The present invention relates to a fluid handling structure, a lithographic apparatus and a method for manufacturing a device.
A lithographic apparatus is a machine that applies a desired pattern onto a substrate, usually onto a target portion of the substrate. A lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In that instance, a patterning device, which is alternatively referred to as a mask or a reticle, may be used to generate a circuit pattern to be formed on an individual layer of the IC. This pattern can be transferred onto a target portion (e.g. comprising part of, one, or several dies) on a substrate (e.g. a silicon wafer). Transfer of the pattern is typically via imaging onto a layer of radiation-sensitive material (resist) provided on the substrate. In general, a single substrate will contain a network of adjacent target portions that are successively patterned. Known lithographic apparatus include so-called steppers, in which each target portion is irradiated by exposing an entire pattern onto the target portion at one time, and so-called scanners, in which each target portion is irradiated by scanning the pattern through a radiation beam in a given direction (the “scanning”-direction) while synchronously scanning the substrate parallel or anti-parallel to this direction. It is also possible to transfer the pattern from the patterning device to the substrate by imprinting the pattern onto the substrate.
It has been proposed to immerse the substrate in the lithographic projection apparatus in a liquid having a relatively high refractive index, e.g. water, so as to fill a space between the final element of the projection system and the substrate. In an embodiment, the liquid is distilled water, although another liquid can be used. An embodiment of the present invention will be described with reference to liquid. However, another fluid may be suitable, particularly a wetting fluid, an incompressible fluid and/or a fluid with higher refractive index than air, desirably a higher refractive index than water. Fluids excluding gases are particularly desirable. The point of this is to enable imaging of smaller features since the exposure radiation will have a shorter wavelength in the liquid. (The effect of the liquid may also be regarded as increasing the effective numerical aperture (NA) of the system and also increasing the depth of focus.) Other immersion liquids have been proposed, including water with solid particles (e.g. quartz) suspended therein, or a liquid with a nano-particle suspension (e.g. particles with a maximum dimension of up to 10 nm). The suspended particles may or may not have a similar or the same refractive index as the liquid in which they are suspended. Other liquids which may be suitable include a hydrocarbon, such as an aromatic, a fluorohydrocarbon, and/or an aqueous solution.
Submersing the substrate or substrate and substrate table in a bath of liquid (see, for example, U.S. Pat. No. 4,509,852) is a form of immersion system arrangement. The arrangement requires that a large body of liquid should be accelerated during a scanning exposure. This may require additional or more powerful motors and turbulence in the liquid may lead to undesirable and unpredictable effects.
In an immersion apparatus, immersion liquid is handled by a fluid handling system or apparatus, for example a fluid handling structure. A fluid handling system may supply immersion fluid and therefore be a fluid supply system. A fluid handling system may confine fluid and thereby be a fluid confinement system. A fluid handling system may provide a barrier to fluid and thereby be a barrier member. A fluid handling system may create or use a flow of fluid (such as gas), for example to help in handling liquid. Immersion liquid may be used as the immersion fluid. In that case, the fluid handling system may be a liquid handling system.
One of the arrangements proposed is for a liquid supply system to provide liquid on only a localized area of the substrate and in between the final element of the projection system and the substrate using a liquid confinement system (the substrate generally has a larger surface area than the final element of the projection system). One way which has been proposed to arrange for this is disclosed in PCT patent application publication no. WO 99/49504. This type of arrangement may be referred to as a localized immersion system arrangement.
Another arrangement is an all wet arrangement in which the immersion liquid is unconfined as disclosed in PCT patent application publication WO 2005/064405. In such a system, the immersion liquid is unconfined. The whole top surface of the substrate is covered in liquid. This may be advantageous because then the whole top surface of the substrate is exposed to the substantially same conditions. This may have an advantage for temperature control and processing of the substrate. In WO 2005/064405, a liquid supply system provides liquid to the gap between the final element of the projection system and the substrate. That liquid is allowed to leak over the remainder of the substrate. A barrier at the edge of a substrate table prevents the liquid from escaping so that it can be removed from the top surface of the substrate table in a controlled way. Although such a system improves temperature control and processing of the substrate, evaporation of the immersion liquid may still occur. One way of helping to alleviate that problem is described in United States patent application publication no. US 2006/0119809. A member is provided which covers the substrate W in all positions and which is arranged to have immersion liquid extending between it and the top surface of the substrate and/or substrate table which holds the substrate.
In European patent application publication no. EP 1420300 and United States patent application publication no. US 2004-0136494, each hereby incorporated in their entirety by reference, the idea of a twin or dual stage immersion lithography apparatus is disclosed. Such an apparatus is provided with two tables for supporting a substrate. Leveling measurements are carried out with a table at a first position, without immersion liquid, and exposure is carried out with a table at a second position, where immersion liquid is present. Alternatively, the apparatus has only one table.
It is desirable to be able to move the substrate as fast as possible below the projection system. For this, the fluid handling system, especially for a localized area fluid handling system, should be designed to allow high scanning without significant liquid loss.
It is desirable, for example, to provide a fluid handling system which maintains liquid in a space between the final element of the projection system and the substrate.
According to an aspect, there is provided a fluid handling structure for a lithographic apparatus, the fluid handling structure successively having, at a boundary from a space configured to contain immersion fluid to a region external to the fluid handling structure:
an elongate opening or a plurality of openings arranged in a first line that, in use, is directed towards a substrate and/or a substrate table configured to support the substrate;
a gas knife device having an elongate aperture in a second line; and
an elongate opening or a plurality of openings adjacent the gas knife device.
According to an aspect, there is provided a fluid handling structure for a lithographic apparatus, the fluid handling structure successively having, at a boundary of a space to which in use immersion liquid is confined to a region external to the fluid handling structure:
an elongate opening or a plurality of openings to extract fluid and arranged in a first line that, in use, is directed towards a facing surface of, for example, a substrate and/or a substrate table configured to support the substrate;
an elongate aperture for a gas knife, in a second line;
an elongate opening or a plurality of openings to extract liquid and adjacent the elongate aperture for the gas knife device.
According to an aspect, there is provided a lithographic apparatus comprising a fluid handling structure as above.
According to an aspect, there is provided a device manufacturing method, comprising:
providing an immersion liquid to a space between a final element of a projection system and a substrate and/or a substrate table configured to support the substrate;
retrieving immersion liquid from between the final element of the projection system and the substrate and/or substrate table through an elongate opening or a plurality of openings arranged in a first line;
forcing immersion liquid towards the elongate opening or plurality of openings in the first line by supplying gas through an aperture in a second line forming a gas knife;
extracting gas and remaining immersion liquid through an elongate opening or a plurality of openings adjacent the gas knife and on the opposite side of the gas knife to the elongate opening or plurality of openings in the first line.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, and in which:
The illumination system may include various types of optical components, such as refractive, reflective, magnetic, electromagnetic, electrostatic or other types of optical components, or any combination thereof, for directing, shaping, or controlling radiation.
The support structure MT holds the patterning device. It holds the patterning device in a manner that depends on the orientation of the patterning device, the design of the lithographic apparatus, and other conditions, such as for example whether or not the patterning device is held in a vacuum environment. The support structure can use mechanical, vacuum, electrostatic or other clamping techniques to hold the patterning device. The support structure may be a frame or a table, for example, which may be fixed or movable as required. The support structure may ensure that the patterning device is at a desired position, for example with respect to the projection system. Any use of the terms “reticle” or “mask” herein may be considered synonymous with the more general term “patterning device.”
The term “patterning device” used herein should be broadly interpreted as referring to any device that can be used to impart a radiation beam with a pattern in its cross-section such as to create a pattern in a target portion of the substrate. It should be noted that the pattern imparted to the radiation beam may not exactly correspond to the desired pattern in the target portion of the substrate, for example if the pattern includes phase-shifting features or so called assist features. Generally, the pattern imparted to the radiation beam will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit.
The patterning device may be transmissive or reflective. Examples of patterning devices include masks, programmable mirror arrays, and programmable LCD panels. Masks are well known in lithography, and include mask types such as binary, alternating phase-shift, and attenuated phase-shift, as well as various hybrid mask types. An example of a programmable mirror array employs a matrix arrangement of small mirrors, each of which can be individually tilted so as to reflect an incoming radiation beam in different directions. The tilted mirrors impart a pattern in a radiation beam which is reflected by the mirror matrix.
The term “projection system” used herein should be broadly interpreted as encompassing any type of projection system, including refractive, reflective, catadioptric, magnetic, electromagnetic and electrostatic optical systems, or any combination thereof, as appropriate for the exposure radiation being used, or for other factors such as the use of an immersion liquid or the use of a vacuum. Any use of the term “projection lens” herein may be considered as synonymous with the more general term “projection system”.
As here depicted, the apparatus is of a transmissive type (e.g. employing a transmissive mask). Alternatively, the apparatus may be of a reflective type (e.g. employing a programmable mirror array of a type as referred to above, or employing a reflective mask).
The lithographic apparatus may be of a type having two (dual stage) or more substrate tables (and/or two or more patterning device tables). In such “multiple stage” machines the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposure.
Referring to
The illuminator IL may comprise an adjuster AM for adjusting the angular intensity distribution of the radiation beam. Generally, at least the outer and/or inner radial extent (commonly referred to as σ-outer and σ-inner, respectively) of the intensity distribution in a pupil plane of the illuminator can be adjusted. In addition, the illuminator IL may comprise various other components, such as an integrator IN and a condenser CO. The illuminator may be used to condition the radiation beam, to have a desired uniformity and intensity distribution in its cross-section.
The radiation beam B is incident on the patterning device (e.g., mask) MA, which is held on the support structure (e.g., mask table) MT, and is patterned by the patterning device. Having traversed the patterning device MA, the radiation beam B passes through the projection system PS, which focuses the beam onto a target portion C of the substrate W. With the aid of the second positioner PW and position sensor IF (e.g. an interferometric device, linear encoder or capacitive sensor), the substrate table WT can be moved accurately, e.g. so as to position different target portions C in the path of the radiation beam B. Similarly, the first positioner PM and another position sensor (which is not explicitly depicted in
The depicted apparatus could be used in at least one of the following modes:
Combinations and/or variations on the above described modes of use or entirely different modes of use may also be employed.
Arrangements for providing liquid between a final element of the projection system PS and the substrate can be classed into three general categories. These are the bath type arrangement, the so-called localized immersion system and the all-wet immersion system. In the bath type arrangement substantially the whole of the substrate W and optionally part of the substrate table WT is submersed in a bath of liquid.
