Fluid-pressure regulated wafer polishing head

Information

  • Patent Grant
  • 6443824
  • Patent Number
    6,443,824
  • Date Filed
    Monday, June 25, 2001
    23 years ago
  • Date Issued
    Tuesday, September 3, 2002
    22 years ago
Abstract
A wafer polishing head utilizes a wafer backing member having a wafer facing pocket which is sealed against the wafer and is pressurized with air or other fluid to provide a uniform force distribution pattern across the width of the wafer inside an edge seal feature at the perimeter of the wafer to urge (or press) the wafer uniformly toward a polishing pad. Wafer polishing is carried out uniformly without variations in the amount of wafer material across the usable area of the wafer. A frictional force between the seal feature of the backing member and the surface of the wafer transfers rotational movement of the head to the wafer during polishing. A pressure controlled bellows supports and presses the wafer backing member toward the polishing pad and accommodates any dimensional variation between the polishing head and the polishing pad as the polishing head is moved relative to the polishing pad. An integral, but independently retractable and extendable retaining ring assembly is provided around the wafer backing member and wafer to uniformly and independently control the pressure of a wafer perimeter retaining ring on the polishing ad of a wafer polishing bed.
Description




FIELD OF THE INVENTION




This invention relates generally to mechanical polishing, and in particular to polishing heads used to polish generally circular semiconductor wafers in the semiconductor industry.




BACKGROUND OF THE INVENTION




This invention provides improved construction and easier operability of polishing heads useful for positioning a substrate, in particular, a semiconductor substrate, on the surface of a polishing pad. Such heads also provide a controllable biasing, or loading, between the surface of the substrate and the polishing surface.




A typical substrate polishing apparatus positions a surface of a substrate against a polishing surface. Such a polishing configuration is useful for polishing the substrate after it has been sliced from a boule (single crystal), to provide smoothly planar, parallel, front and back sides thereon. It is also useful for polishing a surface of the substrate on which one or more film layers have been deposited, where polishing is used to planarize the surface of the substrate on which one or more film layers have been deposited. A slurry having both chemically reactive and abrasive components is used in conjunction with the positioning of the film layer surface against a moving polishing surface to provide the desired polishing. This is known as chemical mechanical polishing.




A typical wafer polishing apparatus employs a carrier, or polishing head, to hold the substrate and position the film layer surface of the substrate against a polishing surface. The polishing surface is typically provided by placing a large polishing pad, typically as large as one meter in diameter, on a massive rotatable platen. The platen is driven by a motor to rotate the polishing pad and thus provide relative motion between the pad and the film layer surface of the substrate. As the pad rotates, it tends to pull the substrate out of the: carrier. Therefore, the carrier also typically includes a recess within which the substrate is received. This recess is commonly provided by extending a retainer downwardly from the substrate receiving surface of the carrier positioned adjacent to, and extending circumferentially around, the edge of the substrate. The apparatus also provides a means for positioning the carrier over the polishing pad and biasing the carrier towards the pad to load the substrate against the pad, and a drive means for providing rotational, vibratory or oscillatory motion to the carrier.




An example of a polishing head having a retaining ring is shown in U.S. Pat. No. 5,205,082, by Shendon et al. which discloses pressurized diaphragm arrangement which urges a wafer carrier and wafer retainer toward a polishing pad.




In some carrier head configurations, the force urging the retaining ring toward the polishing pad is dependent on the predetermined spring constant of a circular leaf spring and its compression. The spring-loaded retaining rings are subject to bending and torsional deflection due to the spring configuration which does not provide a continuous contact force but provides a series of point loads, clamping the ring to the polishing pad. The retaining ring bends and deflects because it is allowed to flex between these point loads. This flexing can cause variation in the clearance between the ring and pad which affects the depth of slurry that passes under the ring, and it also affects the pad compression adjacent to the edge of the wafer. Variations in the depth of polishing slurry and in pad compression adjacent to the edge of the wafer can cause differential polishing of the wafer to the detriment of polishing uniformity.




