Not Applicable.
This invention relates to microdevices and fluidic devices, and, in particular, to the bonding selective areas and components of such a device, to the bonding of device surfaces with prefabricated patterns, and to associated methods for bonding wherein direct fluid pressure is used to press together a plurality of layers to be bonded. The processes of the present invention are particularly useful to provide void free, uniform bonding over an increased area by pressure alone or by the application of pressure and heat or electrical field.
Bonding is an important process in the fabrication of many industrial, electronic, biological and optical devices. Typically bonding is accompanied by pressure together with heat, electrical field or both heat and field. A plurality of layers to be bonded are stacked in a loose assembly and pressed together. They are then subjected to heat and/or an electric field under pressure. The heat and/or field may effectuate the formation of chemical bonds as in ionic bonding.
The usual method of pressing the layers together is to stack the layers in an assembly and dispose the assembly on respective rigid plates of a mechanical press. This technique, however, has serious limitations in bonding layers of large area or imperfect planarity. Even high precision mechanical presses present tolerance problems over large areas. Presses move on guide shafts through apertures, and the spacings between the shafts and their respective apertures permit undesirable relative translational and rotational shifts between the assembly and the plates. Thus mechanical presses present serious alignment problems in high precision bonding. Moreover, despite the most careful construction, the layers to be bonded are not perfectly planar. When assemblies of these layers are disposed on the rigid plates of a press, the deviations from planarity over large areas can result in variations in the bonding pressure and spacing. Accordingly, it is desirable to provide a method of bonding which avoids the limitations of mechanical presses.
Furthermore, the prior of art of bonding is for bond two pieces with the same size. There is a need to bond a material of a size smaller than the substrate to a selected location of the substrate and to bond a material with prefabricated patterns on its bonding surface to selected areas of the substrate.
An improved method of bonding involves using direct fluid pressure to press together the layers to be bonded. Advantageously one or more of the layers are sufficiently flexible to provide wide area contact under the fluid pressure. Fluid pressing can be accomplished by sealing an assembly of layers to be bonded and disposing the assembly in a pressurized chamber. It can also be accomplished by subjecting the assembly to jets of pressurized fluid. The result of this fluid pressing is reduction of voids and enhanced uniformity over an enlarged area. Several advantageous applications of the process are described.
The foregoing features, and advantages set forth in the present disclosure as well as presently preferred embodiments will become more apparent from the reading of the following description in connection with the accompanying drawings.
In the accompanying drawings which form part of the specification:
Corresponding reference numerals indicate corresponding parts throughout the several figures of the drawings. It is to be understood that the drawings are for illustrating the concepts set forth in the present disclosure and are not to scale.
The following detailed description illustrates the invention by way of example and not by way of limitation. The description enables one skilled in the art to make and use the present disclosure, and describes several embodiments, adaptations, variations, alternatives, and uses of the present disclosure, including what is presently believed to be the best mode of carrying out the present disclosure.
This description is divided into two parts. Part I describes the fluid pressure bonding method, and Part II describes several advantageous applications of this bonding method for the fabrication of devices.
I. Fluid Pressure Bonding Method
In accordance with the invention, the problem of unwanted lateral movements of mechanical presses in bonding is ameliorated by using direct fluid pressure to press together the layers to be bonded. The inventive method applies fluid pressure over the assembly of layers to be bonded. Because the fluid pressure is isostatic, no significant unbalanced lateral forces are applied. Direct fluid pressure also includes fluid pressure transmitted to the assembly via a flexible membrane, as the membrane does not interfere with the transmission of isostatic pressure from the fluid. And streaming pressurized fluid from openings in a pressure vessel can also apply nearly isostatic direct fluid pressure on the plates or assembly.
It is contemplated that the invention will have important applications in the bonding of previously patterned layers. The layers can be aligned with respect to previous patterns using conventional alignment techniques, and be pressed by direct fluid pressure to minimize any relative lateral shifts. The consequence is improvement in the alignment of the patterns.
Referring to the drawings,
Optionally, layers 11, 13 can be contacted by electrodes such as thin conductive layers 15 and 16, respectively, which can be disposed distally from the bonding interface. During the bonding step, the electrodes can be connected to a source S of voltage or current to facilitate bonding.
For highest uniformity and accuracy of placement, the layers to be bonded are advantageously made of the same material in order to minimize misalignment due to differential thermal expansion or contraction.
Preferably at least one of the layers 11, 13 is flexible so that, under the force of fluid pressure, the layers will conform despite deviations from planarity. Silicon substrates of thickness less than 2 mm exhibit such flexibility for typical pressures. Advantageously both layers are flexible.