The localized immersion system uses a liquid supply system in which liquid is only provided to a localized area of the substrate. The space filled by liquid is smaller in plan than the top surface of the substrate. The volume or space filled with liquid remains substantially stationary relative to the projection system PS while the substrate W moves underneath that area.
In the all wet arrangement the liquid is unconfined. The whole top surface of the substrate and all or part of the substrate table is covered in immersion liquid. The depth of the liquid covering at least the substrate is small. The liquid may be a film, such as a thin film, of liquid on the substrate. Immersion liquid may be supplied to or in the region of a projection system and a facing surface facing the projection system (such a facing surface may be the surface of a substrate and/or a substrate table). Any of the liquid supply devices of
Four different types of localized liquid supply systems are illustrated in
A further immersion lithography solution with a localized liquid supply system is shown in
Another arrangement which has been proposed is to provide the liquid supply system with liquid confinement structure which extends along at least a part of a boundary of the space between the final element of the projection system and the substrate table. Such an arrangement is illustrated in
The liquid confinement structure 12 at least partly contains liquid in the space 11 between a final element of the projection system PS and the substrate W. A contactless seal, such as a gas seal 16, to the substrate W may be formed around the image field of the projection system PS so that liquid is confined within the space 11 between the substrate W surface and the final element of the projection system PS. The space 11 is at least partly formed by the liquid confinement structure 12 positioned below and surrounding the final element of the projection system PS. Liquid is brought into the space 11 below the projection system PS and within the liquid confinement structure 12 by liquid inlet 13. The liquid may be removed by liquid outlet 13. The liquid confinement structure 12 may extend a little above the final element of the projection system PS. The liquid level rises above the final element so that a buffer of liquid is provided. In an embodiment, the liquid confinement structure 12 has an inner periphery that at the upper end closely conforms to the shape of the projection system PS or the final element thereof and may, e.g., be round or any other suitable shape. At the bottom, the inner periphery closely conforms to the shape of the image field, e.g., rectangular, though this need not be the case.
The liquid may be contained in the space 11 by a gas seal 16 which, during use, is formed between the bottom of the liquid confinement structure 12 and the surface of the substrate W. The gas seal 16 is formed by gas, e.g. air or synthetic air but, in an embodiment, N2 or another inert gas. The gas in the gas seal 16 is provided under pressure via inlet 15 to the gap between liquid confinement structure 12 and substrate W. The gas is extracted via outlet 14. The overpressure on the gas inlet 15, vacuum level on the outlet 14 and geometry of the gap are arranged so that there is a high-velocity gas flow inwardly that confines the liquid. The force of the gas on the liquid between the liquid confinement structure 12 and the substrate W contains the liquid in a space 11. The inlets/outlets may be annular grooves which surround the space 11. The annular grooves may be continuous or discontinuous. The flow of gas is effective to contain the liquid in the space 11. Such a system is disclosed in United States patent application publication no. US 2004-0207824, which is hereby incorporated by reference in its entirety. In another embodiment, the liquid confinement structure 12 does not have a gas seal.
An embodiment of the invention relates to a particular type of extractor for use in a fluid handling structure which substantially prevents the meniscus from advancing beyond a certain point. That is, an embodiment of the invention relates to a meniscus pinning device which pins the edge of liquid, e.g. in the form of a liquid meniscus, in a space 11 between the final element of the projection system and the substrate and/or substrate table substantially in place. The meniscus pinning arrangement relies on the so-called gas drag extractor principle which has been described, for example, in U.S. patent application publication no. 2008/0212046, which is hereby incorporated by reference in its entirety. In that system the extraction holes may be placed in a cornered shape. The corners are aligned with a direction of relative motion between the projection system and the substrate and/or substrate table, for example the stepping and scanning directions. This helps reduce the force on the meniscus between two outlets for a given speed in the direction of relative motion compared to a case where the two outlets are aligned perpendicular to the direction of relative motion. However, an embodiment of the invention may be applied to a fluid handling structure which, in plan, may have any shape, or to a fluid handling structure that has a component part such as the extraction openings arranged in any shape. Such a shape in a non-limiting list may include an ellipse (such as a circle), a rectilinear shape (such as a rectangle, e.g. a square, or parallelogram, e.g., a rhombus) or a cornered shape with more than four corners (such as a four or more pointed star).
In a variation of the system of US 2008/0212046, to which an embodiment of the invention relates, the geometry of the cornered shape in which the openings are arranged allows sharp corners (selected from the range of about 60° to 90°, desirably the range of 75° to 90° and most desirably the range of 75° to 85°) to be present for the corners aligned both in the preferred directions of relative motion, for example, in the scanning and in the stepping directions. This may allow increased speed in the direction of each aligned corner. This is because the creation of liquid droplets due to an unstable meniscus in the scanning direction is reduced. Where corners are aligned with both the scanning and stepping directions, increased speed may be achieved in those directions. Desirably the speed of movement in the scanning and stepping directions may be substantially equal.
Each of the openings 50 of the meniscus pinning device of
In the embodiment of
The openings 50 are formed in a surface of a fluid handling structure 12. That surface faces the substrate and/or substrate table in use. In one embodiment the openings are in a flat surface of the fluid handling structure. In another embodiment, a ridge may be present on the surface of the fluid handling structure facing the substrate. In an embodiment the openings may be in the ridge. In an embodiment, the openings 50 may be defined by needles or tubes. The bodies of some of the needles, e.g., adjacent needles, may be joined together. The needles may be joined together to form a single body. The single body may form the shape which may be cornered.
As can be seen from
Each opening 50 is designed to extract a mixture of liquid and gas. The liquid is extracted from the space 11 whereas the gas is extracted from the atmosphere on the other side of the openings 50 to the liquid. This creates a gas flow as illustrated by arrows 100 and this gas flow is effective to pin the meniscus 90 between the openings 50 substantially in place as illustrated in
The openings 50 surround the space to which the fluid handling structure supplies liquid. That is, the openings 50 may be distributed around the surface of the fluid handling structure facing the substrate and/or substrate table. The openings may be substantially continuously spaced around the space (In an embodiment the spacing between some of the adjacent openings may be the same, although the spacing between adjacent openings 50 may vary). In an embodiment, liquid is extracted all the way around the shape which may be cornered. Liquid is extracted substantially at the point at which it impinges on the shape. This is achieved because the openings 50 are formed all the way around the space (in the shape). In this way the liquid may be confined to the space 11. The meniscus may be pinned by the openings 50, during operation.
As can be seen from
Principal axes 110, 120 of the shape may be aligned with the major directions of travel of the substrate W under the projection system. This helps to ensure that the maximum scan speed is faster than if the openings 50 were arranged in a shape in which the direction of movement is unaligned with an axis of the shape, for example a circular shape. This is because the force on the meniscus between two openings 50 may be reduced if the principle axes are aligned with a direction of relative motion. For example, the reduction may be a factor cos θ. ‘θ’ is the angle of the line connecting the two openings 50 relative to the direction in which the substrate W is moving.
The use of a square shape allows movement in the step and scanning directions to be at a substantially equal maximum speed. This may be achieved by having each of the corners 52 of the shape aligned with the scanning and stepping directions 110, 120. If movement in one of the directions, for example the scan direction, is preferred to be faster than movement in the other direction, for example the step direction, then the shape may be a rhombus. In such an arrangement the primary axis of the rhombus may be aligned with the scan direction. For a rhombic shape, although each of the corners may be acute, the angle between the line of average angle of two adjacent sides (or edges) of the rhombus, for example relative to a direction of relative motion in the stepping direction, may be obtuse, i.e. more than 90° (for example selected from the range of about 90° to 120°, in an embodiment selected from the range of 90° to 105°, in an embodiment selected from the range of 85° to 105°).
Throughput can be optimized by making the primary axis of the shape of the openings 50 aligned with the major direction of travel of the substrate (usually the scan direction) and to have another axis aligned with the other major direction of travel of the substrate (usually the step direction). It will be appreciated that any arrangement in which θ is different to 90° will give an advantage in at least one direction of movement. Thus, exact alignment of the principal axes with the major directions of travel is not vital.
An advantage of providing the edges with a negative radius is that the corners may be made sharper. An angle selected from the range of 75 to 85° or even lower may be achievable for both the corners 52 aligned with the scan direction and the corners 52 aligned with the step direction. If it were not for this feature then in order for the corners 52 aligned in both directions to have the same angle, those corners would have to have 90°. If it was desired that a corner would have an angle of less than 90°, it would be necessary to select corners aligned with a direction of relative motion to be less than 90°. The other corners would have an angle of greater than 90°.
The openings may be arranged in a star shape. In an embodiment of a star shape, the edges are straight instead of curved. The edges may meet at a point, e.g. an intermediate corner, which is radially inwardly of a straight line between two corners 52. This arrangement may not be as successful in pinning a meniscus at a high relative speed as an arrangement in which the edge between two adjacent corners 52 defined by the line joining the openings is smooth. Such a line defined by the openings 50 may define the cornered shape, is continuous and has a continuously changing direction. In the star shape embodiment, the intermediate corner along the side of the shape may pin the meniscus. The sharper a corner, the more the forces pinning the meniscus are focused on the corner. At a sharp corner, the pinning forces are focused on a short length of the edge of the shape. A corner with a smoother curve than a sharp corner, for example, a corner with a larger radius of curvature, has a longer length and so distributes the pinning forces along a longer curve of the corner i.e. around the corner. Thus, for a certain relative velocity between the substrate and the fluid handling structure, the effective meniscus pinning force applied to both corners is the same. However, for a defined length of the edge, the effective pinning force for the sharp corner is more than for the smoothly curved corner. The meniscus pinned at a sharp corner is more unstable at a lower relative velocity between the substrate and the fluid handling structure than a meniscus pinned by the smoothly curved corner.
There may be no meniscus pinning features radially inwardly of the openings 50. The meniscus is pinned between the openings 50 with drag forces induced by gas flow into the openings 50. A gas drag velocity of greater than about 15 m/s, desirably 20 m/s may be sufficient. The amount of evaporation of liquid from the substrate may be reduced thereby reducing both splashing of liquid as well as thermal expansion/contraction effects.