The object in each head configuration is to provide a fixture which will uniformly polish the wafer across its full width without unacceptable variations in the thickness of the wafer. These prior art configurations as described can introduce polishing variations due to bladder edge effects, non-uniformly distributed force pressing the wafer to the polishing pad, and retaining ring deflections which require close and frequent monitoring to assure satisfactory polishing results.




SUMMARY OF THE INVENTION




This invention relates to a polishing head substrate (wafer) backing member facing the back of, and being sealed to, a substrate (wafer) being polished. The wafer is sealed to a cavity located in the member around the perimeter of the cavity and a fluid (preferably gas although it may be a liquid) pressurizes the cavity and the back of the waft against a slurry containing polishing pad.




The wafer backing member preferably includes a seal feature, e.g. an O-ring, lip seal, or other seal member which extends from the backing member adjacent to the perimeter of the backing member to form a recess between the wafer and the member to hold a fluid or gas in the recess behind the wafer to provide a uniform pressure across the surface of the wafer being pressed against the polishing pad. A gas tight bellows chamber supports the wafer backing member and urges it toward the polishing pad to provide primary loading of the substrate against the pad. When the bellows is pressurized to urge the substrate against the polishing pad, it compresses the seal. Simultaneously, the pressure in the cavity formed by the seal may be changed, to selectively vary the polishing of the substrate. The cavity may be evacuated, to urge the center of the substrate away from the pad to increase polishing at the substrate edge as compared to its center, and it may be pressurized to enable uniform loading of the substrate against the pad. The pressure in the cavity urges the substrate away from the holding member, and thereby decompresses the seal. The pressure in the cavity may be sufficiently large to separate the substrate from the seal, at which point the cavity pressure will release, or “blow-by,” through the resulting gap between the substrate and the seal.




In a further aspect of the invention, a retractable and pressure extendable retaining ring assembly extends around the backing member and prevents the wafer from sliding out from below the surface of the substrate backing member. An annular ring extending bladder extends along the backside of the ring, the bladder when pressurized urges the ring against the pad. The force with which the retaining ring is clamped to the polishing pad is dependant on the gas pressure maintained in this bladder.




These inventive configurations, alone or in combination, provide several advantages. One advantage is direct control of a uniform force on the back surface of the wafer being polished within the perimeter of the seal extending between the holding member and the wafer. A pressure is uniformly maintained without the complication or edge effects of an intermediate bladder in direct contact with the substrate. Another advantage is that the total force pressing the wafer backing member toward the wafer is controlled separately by the force created by controlling the pressure within the bellows completely independent of the influence of the pressure cavity formed between the wafer and the backing member. If the force on the wafer due to the pressure behind the wafer in the wafer facing cavity exceeds the force on the seal to the wafer exerted by the pressure in the bellows then the wafer will lift away from its seal and seal blow-by will occur until equilibrium restores the seal.




The pressure within the wafer facing cavity controls the distribution pattern by which this total force is transmitted from the wafer backing member to the wafer. Providing a vacuum to the cavity can cause the center of a supported wafer to bow inward, so that only a perimeter polishing contact is achieved. In contrast, positive pressure in excess of the seal contact pressure will cause the wafer to lift off (move away from) the seal and for gas to blow-by (it cannot cause outward bowing of the substrate as the pressure at the center of the substrate can never exceed the pressure at the perimeter of the substrate), and will also cause a uniform pressure on the back of the wafer. The bowing or deflection of the wafer, if any, is controlled and limited by the pressure on the perimeter seal, so long as the internal pressure of the recess or cavity facing the wafer does not exceed the seal pressure and cause seal blow-by.