The next step, shown in Block B, is to stack the layers together into an assembly to be bonded and to seal the interface between successive layers. If the layers include previously formed patterns to be bonded in registration, then the patterns should be carefully aligned in accordance with techniques well known in the art. The objective of the sealing is to permit external fluid pressure to press the layers together. The sealing can be effected in a variety of ways such as by providing a ring of fluid impermeable material, e.g. an elastomeric gasket, around the area to be bonded and peripherally clamping the assembly.
The third step (Block C) is to press the layers together by direct fluid pressure. One method for doing this is to dispose the assembly in a pressure vessel and to introduce pressurized fluid into the vessel. The advantage of fluid pressure is that it is isostatic. The resulting force uniformly pushes the layers together. Shear or rotational components are de minimus. Moreover if one or more of the layers is flexible rather than rigid, conformation between the layers is achieved regardless of unavoidable deviations from planarity. The result is an enhanced level of alignment and uniformity of spacing and bonding over an increased area of the film. The pressurized fluid can be gas or liquid. Pressurized air is convenient and typical pressures are in the range 1-1000 psi. The fluid can be heated, if desired, to assist in effectuating bonding.
The next step shown in Block D, is to bond the layers of the assembly and to remove the bonded assembly from the pressure vessel. The precise process for bonding depends on the material of the layers. Many combinations of materials will bond with the application of pressure and heat. Others can bond under pressure by the application of an electric field or current between layers of the assembly. Yet others can be most easily bonded under pressure by applying both heat and an electric field or current. Heat can be applied in any one of a variety of known ways, including heating the pressurized fluid or applying infrared radiation. Voltage or current can be applied via a source S connected to electrodes 15, 16 as shown in
Alternatively, the layers can be bonded under pressure using adhesives. Radiation curable adhesives can be hardened under pressure by the application of UV radiation. Such radiation can be supplied through the window 37 of the pressure vessel. The layers can be made of transparent material to permit the radiation to reach the adhesive.
As mentioned above, there are a variety of ways of sealing the assembly of layers 30 so that pressurized fluid will press the layers together.
Alternatively, two the cylinders could lightly seal against the layers, before pressurization. Yet further in the alternative, the assembly could rest upon a planar support and a single cylinder lightly seal against the layers.
In operation, the assembly 30 is placed on a substrate holder 79. The cap 72 can be held in fixed position above the assembly 30, as by bars 74, 75. High pressure fluid, preferably gas, is pumped into chamber 73 through an inlet 76. The high pressure fluid within the chamber produces a fluid jet from each opening 71. These jets uniformly press the layers together.
Advantageously, the cap 72 can include a groove 77 along a perimeter of the face adjacent the assembly 30. The groove 77 can hold an O-ring 78 between the cap 72 and the assembly. The O-ring decreases fluid outflow between the cap 72 and the assembly 30, increasing the molding pressure and making it more uniform.
II. Applications of Fluid Pressure Bonding
Fluid pressure bonding as described herein has high potential for the fabrication of a variety of biological, chemical, electrical, optical, magnetic and mechanical devices. Because of its high precision and planarity, it is particularly useful in the fabrication of such devices having components with microscale features (minimum dimensions less than 10 micrometers) and nanoscale features (minimum dimensions less than 200 nanometers). Because of similarity of equipment and processing, it is highly compatible for use in conjunction with the fluid pressure imprint lithography such as described in U.S. Pat. No. 6,482,742 to Chou, incorporated herein by reference. In essence, fluid pressure imprint lithography can be used to form a microscale or nanoscale pattern on a substrate and fluid pressure bonding can be used to cover or embed part or all of the pattern or to form a more complex pattern by bonding over the patterned substrate a patterned cover. The patterns, for example, can be patterns of cavities, patterns of materials deposited in cavities, and patterns of doped semiconductors or doped other materials. These and other exemplary applications are described below.
A variety of devices employ covered or embedded patterns such as cavities that may be empty, contain electronic, or optical materials, biological material, or magnetic materials, or guide the flow of fluids or macromolecules. As shown in
Sealing can be effected any of a variety of adhesives or coupling materials applied between the substrate and the cover. The adhesive/coupling material can be organic or inorganic, in an initial state of solid liquid or gas. It can be metal, semiconductor, dielectric, polymer or a combination. The adhesive/coupling material can bond by heating, cooling, radiation, pressure or chemical reaction. Depending on the specific use, the adhesive/coupling material can be applied by evaporation deposition, spin coating, misting, spraying, dipping, or forming a patterned layer.