A plurality of discrete needles (which may each include an opening 50 and a passageway 55), for example at least thirty-six (36), each with a diameter of 1 mm and separated by 3.9 mm may be effective to pin a meniscus. In an embodiment, 112 openings 50 are present. The openings 50 may be square, with a length of a side of 0.5 mm, 0.3 mm, 0.2 mm or 0.1 mm.
Other geometries of the bottom of the fluid handling structure are possible. For example, any of the structures disclosed in U.S. patent application publication no. US 2004-0207824 could be used in an embodiment of the invention.
As can be seen in
In an arrangement, a liquid handling device may be as described hereinabove but lacks the gas knife 60. In such an arrangement, when the substrate table WT moves so that the meniscus of the immersion liquid crosses a lyophilic region, or a region of relatively low lyophobicity (i.e. having a lower contact angle to the immersion liquid than other parts of the substrate or substrate table surface), the immersion liquid may spread out into a film over the region of low lyophobicity. In the presence of water reference to lyophobicity is to hydrophobicity and lyophilic is to hydrophilic.
Formation of a film may depend on whether the speed of relative movement of the liquid meniscus and substrate or substrate table (“scan speed”) is greater than a critical speed. With respect to a meniscus pinned by the openings 50, the critical speed is the relative velocity between the fluid handling structure 12 and the facing surface of a substrate and/or substrate table above which the meniscus may be no longer stable. The critical speed depends on the properties of the facing surface. The higher the contact angle of the facing surface the higher the critical speed in general. Once a film has begun to form, it may continue to grow even if the substrate has now moved so that the meniscus is over an area with a higher contact angle. For such an area with higher contact angle, the critical speed is higher. If the substrate moves at critical speed of the area with which the meniscus was previously in contact (i.e. a lower contact angle), the scan speed may be lower than the current critical scan speed.
The film may, in some cases after a short delay, break up into large droplets which are undesirable. In some cases, subsequent movements of the substrate table may cause the droplets to collide with the meniscus, which may generate bubbles in the immersion liquid. Regions having a relatively low lyophobicity (e.g. in the presence of water hydrophobicity) may include the edge of the substrate, a removable feature (e.g. an adherable planar member such as a sticker) on the substrate table, a positioning feature (e.g. an encoder grid or alignment mark) and/or a sensor (e.g. a dose sensor, an image sensor or a spot sensor). In an embodiment a region of relatively low lyophobicity (e.g. in the presence of water hydrophobicity) may be formed by degradation of a coating or surface treatment. The coating or surface treatment may be provided to increase the lyophobicity (e.g. in the presence of water hydrophobicity) of the surface on which it is provided.
In an embodiment, the gas knife 60 may function to reduce the thickness of any liquid film left on the substrate or substrate table. Reducing the thickness of the film may reduce the likelihood that it breaks into droplets. Additionally or alternatively the gas flow from the gas knife 60 may drive liquid towards the openings 50 and be extracted.
In an embodiment, the gas knife 60 operates to reduce the formation of a film. To achieve this, it is desirable that the distance between the center lines of the gas knife aperture 61 and the meniscus pinning opening 50 is selected from the range of from 1.5 mm to 4 mm, desirably from 2 mm to 3 mm. (In an embodiment, the gas knife aperture 61 has a plurality of apertures 61). The second line along which the aperture 61 is arranged generally follows the first line along which the openings 50 are formed so that the distance between adjacent ones of the aperture 61 and opening 50 is within the aforementioned ranges. The second line may be parallel to the line of the openings 50, although this not necessarily the case as described in U.S. Patent Application Publication No. US 2010-0313974, which is hereby incorporated by reference in its entirety.
It may desirable to maintain a constant separation between adjacent apertures 61 (where a plurality of apertures is present along the second line) and adjacent openings 50. In an embodiment this is desirable along the length of the center lines of the apertures 61 and openings 50. In an embodiment the constant separation may be in the region of one of more corners of the fluid handling device.
In arrangements such as those discussed above with reference to
In escaping from the immersion liquid in the space 11, the droplet breaks from a meniscus of the immersion liquid between the fluid handling structure and a facing surface (such as a substrate or a substrate table which supports the substrate). The meniscus may be pinned to the fluid handling structure by a fluid extraction opening which may extract liquid and gas in a two phase fluid flow, as discussed above. The droplet may escape from a trailing side of the immersion space with respect to the movement of the facing surface.
In moving with the facing surface (with respect to the fluid handling structure) the droplet may then encounter a gas knife which directs the droplet back to the liquid extractor. However, sometimes the conditions may be such that the droplet is blocked from moving further away from the meniscus by the gas knife. Sometimes such a droplet may pass beyond the gas knife. In an embodiment the droplet escapes the influence of a component of the fluid handling structure. In another embodiment, the droplet encounters a further extractor and gas knife which may serve to extract and/or block the movement of the droplet away from the meniscus.
When the relative motion between the fluid handling structure and the facing surface in the plane of the facing surface, e.g. the scanning or stepping direction is subsequently changed, such a droplet can move relative to the fluid handling structure back towards the liquid meniscus. The droplet may at least partly be stopped by a gas knife it first passed when escaping from the meniscus. The droplet may be sufficiently large that it passes the gas knife towards the meniscus. The droplet may be extracted by extraction through the extraction opening provided at or at least near the edge or boundary of the immersion liquid confined in the space. However, if such a droplet is not extracted completely it may create a bubble on collision with the liquid meniscus of the liquid confined in the space.
The droplet may be insufficiently large and/or have insufficient relative speed to pass the gas knife towards the meniscus. The droplet may merge with one or more droplets which may be small to form a bigger droplet in front of the gas knife. In this case, the gas knife may be overloaded with immersion liquid, allowing the merged droplet to pass. Such a droplet will move relative to the fluid handling structure towards, and potentially collide with, the meniscus and may potentially create one or more bubbles.
In an embodiment, a significant reduction of the (amount and) size of the droplets passing a gas knife towards a meniscus during a change in the scanning direction may be achieved by adding an extra extraction 300 very close to the gas knife, as shown, for example, in
The extra extraction may prevent saturation (or breaching) of the gas knife. Therefore, the gas knife may retain its effectiveness in blocking a droplet from reaching the meniscus (i.e. its desired droplet stopping power). For example, the extra extraction may remove the immersion liquid that the gas knife collects (or “bulldozers”) when a change in the scanning direction is made. The amount of immersion liquid being extracted may be very little but sufficient to prevent overloading the gas knife. In this situation the gas knife may have to “bulldozer” the immersion liquid, or push the collected immersion liquid. This may require the gas knife flow to be larger than the flow through the extraction at the edge of the space containing the immersion liquid. The provision of the extra extraction 300 may prevent this situation, such that the gas knife flow does not have to be as large, as compared, for example, to an arrangement without the extra extraction.
The extra extraction 300 may be provided by an elongate opening or a plurality of openings 302 adjacent a gas knife device that is used in conjunction with the extraction at the edge of the space containing the immersion liquid. For example, the one or more openings 302 of the extra extraction may be adjacent the elongate aperture 61 of the gas knife 60. The separation between the two lines of openings used for the extraction and the line of the gas knife device may be substantially the same at all locations around the space containing the immersion liquid.
As shown in
In an embodiment, the angle α of the edge 301 of the opening 302 relative to the surface 51 of the fluid handling structure 12 is selected from the range of from 10° to 60°, or from 10° to 45°, or is desirably 20°. The provision of an angled edge 301 of the opening 302 for the extra extraction 300 may be beneficial because it enables the edge of the opening 302 to be as close as possible to the edge of the aperture 61 of the gas knife device 60. However, at the same time, it may be ensured that the thickness of the wall 303 separating the aperture 61 from the channel providing the extra extraction 300 is not so thin that additional manufacturing challenges are created.
The separation of the nearest edges of the elongate aperture 61 of the gas knife device 60 and the elongate opening or plurality of openings 301 for the additional extraction 300, namely adjacent the gas knife device 60, may be selected from the range of from 0.25 mm to 0.75 mm, desirably 0.5 mm. In general, the one or more openings of the additional extraction 300 may be as close as possible to the aperture 61 of the gas knife device 60. This may minimize the size of liquid droplets that may be formed by the merger of smaller droplets adjacent the gas knife. In turn, this may reduce the size of droplets that may pass through the gas knife 60, reducing the likelihood of bubbles forming in the immersion liquid when the droplets collide with the meniscus. However, as noted above, the desire to minimize the separation must be balanced with the difficulties that may be introduced in the process of manufacturing the fluid handling structure 12 if the wall 303 separating the openings of the extra extraction 300 from the aperture 61 of the gas knife device 60 becomes too small.
The width of the opening 302 of the extra extraction 300 may, for example, be selected from the range of from 30 μm to 200 μm, or from 100 μm to 150 μm.
In embodiments as depicted in
In an embodiment, as depicted in
In an embodiment, the controller 63 is configured such that the flow rates of the gas knife 60 from the elongate aperture 61 and the extraction through the one or more openings 50 and the one or more openings 302 of the extra extraction 300 are such that the flow of gas from the gas knife device 60 is substantially perpendicular to the surface of the fluid handling structure between the first and second line. This may be achieved, for example, by balancing the extraction rate through the one or more openings 50 in the first line and the one or more openings 302 of the extra extraction 300 and balancing the total extraction with the gas flow of the gas knife device 60.
Controlling the gas flow rates such that the flow of gas from the gas knife device 60 is perpendicular, or relatively perpendicular, to the surface of the fluid handling structure, and therefore the opposing surface of the substrate table WT and/or substrate W may improve the performance of the gas knife device for a given gas flow rate of the gas knife device. This in turn may increase the scan rate that may be used.
In an arrangement, the gas flow rate out of the aperture 61 in the second line to form the first gas knife device 60 may be less than are equal to 100 liters per minute, for example 75 liters per minute or less. The gas flow rate extracted through the one or more openings 50 in the first line may be less than or equal to 75 liters per minute, for example 50 liters per minute. The gas flow rate of the additional extraction 300 may be, for example, higher because it will only be extracting small quantities of liquid. For example, the gas flow rate of the additional extraction 300 may be approximately 75 liters per minute.