This configuration according to the invention nearly guarantees that, as long as the force provided by the backing pressure urging the wafer from the seal is maintained at or slightly below the pressure on the seal provided by the bellows, the force clamping the wafer to the polishing pad for polishing will be uniform across the area of the wafer. In reality, because it is desired to maintain a gas tight perimeter seal, in operation the pressure in the wafer facing cavity will be slightly less than the pressure at which seal blow-by occurs. Under these conditions, a slightly greater pressure will be present between the substrate and the pad at the seal location which will slightly increase the polishing (material removed) in the perimeter ring (seal) area. However, the outer three millimeters of the substrate are considered to be a non-usable handling margin and therefore slight additional polishing (material removed) in this narrow band at the edge of the substrate is not considered deleterious.




The extension and retraction of the wafer retaining ring assembly is independently controlled by the use of the continuous annular bladder positioned around the perimeter of the wafer backing member. Such a configuration can eliminate the pressure variations associated with the point contacts of springs provided to urge the ring into contact with the pad. In one configuration, one or more restoring springs are supported on a rigid portion of the retaining ring backing ring to cause the retaining ring to retract from its lowered position when the extension bladder is depressurized.




The frictional force between the seal at the perimeter of the wafer backing member is sufficient such that when the polishing head is rotated during polishing while the wafer is in contact with the polishing slurry on the polishing pad, there is sufficient frictional force that the wafer rotates with the polishing head and overcomes the resistance to rotation with the head due to the motion of the pad and the polishing media on the polishing pad.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a cross section of an embodiment according to the invention;





FIG. 2

is a close up view of the right side of

FIG. 1

showing the periphery of the wafer backing member with an O-ring seal; and





FIG. 3

is a close up view of the right side of

FIG. 1

showing the periphery of the wafer backing member with a lip seal.











DETAILED DESCRIPTION





FIG. 1

shows a polishing head assembly


100


in a configuration according to the invention. The polishing head


100


includes a polishing head housing support plate


102


which is integral with its rod or stem support member. This support plate


102


is generally circular so as to match the circular configuration of the substrate or wafer


142


to be polished. A polishing head housing descending wall


104


is attached to the bottom of the support plate


102


by a descending wall top flange


106


. The descending wall


104


includes a lower lip


110


which curves inward toward the wafer


142


. The descending wall


104


encloses a wafer perimeter retaining ring assembly


146


enclosing a wafer backing member


124


. The wafer backing member


124


is attached to the support plate


102


by a bellows


118


which allows a vertically variable vacuum seal. The bellows


118


encloses a bellows chamber


120


. The bellows chamber


120


can be pressurized positively or negatively through a gas passage


112


to which is connected the inside of the bellows.




AN OVERVIEW OF THE APPARATUS




One typical substrate polishing apparatus generally includes a large rotating polishing pad, typically larger than, and more typically several times larger than, the surface area of the substrate being polished. Also included is a polishing head within which the substrate is mounted for positioning a surface of the substrate against the polishing surface. The head is typically supported over the pad, and fixed relative to the surface of the pad, by a support member. This support member provides a fixed bearing location from which head may extend, to provide a desired unit loading of the substrate against the pad. Loading means to enable this loading of the substrate against the polishing pad include hydraulic and pneumatic pistons which extend between the polishing head


100


and the support member (not shown).




Additionally, the polishing head


100


will also typically be rotatable, which enables rotation of the substrate on the pad. Likewise, the pad is typically rotated, to provide a constantly changing surface of the pad against the substrate. This rotation is typically provided by separate electric motors (not shown) coupled to the head and a polishing platen on which the pad is received.




The polishing head


100


of the present invention provides a mechanism to position and to uniformly load the surface of the wafer


142


against a polishing pad


182


located in a stationary or rotating polishing bed


180


. Generally, the polishing head


100


can be considered to comprise three systems: a loading member which supplies the downward loading of the wafer against the polishing surface; a mounting portion which allows a uniform pattern loading of the wafer against the polishing surface; and a retaining assembly which ensures that the wafer will not slip out from beneath the mounting portion during polishing operations. Each of these three members or systems provide improvements in polishing head designs, and may be used independently or in combination.




