | WO |
2006121968 | Nov 2006 | WO |
2006121970 | Nov 2006 | WO |
2007044833 | Apr 2007 | WO |
2012044705 | Apr 2012 | WO |
2016205126 | Dec 2016 | WO |
Entry |
---|
Extended European Search Report issued in corresponding European Application No. 21153863.2 dated Jun. 29, 2021, 6 pages. |
European Examination Report issued in corresponding European Application No. 16736303.5 dated May 2, 2019, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20210236702 A1 | Aug 2021 | US |