The gas knife is desirably close enough to the openings 50 to create a pressure gradient across the space between them. There is desirably no stagnant zone in which a layer of liquid (i.e. a liquid film), or a liquid droplet can accumulate, for example beneath the fluid handling structure 12. In an embodiment, the flow rate of gas through the openings 50 may be coupled to the gas flow rate through the elongate aperture 61 as described in U.S. Patent Application Publication No. US 2010-0313974 and U.S. Patent Application Publication No. US 2007-0030464, which are each hereby incorporated by reference in its entirety. The gas rate may therefore be directed substantially inwardly from the aperture 61 to the openings 50. Where the gas flow rate through the openings 50 and the aperture 61 is the same, the flow rate may be referred to as ‘balanced’. A balanced gas flow may be desirable when scanning in one direction as it minimizes the thickness of a liquid residue, e.g. film.
In an embodiment, the gas flow rate through the openings 50 in the first line and the aperture 61 in the second line may be balanced on one side of the fluid handling structure 12 when scanning in a first direction, in which the surface opposite the fluid handling structure is traveling away from the meniscus. When traveling in the opposite direction, the gas flow rate of the gas knife 60 may be balanced with the sum of the extraction gas flow rate through the openings 50 in the first line and the extra extraction 300.
As described elsewhere herein, the openings 50 may be arranged to form any closed shape which may include in a non-limiting list, e.g. a quadrilateral such as a parallelogram, a rhombus, a rectangle, a square, or ellipse such as a circle. In each case the aperture 61 for the gas knife 60 may have a substantially similar shape as the shape formed by the openings 50. In an embodiment of the invention, an elongate opening may be provided in the first line in place of the plurality of openings 50 for use in extracting liquid from the space into the fluid handling structure. The separation between the edge of the shape formed by the one or more openings 50 and the shape formed by the aperture 61 is within the aforementioned ranges. In an embodiment the separation is desirably constant.
In general, it will be appreciated that in an embodiment, the arrangement of the fluid handling structure 12 may be configured in order to ensure that the performance of the extra extraction 300 is as high as possible or maximized, namely it is effective at extracting liquid adjacent the gas knife 60. As discussed above, this may be achieved by ensuring that the extraction fluid flow through the extra extraction 300 is sufficiently high. Alternatively or additionally, this may be achieved by ensuring that the additional extraction 300 is as close as possible to the edge of the aperture 61 of the gas knife device 60. Alternatively or additionally, this may be achieved by ensuring that the gas flow through the gas knife device 60 is sufficiently high that there is a radial flow of gas outwards, namely in the direction of the extra extraction 300. Alternatively or additionally, this may be achieved by operating the fluid handling structure 12 at a fly height that is as low as possible, taking into account other limitations of the operation of the fluid handling structure and the lithographic apparatus, namely ensuring that the lower surface 51 of the fluid handling structure 12 is as close as possible to the surface of the substrate W and/or substrate table WT.
One or more openings 71 may be provided in a third line, or droplet line, further away from the immersion liquid than the first and second lines. A second gas knife device is formed by an aperture 72 arranged in a fourth line, or droplet knife line. (In an arrangement, the aperture 72 has a plurality of apertures 72). The fourth line is arranged to be further from the space 11 containing the immersion liquid than the third line. The gas flow through the second gas knife device may be mainly directed inwardly so that most of it passes through the openings 71. In an arrangement the gas flow through the one or more openings 71 and the aperture 72 of the second gas knife device is balanced.
The fluid handling structure of this arrangement includes a first gas knife device operating in conjunction with a first plurality of openings 50. This combination performs the primary extraction of immersion liquid.
The fluid handling structure has a second gas knife device operating with the third line of openings 71. The provision of an additional combination of one or more openings and associated gas knife has been found to be unexpectedly beneficial.
An arrangement such as that depicted in
In arrangements in which the gas knife device is decoupled from the line of openings 50, 71 by a connection to atmospheric pressure, for example by a space that is connected to atmosphere and is located between the gas knife device and the openings 50, 71, further problems may occur. Liquid may accumulate between the gas knife device and the openings, creating large droplets. When the direction of movement from the substrate W and/or substrate table WT relative to the projection system PS and the fluid handling structure changes, such large droplets may collide with the advancing meniscus of the immersion liquid. The collision of a droplet with the meniscus may cause an inclusion of gas, creating a bubble which may be small or larger. Furthermore, a disturbance of the meniscus caused by the collision may also form a bubble. Formation of a bubble is undesirable. An arrangement as described herein may help reduce one or more of the above or other problems.
The provision in the fluid handling structure of two gas knife devices and associated openings for extraction permits the design and/or setting of process control parameters of each combination to be selected for the specific purpose of each combination, which may be different. The gas flow rate out of the aperture 61 in the second line, forming the first gas knife, may be less than the gas flow rate out of the aperture 72 in the fourth line forming the second gas knife device.
In an arrangement it may be desirable for the gas flow rate for the first gas knife device to be relatively low because, as explained above, the flow through the plurality of openings 50 in the first line is in two phase, with a significant amount of liquid. If the flow rate through the aperture 61 in the second line and the plurality of openings 50 in the first line is an unstable two phase flow regime, for example the flow rate may be too high, the two phase flow may result in force variations, e.g. vibrations, which is undesirable. On the other hand, the more stable the flow regime, for example the lower the flow rate, through the aperture 61 in the second line and/or the plurality of openings 50 in the first line, the greater the leakage of immersion liquid past the gas knife device at a given speed of movement of the substrate W and/or substrate table WT relative to the projection system PS and the fluid handling structure. Therefore, the gas flow rate in a single gas knife arrangement was essentially a compromise between these two conflicting demands.
The provision in the fluid handling structure of the second gas knife device and associated extraction beneficially enables a lower flow rate to be used for the first gas knife device. The second gas knife device may be used to remove droplets of liquid that pass beyond the first gas knife device. Furthermore, the gas flow rate through the aperture 72 in the fourth line and the one or more openings 71 in the third line may be relatively high. This is because the flow is largely gas. Beneficially, this increased flow rate improves the performance of removal of liquid droplets from the surface of the substrate W and/or the substrate WT.
In an arrangement, the gas flow rate out of the aperture 61 in the second line to form the first gas knife device may be less than or equal to 100 liters per minute, desirably less than or equal to 75 liters per minute, desirably approximately 50 liters per minute or less. In a particular arrangement, the gas flow rate out of the aperture 72 in the fourth line to form the second gas knife device may be greater than or equal to 60 liters per minute desirably greater than or equal to 100 liters per minute, desirably approximately 125 liters per minute or more.
Although an arrangement such as that depicted in
A controller 73 (which may be the same as the controller 63 discussed above) is provided to control the rate of flow of gas through the aperture 72. The controller 73 also controls the rate of flow of gas through the one or more openings 71. The controller 73 may control an overpressure source 74 (e.g. a pump) and/or an underpressure source 75 (e.g. a pump, possibly the same pump as provides the overpressure). There may be one or more suitable control valves connected to and controlled by the controller 73 in order to provide the desired flow rates. The controller may control the valves based on flow measurements supplied by one or more two phase flow meters arranged to measure the flow through the one or more openings 71, one or more flow meters arranged to measure the flow through the aperture 72, or both. Such an arrangement may be similar to the arrangement for the flow components associated with the first and second lines.
One or both of the controllers 63,73 may be configured to control the gas flow through the openings 50,302,71 in proportion to the gas flow rate of the associated gas knife. In an embodiment, the gas flow rate through the gas knife is up to 20% or up to 10% different from the total flow rate through the associated openings 50,302,71. In an embodiment the gas flow rate through openings 50,302,71 may be controlled to match the gas flow through the associated one or more apertures 61,72. In an embodiment, the gas flow rate through the elongate aperture 72 of the second gas knife may match, for example, be substantially the same as, the gas flow rate through the opening 71. Similarly, the gas flow rate through the elongate aperture 61 of the first gas knife 60 may match the gas flow rate through one or both sets of the openings 50,302 on either side on the first gas knife 60, as discussed above in relation to the discussion of the arrangement depicted in
It will be appreciated that the arrangement of the embodiments of the invention depicted in
In an embodiment, the controllers 63,73 may control the activation of either or both gas knives such that it is active when it is, or may be, required. In other words, the gas knife may be switched off under appropriate predetermined conditions. For example, the gas knife may be switched off when the scan speed is safely below a critical speed and is switched on when the scan speed goes above, or is likely to go above, the critical speed for the surface currently under the meniscus or approaching the meniscus. For example, when a central portion of the substrate moves under the fluid handling structure 12, one or both of the gas knives may be switched off. The contact angle is constant over this portion of the substrate and the critical scan speed for the portion may be sufficiently high that it is not exceeded. Before, during and/or after the meniscus of the space moves over an edge, for example of the substrate, sensor, shutter member or sensor target, one or both of the gas knife devices may be operational.
The third and fourth lines, along which the one or more openings 71 and the aperture 72 may be arranged, may generally follow the first and second lines along which the one or more openings 50 and the aperture 61 are formed. In an embodiment the shape formed by the one or more openings 71 is different from the shape formed by the one or more openings 50. It may be desirable for the third and fourth lines, e.g. in an embodiment the first to fourth lines, to be parallel such that there is a constant separation between the lines.
In an embodiment, the aperture 72 in the fourth line, used to form the second gas knife device where desired may have the same features as described with reference to the aperture 61 in the second line. As with the aperture 61 of the first gas knife device, the aperture 72 may be formed as a single slit or as a plurality of elongate apertures.
The one or more openings 71 in the third line where required may be formed as a single elongate slit or as a plurality of elongate openings.
In an embodiment, the lower surface 51 of the fluid handling structure may be arranged such that an outer portion 51a of the lower surface extends away from the aperture 72 in the fourth line.
In the embodiment depicted in
The recess 80 may include one or more openings 81 connected by a gas conduit 82 to atmosphere, such as the ambient atmosphere, for example to a region external to the fluid handling structure. The recess 80, desirably when connected to an external atmosphere, may function to decouple the first gas knife device and associated one or more openings 50 in the first line from the second gas knife device and associated one or more openings 71 in the third line. The recess 80 decouples the operation of the components located either side; so the features radially inward of the recess are decoupled from the features radially outward.
On either side of the recess 80, there may be respective portions 51b,51c of the lower surface 51 of the fluid handling structure. The respective portions 51b, 51c may respectively separate the edge of the recess 80 from the edge of the one or more openings 71 in the third line and the aperture 61 in the second line. (Note that these edges of aperture 61 and one or more openings 71 are not the second and third lines, because the lines pass through the center of the cross-sections of the openings; the edges are therefore away from the line.) The portions 51b,51c of the lower surface 51 of the fluid handling structure on either side of the recess 80 may, in conjunction with the surface of the substrate W and/or the substrate table WT, function as respective dampers. Such a damper may assist in ensuring that the gas flows from the first and second gas knives flow towards the respective openings 50,71. In an embodiment one or both of the surfaces 51b, 51c may function as a damper.