The loading member generally comprises the bellows


118


and the bellows chamber


120


provided by the attachment of the bellows to the upper surface of the backing member


124


and the interior surface of the support plate


102


. By pressurizing the bellows chamber


120


, force is exerted on the backing member


124


, and thus on the wafer


142


, to load the wafer


142


against the polishing surface of the polishing pad


182


. The mounting portion includes a separate sealed pocket


123


, one wall of which is firmed by the wafer, to provide an even, hydrostatic, loading across the backside of the wafer. The retaining ring assembly


146


includes an extendable retainer


162


which circumscribes the wafer


142


.




The Structure of the Loading Member and the Mounting Portion




To provide the mounting portion, the backing member


124


includes a wafer facing recess


126


. The perimeter of the backing member


124


is configured to receive an edge seal feature


130


, e.g., an O-ring (not shown in the empty O-ring groove of

FIG. 2

) or other type of seal. The edge seal


130


is located and configured to engage the perimeter portion of the backside of the wafer


142


and thereby form, in combination with the recess


126


, a pressurizable pocket


123


. The pocket includes the recess


126


and the area within the seal


130


over the backside of the wafer. When the backing member


124


is rotated, this feature provides a frictional force between the wafer


142


and the backing member


124


so that the substrate


142


generally turns with the backing member


124


.




Gas or other fluid (preferably an inert gas) is supplied to or evacuated from the pocket through a gas passage


125


which is connected through a hose


122


coiled inside the bellows


118


and supplied from a gas line


114


. The selective pressurization of the pocket


123


and the bellows chamber


120


provides the loading of the wafer on the polishing pad


182


. Additionally, the bellows enables the backing member


124


, and thus the wafer


142


, to move rotationally with respect to the support plate


102


and in the x, y, and z directions during polishing.




The bellows


118


, in combination with the upper surface of the backing member


124


, the lower surface of the support plate


102


and a pressure source (not shown), provide the loading member. In one mode of operation, the pressure in the bellows chamber


120


is controlled to be constant and the flexibility of the bellows


118


accommodates misalignments or changes in clearance between the backing member


124


and the surface of the polishing pad


182


. The pressure in the bellows chamber


120


is selected to provide the desired loading of the wafer


142


against the polishing pad


182


. In this configuration, the pressure in the bellows chamber


120


provides a regulatable uniform force pressing the backing member


124


toward the surface of the polishing pad


182


regardless of the extension of the bellows


118


.




In turn, pressurizing the recess


126


behind the wafer


142


enables a uniform contact pressure to exist between the polishing pad


182


and the wafer


142


across the entire surface of the wafer contacting the polishing pad


182


.




The extension or retraction of the bellows


118


is controlled by pressurizing or depressurizing the bellows chamber


120


via the gas passage


112


. The pressurization or depressurization of the recess


126


in the backing member


124


either pressurizes or depressurized the pocket


123


. A negative differential pressure due to vacuum bends the wafer


142


upwardly. A sufficient positive pressure creates a separating force greater than the force from the bellows


118


which forces the seal wafer.




The polishing head configuration of

FIG. 1

also overcomes the comparative difficulty encountered in prior art head designs when loading and unloading the wafer from the head, and in ensuring that the wafer does not slip from beneath the backing member


124


.




In the present head design, the pressure maintained in the pocket may be changed to provide a super-atmospheric pressure to separate the wafer from the carrier when polishing is completed, and to provide a vacuum pressure (preferably of up to approximately 100 torr less than atmospheric pressure) behind the wafer thereby causing atmospheric pressure to maintain the wafer on the head as the head is loaded onto the polishing pad


182


.




When the wafer is attached to the backing member


124


by maintaining a vacuum in the pocket, the wafer may deflect inwardly toward the recess


126


. The recess


126


is sufficiently shallow that the total possible deflection of the wafer into the recess, when considered in combination with the span of the wafer


142


across the recess


126


, will impose stresses in the wafer


142


which are less than the strength or yield limits of the wafer material.