In order to help reduce the likelihood of liquid collecting within the recess 80, the recess may be provided with a shape without a sharp edge. The surface may be smoothly rounded. A sharp edge is undesirable because liquid may easily collect. For example, the shape of the recess 80 may be configured such that the minimum radius of curvature at any point around the surface of the recess is at least 0.1 mm, desirably greater than 0.2 mm.
In an embodiment, a fluid handling structure may include one or more openings in the lower surface 51 of the fluid handling structure that is connected by a gas conduit to atmosphere, such as the ambient atmosphere, for example to a region external to the fluid handling structure. For example, such openings connected to atmosphere may be provided to an embodiment that does not incorporate a recess such as that described above. Such an arrangement may be used to decouple the first gas knife and associated one or more openings 50 in the first line from the second gas knife device and associated one or more openings 71 in the third line.
As discussed above, liquid collecting on the lower surface 51 of the fluid handling structure, in particular between the aperture 61 in the second line and the one or more openings 71 in the third line, may be undesirable. The collected liquid may cause problems when the direction of relative movement of the substrate W and substrate table WT with respect to the projection system and the fluid handling structure changes. In an embodiment, a lithographic apparatus that includes a fluid handling structure described herein may include a controller PWC that is arranged to control the actuator system of a positioner PW configured to move the substrate table WT and a substrate W held thereon.
The controller PWC may be configured such that if the speed of the substrate table WT relative to the projection system PS is above a particular velocity, steps are taken to reduce the problems that may be caused by the collected liquid as discussed above. The speed may be selected to correspond to a critical velocity of the first gas knife device for example with respect to a portion of the facing surface, or slightly below this critical velocity. The critical velocity may be considered as a velocity of the substrate table WT relative to the projection system PS at which immersion liquid leakage through the gas knife, for example radially outwards, exceeds a given amount. It will be appreciated that such a critical velocity may be dependent on the configuration of the gas knife device, the gas flow rate of the gas knife device and/or the nature of the surface of the substrate and/or substrate table WT at that point.
The speed of the substrate table WT relative to the projection system PS may be above the given speed. It may be required to change the direction of movement of the substrate table relative to the projection system. In an embodiment, the controller PWC is configured such that if the speed is above the given speed and it is required to change direction of the movement of the substrate table, the controller PWC first reduces the speed of the substrate table relative to the projection system PS below the given speed. The controller PWC may then initiate the change of direction. Accordingly, the change of direction no longer occurs above, for example, the critical velocity of the first gas knife device, minimizing or reducing the problems caused by immersion liquid that may have collected between the first and second gas knife devices.
In this embodiment, the gas flow through the aperture 61 in the second line may be balanced with the gas flow through the one or more openings 50 in the first line and the gas flow through the additional extraction 300. The gas flow through the aperture 72 in the fourth line may be balanced with the gas flow through the one or more openings 71 in the third line. It is therefore not necessary to decouple these arrangements radially inward and radially outward of the lower surface 51. Beneficially, therefore, the recess 80 of
As shown in
The separation D2 may be greater than the separation D3. This is in contrast to the embodiment depicted in
An arrangement such as that depicted in
However, it may be desirable to minimize the separation between the lower surface 151 of the fluid handling structure 12 around the aperture 72 in the fourth line that is used to form the second gas knife. For example, the smaller the separation, the lower the flow rate that may be required and/or the wider the aperture 72 may be in order to provide effective drying.
Therefore, the lower surface 151 of the fluid handling structure 12 may be arranged such that the separation of the lower surface 151 around the first line from the upper surface of the substrate W and/or substrate table WT is different from the separation of the lower surface 151 around the fourth line from the upper surface of the substrate W and/or substrate table WT. It is therefore possible to improve the performance of both parts of the fluid handling structure rather than selecting a single or substantially constant separation between all parts of the lower surface 151 and the upper surface of the substrate W and/or the substrate table WT. The need to compromise between the two conflicting requirements may be avoided.
In an embodiment the separation between the lower surface 51;151;251 of the fluid handling structure 12 of any of the embodiments of the present invention and the upper surface of the substrate W and/or the substrate table WT may be selected from the range of 50 μm to 250 μm.
In an embodiment such as that depicted in
It will be appreciated, however, that the optimum separations between the different parts of the lower surface 151 of the fluid handling structure and the upper surface of the substrate W and/or substrate table WT may be dependent upon the nature of the upper surface of the substrate W and/or substrate table WT. For example, a relevant factor may be, in a non-limiting list: the receding contact angle with the liquid, the scan speed of the substrate W and/or substrate table WT and the flow rate of at least one of the gas knife devices.
As noted herein, it may be desirable to optimize, for example, maximize the separation D2 between the lower surface 151 around the one or more openings 50 in the first line and the upper surface of the substrate W and/or substrate table WT. However it should further be appreciated that there may be a maximum practical separation. Beyond the optimum, for example maximum, practical separation that may be used, the leakage of liquid may become excessive.
As depicted in
As depicted in
The different portions 251a,251b,251c of the lower surface 251 of the fluid handling structure 12 may be arranged such that at least one portion has a different separation from the upper surface of the substrate W and/or the substrate table WT, in use. The separation D2 between the lower surface 251 of the fluid handling structure 12 adjacent the one or more openings 50 and the upper surface of the facing surface may be greater than the separation D3 between the lower surface 251 of the fluid handling structure 12 adjacent to the aperture 72 and the upper surface of the facing surface. Each variation described herein, for example in relation to the embodiments depicted in
In the embodiment depicted in
It should be appreciated that, as described above, the lower surface 251 of the fluid handling structure 12 may be arranged such that there are no sharp corners at which liquid may be accumulated. The lower surface may be substantially continuous between the first and second lines, the second and third lines, the third and fourth lines and any combination of the surfaces between adjacent lines. The lower surface 251 of the fluid handling structure may be arranged such that the minimum radius of curvature at any point on the surface is at least 0.1 mm, desirably greater than 0.2 mm.
Although reference has been made to the use of one or more openings 50,302,71 which operate as two phase extractors, in an embodiment based on any of the variations described herein, the one or more openings in either the first or fourth lines or the extra extraction 300 may be replaced by a porous member or microsieve, like that described in U.S. Patent Application Publication No. US 2006-0038968, which is hereby incorporated by reference in its entirety. Each porous member may operate to extract liquid in single phase, or dual phase, fluid flow. In an embodiment, the gas flow may be directed radially inwardly but instead of if being extracted through the porous member, the gas flow may be extracted by a gas extraction opening located between the gas supply aperture and the porous member. In such an embodiment the gas flow helps to reduce the residue liquid left on the facing surface by the gas knife device. An embodiment of the invention may therefore be implemented in such an arrangement, achieving similar benefits as achieved by the embodiments described above. As will be appreciated, any of the above described features can be used with any other feature and it is not only those combinations explicitly described which are covered in this application.
Although specific reference may be made in this text to the use of lithographic apparatus in the manufacture of ICs, it should be understood that the lithographic apparatus described herein may have other applications, such as the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, flat-panel displays, liquid-crystal displays (LCDs), thin-film magnetic heads, etc. The skilled artisan will appreciate that, in the context of such alternative applications, any use of the terms “wafer” or “die” herein may be considered as synonymous with the more general terms “substrate” or “target portion”, respectively. The substrate referred to herein may be processed, before or after exposure, in for example a track (a tool that typically applies a layer of resist to a substrate and develops the exposed resist), a metrology tool and/or an inspection tool. Where applicable, the disclosure herein may be applied to such and other substrate processing tools. Further, the substrate may be processed more than once, for example in order to create a multi-layer IC, so that the term substrate used herein may also refer to a substrate that already contains multiple processed layers.
The terms “radiation” and “beam” used herein encompass all types of electromagnetic radiation, including ultraviolet (UV) radiation (e.g. having a wavelength of or about 365, 248, 193, 157 or 126 nm). The term “lens”, where the context allows, may refer to any one or combination of various types of optical components, including refractive and reflective optical components.
Embodiments of the invention are hereinafter described by means of the following clauses:
Clause 1 A fluid handling structure for a lithographic apparatus, the fluid handling structure successively having, at a boundary from a space configured to contain immersion fluid to a region external to the fluid handling structure: an elongate opening or a plurality of openings arranged in a first line that, in use, is directed towards a substrate and/or a substrate table configured to support the substrate; a gas knife device having an elongate aperture in a second line; and an elongate opening or a plurality of openings adjacent the gas knife device.
Clause 2 The fluid handling structure according to Clause 1, wherein the first and second lines surround the space configured to contain the immersion fluid; the elongate opening or plurality of openings adjacent the gas knife device are provided along the length of the gas knife device; and respective separations between the first line, second line and the elongate opening or plurality of openings adjacent the gas knife device are substantially the same at all locations around the space configured to contain the immersion fluid.
Clause 3 The fluid handling structure according to Clause 1 or Clause 2, wherein a separation of the nearest edges of the elongate opening or plurality of openings adjacent the gas knife device and of the elongate aperture of the gas knife device is selected from the range of from 0.25 mm to 0.75 mm, desirably 0.5 mm.
Clause 4 The fluid handling structure according to any of Clauses 1 to 3, wherein the opening adjacent to the gas knife device is an elongate opening.
Clause 5 The fluid handling structure according to Clause 4, wherein the width of the opening adjacent the gas knife device is selected from the range of from 30 μm to 200 μm, or from 100 μm to 150 μm.
Clause 6 The fluid handling structure according to Clause 4 or Clause 5, wherein the edge of the opening adjacent the gas knife device that is closest to the gas knife device is provided at an oblique angle relative to the surface of the fluid handling structure that is between the first and second lines and beyond the opening adjacent the gas knife device such that the width of the opening adjacent the gas knife decreases with distance from the surface.
Clause 7 The fluid handling structure according to Clause 6, wherein the angle of the edge of the opening adjacent the gas knife device relative to the surface of the fluid handling structure is selected from the range of from 10° to 60°, or from 10° to 45°, or is desirably 20°.
Clause 8 The fluid handling structure according to any of Clauses 1 to 7, wherein the opening adjacent the gas knife device is covered by a porous material.
Clause 9 The fluid handling structure according to any of Clauses 1 to 8, wherein the elongate opening or plurality of openings in the first line and the elongate opening or plurality of openings adjacent the gas knife device are inlets for the passage of a gas and/or liquid into the fluid handling structure.
Clause 10 The fluid handling structure according to any of Clauses 1 to 9, wherein the elongate opening or plurality of openings in the first line are connected, in use, to an under pressure source and the elongate opening or plurality of openings adjacent the gas knife device are connected, in use, to an under pressure source.
Clause 11 The fluid handling structure according to Clause 10, further comprising a controller connected or connectable to the under pressure source connected to the elongate opening or plurality of openings in the first line and/or to the under pressure source connected to the elongate opening or plurality of openings adjacent the gas knife, the controller configured to control the at least one under pressure source such that the gas flow rate through the elongate opening or plurality of openings in the first line and/or the elongate opening or plurality of openings adjacent the gas knife device is such that, in use, the flow of gas from the gas knife device having an elongate aperture in the second line is substantially perpendicular to the surface of the fluid handling structure between the first and second lines.
Clause 12 The fluid handling structure according to any of Clauses 1 to 11, wherein, beyond the elongate opening or plurality of openings adjacent the gas knife device having an elongate aperture in the second line, the fluid handling structure further successively has at the boundary: an elongate opening or a plurality of openings in a third line; and a second gas knife device having an elongate aperture in a fourth line.
Clause 13 The fluid handling structure according to Clause 12, wherein the first to fourth lines successively surround the space configured to contain the immersion fluid; and separation between the respective lines are substantially the same at all locations around the space configured to contain the immersion fluid.
Clause 14 The fluid handling structure according to Clause 12 or Clause 13, wherein the elongate opening or plurality of openings in the third line are inlets for the passage of a gas and/or liquid into the fluid handling structure.
Clause 15 The fluid handling structure according to any one of Clauses 12 to 14, wherein the elongate opening or plurality of openings in the third line is connected, in use, to an under pressure source, and the fluid handling structure further comprises a controller connected or connectable to the under pressure source, the controller configured to control the under pressure source such that the gas flow rate through the elongate opening or plurality of openings in the third line is greater than or equal to the gas flow rate out of the aperture in the fourth line to form the gas knife.
Clause 16 The fluid handling structure according to any one of Clauses 12 to 15, wherein the apertures in the second and fourth lines are connected, in use, to a gas supply, and the fluid handling structure further comprises a controller connected or connectable to the gas supply, the controller configured to control the gas supply such that the gas flow rate out of the aperture in the fourth line to form the gas knife is greater than the gas flow out of the aperture in the second line to form the gas knife.
Clause 17 A fluid handling structure according to any one of Clauses 12 to 16, further comprising a lower surface that, in use, is generally parallel to an upper surface of a substrate and/or a substrate table configured to support the substrate, and the openings and apertures in the first to fourth lines are formed in the lower surface.
Clause 18 A fluid handling structure according to Clause 17, wherein in use, the separations of the area of the lower surface around the openings and apertures in the first to fourth lines from the upper surface of the substrate and/or substrate table are substantially the same.
Clause 19 A fluid handling structure according to Clause 17, wherein in use, the separation of the area of the lower surface around the elongate opening or plurality of openings in the first line from the upper surface of the substrate and/or substrate table is greater than the separation of the area of the lower surface around the aperture in the fourth line from the upper surface of the substrate and/or substrate table.
Clause 20 A fluid handling structure according to any one of Clauses 17 to 19, wherein the fluid handling structure comprises a recess in the lower surface, arranged in a fifth line between the second and third lines.
Clause 21 A fluid handling structure according to Clause 20, wherein the recess comprises at least one opening that is connected by a gas conduit to the region external to the fluid handling structure.
Clause 22 A fluid handling structure for a lithographic apparatus, the fluid handling structure successively having, at a boundary of a space to which in use immersion liquid is confined to a region external to the fluid handling structure: an elongate opening or a plurality of openings to extract fluid and arranged in a first line that, in use, is directed towards a facing surface of, for example, a substrate and/or a substrate table configured to support the substrate; an elongate aperture for a gas knife, in a second line; an elongate opening or a plurality of openings to extract liquid and formed adjacent the elongate aperture for the gas knife.
Clause 23 The fluid handling structure of Clause 22, wherein the elongate opening or the plurality of openings in the first line is to pin a meniscus of the immersion liquid in the space.
Clause 24 A lithographic apparatus, comprising a fluid handling structure according to any one of the preceding Clauses.
Clause 25 A device manufacturing method, comprising: providing an immersion liquid to a space between a final element of a projection system and a substrate and/or a substrate table configured to support the substrate; retrieving immersion liquid from between the final element of the projection system and the substrate and/or substrate table through an elongate opening or a plurality of openings arranged in a first line; forcing immersion liquid towards the elongate opening or plurality of openings in the first line by supplying gas through an aperture in a second line forming a gas knife; extracting gas and remaining immersion liquid through an elongate opening or a plurality of openings adjacent the gas knife and on the opposite side of the gas knife to the elongate opening or plurality of openings in the first line.
While specific embodiments of the invention have been described above, it will be appreciated that the invention may be practiced otherwise than as described. For example, the embodiments of the invention may take the form of a computer program containing one or more sequences of machine-readable instructions describing a method as disclosed above, or a data storage medium (e.g. semiconductor memory, magnetic or optical disk) having such a computer program stored therein. Further, the machine readable instruction may be embodied in two or more computer programs. The two or more computer programs may be stored on one or more different memories and/or data storage media.
The controllers described herein may each or in combination be operable when the one or more computer programs are read by one or more computer processors located within at least one component of the lithographic apparatus. The controllers may each or in combination have any suitable configuration for receiving, processing, and sending signals. One or more processors are configured to communicate with the at least one of the controllers. For example, each controller may include one or more processors for executing the computer programs that include machine-readable instructions for the methods described above. The controllers may include data storage medium for storing such computer programs, and/or hardware to receive such medium. So the controller(s) may operate according the machine readable instructions of one or more computer programs.
One or more embodiments of the invention may be applied to any immersion lithography apparatus, in particular, but not exclusively, those types mentioned above and whether the immersion liquid is provided in the form of a bath, only on a localized surface area of the substrate, or is unconfined. In an unconfined arrangement, the immersion liquid may flow over the surface of the substrate and/or substrate table so that substantially the entire uncovered surface of the substrate table and/or substrate is wetted. In such an unconfined immersion system, the liquid supply system may not confine the immersion fluid or it may provide a proportion of immersion liquid confinement, but not substantially complete confinement of the immersion liquid.
A liquid supply system as contemplated herein should be broadly construed. In certain embodiments, it may be a mechanism or combination of structures that provides a liquid to a space between the projection system and the substrate and/or substrate table. It may comprise a combination of one or more structures, one or more fluid openings including one or more liquid openings, one or more gas openings or one or more openings for two phase flow. The openings may each be an inlet into the immersion space (or an outlet from a fluid handling structure) or an outlet out of the immersion space (or an inlet into the fluid handling structure). In an embodiment, a surface of the space may be a portion of the substrate and/or substrate table, or a surface of the space may completely cover a surface of the substrate and/or substrate table, or the space may envelop the substrate and/or substrate table. The liquid supply system may optionally further include one or more elements to control the position, quantity, quality, shape, flow rate or any other features of the liquid. In an embodiment, the immersion liquid may be water.
The descriptions above are intended to be illustrative, not limiting. Thus, it will be apparent to one skilled in the art that modifications may be made to the invention as described without departing from the scope of the claims set out below.