The vacuum need be maintained in the pocket only during the period of time that the polishing head is removed from the polishing pad


182


. Once the polishing head and the wafer


142


are repositioned on the polishing pad


182


, the pressure in the pocket is increased, until a pressure above atmospheric pressure is maintained therein. Simultaneously, the pressure in the bellows chamber


120


is increased, to provide a load force to load the wafer


142


against the polishing pad


182


.




As the pressure in the bellows chamber


120


is increased, it loads the seal


130


received in the backing member


124


into contact with the backside of the wafer. The seal will compress under this load, which will enhance the sealing characteristics of the seal


130


. Therefore, as the pressure in the bellows chamber


120


increases, the threshold pressure at which gas maintained in the pocket


123


will leak past, or “blow-by”, the seal


130


, also increases. Blow-by occurs when the head and the seal lift off the wafer. This condition occurs when the pressure in the pocket, when multiplied by the surface area of the wafer


142


circumscribed by the seal


130


, exceeds the load force on the seal-wafer interface. In the configuration of the head, as shown in

FIG. 3

, the area of the backing member


124


which is circumscribed by the bellows


118


is smaller than the area of the wafer


142


circumscribed by the seal


130


. Therefore, the pressure in the bellows cavity must exceed the pressure maintained in the pocket to prevent blow-by.




Preferably, the pressure maintained in the pocket is approximately 75 torr less than the threshold at which blow-by will occur. At these pressures, the entire backside of the wafer, less a very small annular area outward of the seal


130


, will have a uniform pressure on the back surface thereof which ensures that the front surface of the wafer is uniformly loaded against the polishing pad


182


. However, it is specifically contemplated, although not preferred, that higher pressures, including a pressure at or above blow-by, may be used. Where such higher pressures are used, the seal-wafer interface will serve as a relief valve, and blow-by will occur periodically to maintain a desired pressure within the pocket


123


.





FIG. 2

shows a close up of the right side of the polishing head of FIG.


1


. The seal


130


in this configuration is an O-ring


134


located in an O-ring groove


132


(i.e., collectively: an annular extending portion). This seal is located at the perimeter of the wafer


142


surrounding the recess


126


(and the associated pocket). The perimeter of the backing member


124


is surrounded by the retaining ring assembly


146


. The retaining ring includes a the retaining ring


162


which is attached to the backing ring


148


. A series of compression springs


172


(i.e., first set of elastic members) support the backing ring


148


on the lip


110


of the descending wall


104


. An expandable retaining ring extending bladder


170


can be pressurized through gas supply passage


171


(i.e., a second set of elastic members). When bladder


170


is pressurized, the retaining ring assembly


146


is extended to a location adjacent the wafer


142


as shown by the dashed lines


146




a


in FIG.


2


.




A second configuration of the polishing head of the present invention is shown in

FIG. 3

, wherein the seal


130


is a downwardly extending lip seal


136


received on the outer perimeter of the backing member


124


, and secured thereon by a backing ring


138


extending about the outer circumference of the lip seal


36


. The lip seal


136


is preferably a thin, elastic, member having a rectangular cross section. A portion of the lip seal


136


. extends from the underside, or wafer engaging side, of the backing member


124


, to engage the upper surface of the wafer


142


immediately inwardly of the perimeter of the wafer


142


. As with the O-ring


134


, the engagement of the lip seal


136


with the wafer forms a pocket (including wafer recess


126


and a shoulder area inside lip seal) which may be evacuated or pressurized. The lip seal


136


and the O-ring


134


provide sufficient contact between the surface of the substrate and the surface of the seal to create a rotational force due to friction between the two to keep them in contact so that the substrate turns with the polishing head.