This application is a continuation of U.S. patent application Ser. No. 15/016,041, filed on Feb. 4, 2016, now allowed, which is a continuation of U.S. patent application Ser. No. 13/090,311, filed on Apr. 20, 2011, now U.S. Pat. No. 9,256,136, which claims priority and benefit under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 61/326,972, entitled “Fluid Handling Structure, Lithographic Apparatus and Device Manufacturing Method”, filed on Apr. 22, 2010, and to U.S. Provisional Patent Application Ser. No. 61/362,961, entitled “Fluid Handling Structure, Lithographic Apparatus and Device Manufacturing Method”, filed on Jul. 9, 2010. The contents of those applications are incorporated herein in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
3573975 | Dhaka et al. | Apr 1971 | A |
3648587 | Stevens | Mar 1972 | A |
4346164 | Tabarelli et al. | Aug 1982 | A |
4390273 | Loebach et al. | Jun 1983 | A |
4396705 | Akeyama et al. | Aug 1983 | A |
4441808 | Giacomelli | Apr 1984 | A |
4480910 | Takanashi et al. | Nov 1984 | A |
4509852 | Tabarelli et al. | Apr 1985 | A |
4778995 | Kulpinski et al. | Oct 1988 | A |
4801352 | Piwczyk | Jan 1989 | A |
4980896 | Forsyth et al. | Dec 1990 | A |
5040020 | Rauschenbach et al. | Aug 1991 | A |
5103102 | Economou et al. | Apr 1992 | A |
5121256 | Corle et al. | Jun 1992 | A |
5174829 | Gray | Dec 1992 | A |
5528100 | Igeta et al. | Jun 1996 | A |
5610683 | Takahashi | Mar 1997 | A |
5668672 | Oomura | Sep 1997 | A |
5689377 | Takahashi | Nov 1997 | A |
5715039 | Fukuda et al. | Feb 1998 | A |
5825043 | Suwa | Oct 1998 | A |
5835275 | Takahashi | Nov 1998 | A |
5871584 | Tateyama et al. | Feb 1999 | A |
5874820 | Lee | Feb 1999 | A |
5900354 | Batchelder | May 1999 | A |
5997963 | Davison | Dec 1999 | A |
6126169 | Sogard et al. | Oct 2000 | A |
6191429 | Suwa | Feb 2001 | B1 |
6230722 | Mitsumori et al. | May 2001 | B1 |
6236634 | Lee et al. | May 2001 | B1 |
6438074 | Aki et al. | Aug 2002 | B1 |
6488040 | De Larios et al. | Dec 2002 | B1 |
6560032 | Hatano | May 2003 | B2 |
6600547 | Watson et al. | Jul 2003 | B2 |
6603130 | Bisschops et al. | Aug 2003 | B1 |
6633365 | Suenaga | Oct 2003 | B2 |
6867844 | Vogel et al. | Mar 2005 | B2 |
6952253 | Lof et al. | Oct 2005 | B2 |
6954256 | Flagello et al. | Oct 2005 | B2 |
7009682 | Bleeker | Mar 2006 | B2 |
7050146 | Duineveld et al. | May 2006 | B2 |
7075616 | Derksen et al. | Jul 2006 | B2 |
7081943 | Lof et al. | Jul 2006 | B2 |
7193232 | Lof et al. | Mar 2007 | B2 |
7199858 | Lof et al. | Apr 2007 | B2 |
7326522 | Dierichs | Feb 2008 | B2 |
7339650 | Coon et al. | Mar 2008 | B2 |
7352434 | Streefkerk et al. | Apr 2008 | B2 |
7359030 | Simon et al. | Apr 2008 | B2 |
7808614 | Luijten et al. | Oct 2010 | B2 |
7834974 | Kemper et al. | Nov 2010 | B2 |
7907251 | Hasegawa | Mar 2011 | B2 |
8144305 | Leenders et al. | Mar 2012 | B2 |
8218126 | Steffens et al. | Jul 2012 | B2 |
8351018 | Direcks et al. | Jan 2013 | B2 |
8587762 | Streefkerk et al. | Nov 2013 | B2 |
8614784 | Riepen | Dec 2013 | B2 |
8902400 | Lafarre et al. | Dec 2014 | B2 |
9256136 | Cortie | Feb 2016 | B2 |
9846372 | Cortie | Dec 2017 | B2 |
20010037819 | Mitsumori et al. | Nov 2001 | A1 |
20020008118 | Cavallaro | Jan 2002 | A1 |
20020016082 | Mertens et al. | Feb 2002 | A1 |
20020020821 | Van Santen et al. | Feb 2002 | A1 |
20020025687 | Zahorik et al. | Feb 2002 | A1 |
20020163629 | Switkes et al. | Nov 2002 | A1 |
20030030916 | Suenaga | Feb 2003 | A1 |
20030123040 | Almogy | Jul 2003 | A1 |
20030174408 | Rostalski et al. | Sep 2003 | A1 |
20040000627 | Schuster | Jan 2004 | A1 |
20040021844 | Suenaga | Feb 2004 | A1 |
20040069329 | De Larios et al. | Apr 2004 | A1 |
20040075895 | Lin | Apr 2004 | A1 |
20040109237 | Epple et al. | Jun 2004 | A1 |
20040114117 | Bleeker | Jun 2004 | A1 |
20040118184 | Violette | Jun 2004 | A1 |
20040119954 | Kawashima et al. | Jun 2004 | A1 |
20040125351 | Krautschik et al. | Jul 2004 | A1 |
20040136494 | Lof et al. | Jul 2004 | A1 |
20040160582 | Lof et al. | Aug 2004 | A1 |
20040165159 | Lof et al. | Aug 2004 | A1 |
20040169834 | Richter et al. | Sep 2004 | A1 |
20040169924 | Flagello et al. | Sep 2004 | A1 |
20040180294 | Baba-Ali et al. | Sep 2004 | A1 |
20040180299 | Rolland et al. | Sep 2004 | A1 |
20040207824 | Lof et al. | Oct 2004 | A1 |
20040211920 | Derksen et al. | Oct 2004 | A1 |
20040224265 | Endo et al. | Nov 2004 | A1 |
20040224525 | Endo et al. | Nov 2004 | A1 |
20040227923 | Flagello et al. | Nov 2004 | A1 |
20040239954 | Bischoff | Dec 2004 | A1 |
20040253547 | Endo et al. | Dec 2004 | A1 |
20040253548 | Endo et al. | Dec 2004 | A1 |
20040257544 | Vogel et al. | Dec 2004 | A1 |
20040259008 | Endo et al. | Dec 2004 | A1 |
20040259040 | Endo et al. | Dec 2004 | A1 |
20040263808 | Sewell | Dec 2004 | A1 |
20040263809 | Nakano | Dec 2004 | A1 |
20050007569 | Streefkerk et al. | Jan 2005 | A1 |
20050018155 | Cox et al. | Jan 2005 | A1 |
20050024609 | De Smit et al. | Feb 2005 | A1 |
20050030497 | Nakamura | Feb 2005 | A1 |
20050030506 | Schuster | Feb 2005 | A1 |
20050036121 | Hoogendam et al. | Feb 2005 | A1 |
20050036183 | Yeo et al. | Feb 2005 | A1 |
20050036184 | Yeo et al. | Feb 2005 | A1 |
20050036213 | Mann et al. | Feb 2005 | A1 |
20050037269 | Levinson | Feb 2005 | A1 |
20050042554 | Dierichs et al. | Feb 2005 | A1 |
20050046813 | Streefkerk et al. | Mar 2005 | A1 |
20050046934 | Ho et al. | Mar 2005 | A1 |
20050048223 | Pawloski et al. | Mar 2005 | A1 |
20050052632 | Miyajima | Mar 2005 | A1 |
20050068499 | Dodoc et al. | Mar 2005 | A1 |
20050068639 | Pierrat et al. | Mar 2005 | A1 |
20050073670 | Carroll | Apr 2005 | A1 |
20050084794 | Meagley et al. | Apr 2005 | A1 |
20050094116 | Flagello et al. | May 2005 | A1 |
20050094125 | Arai | May 2005 | A1 |
20050100745 | Lin et al. | May 2005 | A1 |
20050110973 | Streefkerk et al. | May 2005 | A1 |
20050117224 | Shafer et al. | Jun 2005 | A1 |
20050122497 | Lyons et al. | Jun 2005 | A1 |
20050122505 | Miyajima | Jun 2005 | A1 |
20050132914 | Mulkens et al. | Jun 2005 | A1 |
20050134815 | Van Santen et al. | Jun 2005 | A1 |
20050134817 | Nakamura | Jun 2005 | A1 |
20050140948 | Tokita | Jun 2005 | A1 |
20050141098 | Schuster | Jun 2005 | A1 |
20050145803 | Hakey et al. | Jul 2005 | A1 |
20050146693 | Ohsaki | Jul 2005 | A1 |
20050146694 | Tokita | Jul 2005 | A1 |
20050146695 | Kawakami | Jul 2005 | A1 |
20050147920 | Lin et al. | Jul 2005 | A1 |
20050151942 | Kawashima | Jul 2005 | A1 |
20050153424 | Coon | Jul 2005 | A1 |
20050158673 | Hakey et al. | Jul 2005 | A1 |
20050164502 | Deng et al. | Jul 2005 | A1 |
20050185269 | Epple et al. | Aug 2005 | A1 |
20050190435 | Shafer et al. | Sep 2005 | A1 |
20050190455 | Rostalski et al. | Sep 2005 | A1 |
20050200815 | Akamatsu | Sep 2005 | A1 |
20050205108 | Chang et al. | Sep 2005 | A1 |
20050213061 | Hakey et al. | Sep 2005 | A1 |
20050213065 | Kitaoka | Sep 2005 | A1 |
20050213066 | Sumiyoshi | Sep 2005 | A1 |
20050213072 | Schenker et al. | Sep 2005 | A1 |
20050217135 | O'Donnell et al. | Oct 2005 | A1 |
20050217137 | Smith et al. | Oct 2005 | A1 |
20050217703 | O'Donnell | Oct 2005 | A1 |
20050219489 | Nei et al. | Oct 2005 | A1 |
20050225737 | Weissenrieder et al. | Oct 2005 | A1 |
20050233081 | Tokita | Oct 2005 | A1 |
20050259234 | Hirukawa et al. | Nov 2005 | A1 |
20050270505 | Smith | Dec 2005 | A1 |
20050286032 | Lof et al. | Dec 2005 | A1 |
20060012765 | Kameyama | Jan 2006 | A1 |
20060023182 | Novak et al. | Feb 2006 | A1 |
20060023184 | Coon et al. | Feb 2006 | A1 |
20060033892 | Cadee et al. | Feb 2006 | A1 |
20060033898 | Cadee et al. | Feb 2006 | A1 |
20060033899 | Hazelton et al. | Feb 2006 | A1 |
20060038968 | Kemper et al. | Feb 2006 | A1 |
20060066826 | Luijten et al. | Mar 2006 | A1 |
20060087630 | Kemper et al. | Apr 2006 | A1 |
20060102849 | Mertens et al. | May 2006 | A1 |
20060114445 | Ebihara | Jun 2006 | A1 |
20060119809 | Verhagen et al. | Jun 2006 | A1 |
20060158627 | Kemper et al. | Jul 2006 | A1 |
20060221315 | Beckers et al. | Oct 2006 | A1 |
20060232756 | Lof et al. | Oct 2006 | A1 |
20060290909 | Donders et al. | Dec 2006 | A1 |
20070030464 | Kemper et al. | Feb 2007 | A1 |
20070085990 | Chibana | Apr 2007 | A1 |
20070132974 | Hazelton et al. | Jun 2007 | A1 |
20070139631 | Novak et al. | Jun 2007 | A1 |
20070247603 | Hazelton et al. | Oct 2007 | A1 |
20070268466 | Leenders et al. | Nov 2007 | A1 |
20080002169 | Hasegawa et al. | Jan 2008 | A1 |
20080094590 | Coon | Apr 2008 | A1 |