The Retaining Ring




Referring again to

FIG. 1

, the polishing head


100


also includes a retaining ring assembly


146


to ensure that the wafer


142


does not slip out from beneath the head during polishing operations. The retaining ring


162


has through holes


164


and counterbores


166


therein (FIG.


3


). Retaining ring screws


168


are placed therethrough and threaded into a series of backing-ring bottom-surface threaded holes


160


to hold the retaining ring


162


to a backing ring


148


. The retaining ring


162


is preferable made of Delrin or similar plastic material. The backing ring


148


is preferably made of aluminum as are all of the other metal pieces except for the bellows which is stainless steel. The backing ring


148


has a bottom surface


158


facing the retaining ring


162


. The backing ring


148


includes an outside flange


152


having a top face


154


facing the bladder


170


and a bottom face


156


facing the series of compression springs


172


. The backing ring


148


has an inside flange


150


having a lower face


151


which extends inwardly over the diameter of the retaining member


124




a


such that when the backing member


124




a


is raised beyond a certain point the backing ring assembly


146


also rises.





FIGS. 2 and 3

show details of the retaining ring assembly


146


. The backing ring


148


is urged upwardly away from the lip


110


of the descending wall


104


by a plurality of (for example 6-12) compression springs


172


. When the bladder


170


is pressurized to extend the retaining ring assembly


146


to its operating position as shown by the dashed lines


146




a


in

FIG. 2

, the retaining ring


162


surrounds the edge of the wafer being polished. This prevents the wafer from sliding out under the wafer backing member


124


, or


124




a


. Inflation of the bladder


170


through the gas passage


171


provides a downward force to oppose the compression springs


172


and forces the retaining ring


162


toward and possibly against the polishing pad


182


. A continuous continuously pressurized bladder could be employed to replace the series of springs


172


to provide uniformly distributed retracting forces.




The lower surface


151


of the backing ring inside flange


150


is configured so that as the plastic Delrin material of the wafer perimeter retaining ring


162


wears away, the travel of retaining ring is limited by the interference between the lower surface


151


of the upper flange


150


and the top of the wafer backing member


124




a


so that the head of the retaining ring retaining screws


168


cannot touch the polishing pad. This prevents the heads of retaining screws


168


from coming in contact with the polishing pad and introducing undesirable contaminants. The perimeter retaining ring can also be mounted without screws, such as by use of key slots requiring insertion and partial rotation to retain the key and opposing grooves having O-rings sized to engage and span the space between grooves.




While the invention has been described with regard to specific embodiments, those skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the invention.



Claims
  • 1. A polishing head, comprising:a housing; a backing member to hold a substrate against a polishing pad, the backing member movable relative to the housing, the backing member including an opening therein for applying a vacuum to chuck a substrate to the backing member; a retainer surrounding the backing member, the retainer movable relative to the housing independently of the backing member; a first chamber to provide a first downward force on the substrate; and a second chamber to provide an independently adjustable downward force on the retainer.
  • 2. The polishing head of claim 1, wherein the backing member includes a pressurizable recess open to and facing a back surface of the substrate and a seal surrounding the recess and positioned to contact a perimeter portion of the back surface of the substrate.
  • 3. The polishing head of claim 2, wherein a pressure in the recess provides a second, downward force on the substrate.
  • 4. The polishing head of claim 2, wherein reducing pressure in the recess vacuum-chucks the substrate to the backing member.
  • 5. The polishing head of claim 2, wherein the recess covers substantially the entire back surface of the substrate.
  • 6. The polishing head of claim 2, wherein the seal is a lip seal.
  • 7. The polishing head of claim 1, further comprising a first chamber to provide a first downward force on the backing member.
  • 8. The polishing head of claim 1, wherein the first chamber is positioned between the housing and the backing member.
  • 9. The polishing head of claim 1, further comprising an elastic member to urge the retainer away from the polishing pad.
  • 10. The polishing head of claim 9 wherein the second loading mechanism including a first mechanism to provide a force to urge the retainer toward the polishing pad and a second mechanism to urge the retainer away from the polishing pad.
  • 11. The polishing head of claim 10 wherein the first mechanism includes an inflatable bladder to urge said retainer toward said polishing pad.
  • 12. The polishing head of claim 11 wherein said second mechanism includes an elastic member to urge said retainer away from said polishing pad.
  • 13. The polishing head of claim 1, wherein the retainer contacts said polishing pad.
  • 14. A polishing head, comprising:a housing; a backing member to hold a substrate against a polishing pad, the backing member movable relative to the housing, the backing member including an opening therein for applying a vacuum to chuck a substrate to the backing member; a retainer surrounding the backing member, the retainer movable relative to the housing independently of the backing member; a first adjustable loading mechanism positioned between the housing and the backing member to cause said backing member to press said substrate against said polishing pad; and a second independently adjustable loading mechanism positioned between said housing support member and the retainer assembly to cause the retainer assembly to press the retainer against the polishing pad.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 09/406,027, filed Sep. 27, 1999, now U.S. Pat. No. 6,290,577, which is a continuation of U.S. application Ser. No. 08/488,927, filed Jun. 9, 1995, now U.S. Pat. No. 6,024,630, the entirety of which is incorporated herein by reference.

US Referenced Citations (35)
Number Name Date Kind
3559346 Paola Feb 1971 A
3731435 Boettcher et al. May 1973 A
4256535 Banks Mar 1981 A
4270316 Kramer et al. Jun 1981 A
4373991 Banks Feb 1983 A
4435247 Basi et al. Mar 1984 A
4519168 Cesna May 1985 A
4600469 Fusco et al. Jul 1986 A
4726150 Nishio et al. Feb 1988 A
4918869 Kitta Apr 1990 A
4918870 Torbert et al. Apr 1990 A
4944119 Gill, Jr. et al. Jul 1990 A
5081795 Tanaka et al. Jan 1992 A
5095661 Gill, Jr. et al. Mar 1992 A
5193316 Olmstead Mar 1993 A
5205082 Shendon et al. Apr 1993 A
5230184 Bukhman Jul 1993 A
5232875 Tuttle et al. Aug 1993 A
5255474 Gawa et al. Oct 1993 A
5329732 Karlsrud et al. Jul 1994 A
5398459 Okumura et al. Mar 1995 A
5423716 Strasbaugh Jun 1995 A
5441444 Nakajima Aug 1995 A
5449316 Strasbaugh Sep 1995 A
5476414 Hirose et al. Dec 1995 A
5527209 Volodarsky et al. Jun 1996 A
5569062 Karlsrud Oct 1996 A
5584746 Tanaka et al. Dec 1996 A
5584751 Kobayashi et al. Dec 1996 A
5588902 Tominaga et al. Dec 1996 A
5624299 Shendon Apr 1997 A
5635083 Breivogel et al. Jun 1997 A
5643053 Shendon Jul 1997 A
6024630 Shendon et al. Feb 2000 A
6290577 Shendon et al. Sep 2001 B1
Foreign Referenced Citations (11)
Number Date Country
8631087 Apr 1987 DE
156746 Mar 1985 EP
0 156 746 Oct 1985 EP
0 653 270 Aug 1994 EP
61-25768 Feb 1986 JP
63-300858 Dec 1988 JP
1-109066 Apr 1989 JP
1-216768 Aug 1989 JP
2-243263 Sep 1990 JP
63-114870 May 1998 JP
WO 9419153 Sep 1994 WO
Non-Patent Literature Citations (1)
Entry
“Pressurized Wafer Holder for Uniform Polishing,” Research Disclosure, n. 322, Feb. 1, 1991, p. 95, XPO 00168310.
Continuations (2)
Number Date Country
Parent 09/406027 Sep 1999 US
Child 09/892143 US
Parent 08/488921 Jun 1995 US
Child 09/406027 US