20080192214 | Leenders et al. | Aug 2008 | A1 |
20080212046 | Riepen et al. | Sep 2008 | A1 |
20080218726 | Lof et al. | Sep 2008 | A1 |
20090086175 | Streefkerk et al. | Apr 2009 | A1 |
20090122283 | Hasegawa | May 2009 | A1 |
20090147227 | Steffens et al. | Jun 2009 | A1 |
20090174871 | De Jong et al. | Jul 2009 | A1 |
20090201472 | Kato | Aug 2009 | A1 |
20090237632 | Direcks et al. | Sep 2009 | A1 |
20090279058 | Hasegawa | Nov 2009 | A1 |
20090279060 | Direcks et al. | Nov 2009 | A1 |
20090279062 | Direcks et al. | Nov 2009 | A1 |
20100313974 | Riepen et al. | Dec 2010 | A1 |
20110013159 | Kramer et al. | Jan 2011 | A1 |
20110090472 | Riepen et al. | Apr 2011 | A1 |
20110216292 | Lafarre et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
1892438 | Jan 2007 | CN |
101452218 | Jun 2009 | CN |
206 607 | Feb 1984 | DE |
221 563 | Apr 1985 | DE |
224448 | Jul 1985 | DE |
242880 | Feb 1987 | DE |
0023231 | Feb 1981 | EP |
0418427 | Mar 1991 | EP |
1039511 | Sep 2000 | EP |
1 420 300 | May 2004 | EP |
1 477 856 | Nov 2004 | EP |
1 571 696 | Sep 2005 | EP |
1 571 697 | Sep 2005 | EP |
1 628 329 | Feb 2006 | EP |
1 861 597 | Jul 2006 | EP |
2474708 | Jul 1981 | FR |
57-153433 | Sep 1982 | JP |
58-202448 | Nov 1983 | JP |
59-19912 | Feb 1984 | JP |
62-065326 | Mar 1987 | JP |
62-121417 | Jun 1987 | JP |
62-150828 | Jul 1987 | JP |
63-49893 | Mar 1988 | JP |
63-157419 | Jun 1988 | JP |
04-305915 | Oct 1992 | JP |
04-305917 | Oct 1992 | JP |
05-62877 | Mar 1993 | JP |
06-124873 | May 1994 | JP |
6-168866 | Jun 1994 | JP |
07-132262 | May 1995 | JP |
7-220990 | Aug 1995 | JP |
08-136475 | May 1996 | JP |
08-171054 | Jul 1996 | JP |
08-316125 | Nov 1996 | JP |
08-330224 | Dec 1996 | JP |
08-334695 | Dec 1996 | JP |
10-003039 | Jan 1998 | JP |
10-020195 | Jan 1998 | JP |
10-228661 | Aug 1998 | JP |
10-255319 | Sep 1998 | JP |
10-303114 | Nov 1998 | JP |
10-340846 | Dec 1998 | JP |
11-176727 | Jul 1999 | JP |
2000-058436 | Feb 2000 | JP |
2000-331931 | Nov 2000 | JP |
2001-091849 | Apr 2001 | JP |
2002-033267 | Jan 2002 | JP |
2002-513856 | May 2002 | JP |
2003-151948 | May 2003 | JP |
2004-193252 | Jul 2004 | JP |
2007-012954 | Jan 2007 | JP |
2007-142366 | Jun 2007 | JP |
2008-147652 | Jun 2008 | JP |
2009-088508 | Apr 2009 | JP |
2009-094145 | Apr 2009 | JP |
2009-105469 | May 2009 | JP |
2009-141359 | Jun 2009 | JP |
2009-188383 | Aug 2009 | JP |
10-0803266 | Feb 2008 | KR |
1020080022201 | Mar 2008 | KR |
I232357 | May 2005 | TW |
200921294 | May 2009 | TW |
200951637 | Dec 2009 | TW |
9840791 | Sep 1998 | WO |
9949504 | Sep 1999 | WO |
02091078 | Nov 2002 | WO |
02097402 | Dec 2002 | WO |
03077036 | Sep 2003 | WO |
03077037 | Sep 2003 | WO |
03085708 | Oct 2003 | WO |
2004019128 | Mar 2004 | WO |
2004053596 | Jun 2004 | WO |
2004053950 | Jun 2004 | WO |
2004053951 | Jun 2004 | WO |
2004053952 | Jun 2004 | WO |
2004053953 | Jun 2004 | WO |
2004053954 | Jun 2004 | WO |
2004053955 | Jun 2004 | WO |
2004053956 | Jun 2004 | WO |
2004053957 | Jun 2004 | WO |
2004053958 | Jun 2004 | WO |
2004053959 | Jun 2004 | WO |
2004055803 | Jul 2004 | WO |
2004057589 | Jul 2004 | WO |
2004057590 | Jul 2004 | WO |
2004077154 | Sep 2004 | WO |
2004081666 | Sep 2004 | WO |
200486470 | Oct 2004 | WO |
2004090577 | Oct 2004 | WO |
2004090633 | Oct 2004 | WO |
2004090634 | Oct 2004 | WO |
2004092830 | Oct 2004 | WO |
2004092833 | Oct 2004 | WO |
2004093130 | Oct 2004 | WO |
2004093159 | Oct 2004 | WO |
2004093160 | Oct 2004 | WO |
2004095135 | Nov 2004 | WO |
2005001432 | Jan 2005 | WO |
2005003864 | Jan 2005 | WO |
2005006026 | Jan 2005 | WO |
2005008339 | Jan 2005 | WO |
2005010611 | Feb 2005 | WO |
2005013008 | Feb 2005 | WO |
2005015283 | Feb 2005 | WO |
2005017625 | Feb 2005 | WO |
2005019935 | Mar 2005 | WO |
2005022266 | Mar 2005 | WO |
2005024325 | Mar 2005 | WO |
2005024517 | Mar 2005 | WO |
2005034174 | Apr 2005 | WO |
2005050324 | Jun 2005 | WO |
2005054953 | Jun 2005 | WO |
2005059617 | Jun 2005 | WO |
2005059618 | Jun 2005 | WO |
2005059645 | Jun 2005 | WO |
2005059654 | Jun 2005 | WO |
2005064955 | Jun 2005 | WO |
2005062128 | Jul 2005 | WO |
2005064400 | Jul 2005 | WO |
2005064405 | Jul 2005 | WO |
2005069055 | Jul 2005 | WO |
2005069078 | Jul 2005 | WO |
2005069081 | Jul 2005 | WO |
2005071491 | Aug 2005 | WO |
2005074606 | Aug 2005 | WO |
2005076084 | Aug 2005 | WO |
2005081030 | Sep 2005 | WO |
2005081067 | Sep 2005 | WO |
2006093340 | Sep 2006 | WO |
2007046523 | Apr 2007 | WO |
Entry |
---|
European Search Report dated Jun. 7, 2011 in corresponding European Patent Application No. EP 11 15 6770 |
Korean Office Action dated Aug. 28, 2012 in corresponding Korean Patent Application No. 10-2011-0037783. |
Singapore Written Opinion dated Aug. 17, 2012 in corresponding Singapore Patent Application No. 201102053-4. |
Chinese Office Action dated Mar. 19, 2013 in corresponding Chinese Patent Application No. 201110096632.9. |
Japanese Office Action dated Apr. 24, 2013 in corresponding Japanese Patent Application No. 2011-090841. |
Taiwan Office Action dated Sep. 10, 2013 in corresponding Taiwan Patent Application No. 100109969. |
European Office Action dated Mar. 12, 2014 in corresponding European Patent Application No. EP 11 156 770.7 |
M. Switkes et al., “Immersion Lithography at 157 nm”, MIT Lincoln Lab, Orlando Jan. 2001, Dec. 17, 2001. |
M. Switkes et al., “Immersion Lithography at 157 nm”, J. Vac. Sci. Technol. B., vol. 19, No. 6, Nov./Dec. 2001, pp. 2353-2356. |
B.J. Lin, “Drivers, Prospects and Challenges for Immersion Lithography”, TSMC, Inc., Sep. 2002. |
B.J. Lin, “Proximity Printing Through Liquid”, IBM Technical Disclosure Bulletin, vol. 20, No. 11B, Apr. 1978, p. 4997. |
B.J. Lin, “The Paths to Subhalf-Micrometer Optical Lithography”, SPIE vol. 922, Optical/Laser Microlithography (1988), pp. 256-269. |
G.W.W. Stevens, “Reduction of Waste Resulting from Mask Defect”, Solid State Technology, Aug. 1978, vol. 21 008, pp. 68-72. |
S. Owa et al., “Immersion Lithography; its potential performance and issues”, SPIE Microlithography 2003, 5040-186, Feb. 27, 2003. |
S. Owa et al., “Advantage and Feasibility of Immersion Lithography”, Proc. SPIE 5040 (2003). |
Nikon Precision Europe GmbH, “Investor Relations—Nikon's Real Solutions”, May 15, 2003. |
H. Kawata et al., “Optical Projection Lithography using Lenses with Numerical Apertures Greater than Unity”, Microelectronic Engineering 9 (1989), pp. 31-36. |
J.A. Hoffnagle et al., “Liquid Immersion Deep-Ultraviolet Interferometric Lithography”, J. Vac. Sci. Technol. B., vol. 17, No. 6, Nov./Dec. 1999, pp. 3306-3309. |
B.W. Smith et al., “Immersion Optical Lithography at 193nm”, Future Fab International, vol. 15, Jul. 11, 2003. |
H. Kawata et al., “Fabrication of 0.2 μm Fine Patterns Using Optical Projection Lithography with an Oil Immersion Lens”, Jpn. J. Appl. Phys. vol. 31 (1992), pp. 4174-4177. |
G. Owen et al., “1/8 μm Optical Lithography”, J. Vac. Sci. Technol. B., vol. 10, No. 6, Nov./Dec. 1992, pp. 3032-3036. |
H. Hogan, “New Semiconductor Lithography Makes a Splash”, Photonics Spectra, Photonics TechnologyWorld, Oct. 2003 Edition, pp. 1-3. |
S. Owa and N. Nagasaka, “Potential Performance and Feasibility of Immersion Lithography”, NGL Workshop 2003, Jul. 10, 2003, Slide Nos. 1-33. |
S. Owa et al., “Update of 193nm immersion exposure tool”, Litho Forum, International SEMATECH, Los Angeles, Jan. 27-29, 2004, Slide Nos. 1-51. |
H. Hata, “The Development of Immersion Exposure Tools”, Litho Forum, International SEMATECH, Los Angeles, Jan. 27-29, 2004, Slide Nos. 1-24. |
T. Matsuyama et al., “Nikon Projection Lens Update”, SPIE Microlithography 2004, 12 pages (Mar. 2004). |
“Depth-of-Focus Enhancement Using High Refractive Index Layer on the Imaging Layer”, IBM Technical Disclosure Bulletin, vol. 27, Nl. 11, Apr. 1985, p. 6521. |
A. Suzuki, “Lithography Advances on Multiple Fronts”, EEdisign, EE Times, Jan. 5, 2004. |
B. Line, The k3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography, J. Microlith., Microfab., Microsyst. 1(1):7-12. |
M. Switkes et al., “Immersion Lithography: Optics for the 50 nm Node”, 157 Anvers-1, Sep. 4, 2002. |
Number | Date | Country | |
---|---|---|---|
20180101102 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
61362961 | Jul 2010 | US | |
61326972 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15016041 | Feb 2016 | US |
Child | 15838634 | US | |
Parent | 13090311 | Apr 2011 | US |
Child | 15016041 | US |