One or more substrate patterns can be selectively sealed by applying or forming an adhesive or coupling layer on selected regions of the substrate.
In fluid pressure bonding, pressure, heat and radiation can be applied in different sequence and even in multiple cycles to improve the bonding. For example, two layers can be bonded first by applying pressure and then by applying radiation (or heat). Another option is to first apply a lower pressure, then radiation and then a higher pressure. The initial pressure is preferably by fluid pressure bonding as described herein. Heating can be provided, for example, by a thermal heater, an RF heater or a radiation heater. Radiation can have a wavelength in the broad range from infra-red to x-ray.
In his work with laser-assisted direct imprint lithography, applicant has observed that a pulsed laser, such as an excimer laser, can quickly liquefy the surface of a solid material such as a semiconductor, metal, or ceramic. This phenomenon can be used in bonding.
Where one of the layers is transparent to the laser radiation while the other is opaque, the layers can be pressed together, and the laser radiation can be transmitted through the transparent layer to quickly liquefy the surface of the opaque layer. As an example, a quartz layer can be bonded to a silicon substrate by pressing together the quartz layer and the silicon and shining an excimer laser of 308 nm wavelength through the quartz. The laser beam will quickly melt a thin depth of the exposed silicon surface and bond the silicon to the quartz.
Fluid pressure bonding can be facilitated by the texturing or patterning the bonding surface or portions thereof. The texturing or patterning assists by increasing the total effective surface area. In addition, the patterning can be designed to facilitate mechanical alignment or to provide an optical or electrical indication of alignment.
Each of the two layers to be bonded can have bonding surfaces that have patterns or structures, and the adjacent patterned or structured, surfaces can be aligned prior to the application of pressure to produce a bonded structure of increased complexity or enhanced functionality.
As shown in
The alignment of between the bonding layers can be achieved using optical or electrical or mechanical alignment techniques as diagrammed in
A tool that performs alignment of bonding can include stages for different layers and for heating and radiation sources. Stages for both the top and the bottom layers can each have one or more of six dimensional movements (x,y,z plus three rotational directions) and sensors for the positions, rotations, pressure, temperature and alignments. The tool can include mechanisms for the alignment of the layers, sensors for machine operation, machine vision to monitor machine operation, and programmed machine intelligence. A controller can monitor all or part of the operational parameters, including electrical, optical, pneumatic and mechanical parameters. Control software can manage the feedback, analysis, intelligent decision-making, and the implementation of control.
While preceding applications have been described in the context of bonding two layers, it should be clear that the techniques described herein can be used to pattern and bond a multiplicity of successive layers to fabricate relatively complex biometric, mechanical, optical, electrical, electronic and magnetic devices. Components for such devices can be formed by imprinting appropriate patterns on successive layers, e.g. imprinting cavities and filling the cavities with appropriate structural, optical, electrical, electronic or magnetic materials. Or imprinting can be used to expose patterns on semiconductor layers for doping. Pillar cavities filled with appropriate materials can provide appropriate structures to transmit mechanical force, light, magnetism, electricity, or even heat from one layer to another. Multiple patterned layers thus interconnected can form increasingly complex devices such as macromolecular pathways, biological cell pathways, capacitors, inductors, transistors, lasers and transformers by appropriate choice of patterned layers and pillar connectors. Moreover, by using fluid pressure imprint lithography to make the patterns and by using fluid pressure bonding to precisely align and bond successive patterned layers, such complex multilayer devices can be fabricated with lateral dimensions in the microscale and even nanoscale ranges.
It will be recognized that the fluidic and microdevices of the present invention may be assembly and bonding with pressure applied from sources other than direct fluid pressure. For example, a fluidic or microdevice of the present invention may be bonded during application of pressure in a parallel press with a solid pressing plate or with a thin layer of elastic material on the surface of a hard solid state plate. Alternatively, a hard press plate may be utilized to apply pressure to one side of the fluidic or microdevice during bonding, while a fluidic press is utilized to apply a direct fluid pressure to an opposite side.
As various changes could be made in the above constructions without departing from the scope of the disclosure, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This application is related to, and claims priority from, U.S. Provisional Patent Application Ser. No. 60/708,454 filed on Aug. 16, 2005, which is herein incorporated by reference. This application is a continuation-in-part of U.S. patent application Ser. No. 10/161,776 filed on Jun. 4, 2002 entitled “Fluid Pressure Bonding”, now U.S. Pat. No. 6,946,360 B2, which in turn is a continuation-in-part of U.S. patent application Ser. No. 09/618,174 filed on Jul. 18, 2000 and entitled “Fluid Pressure Imprint Lithography”, now U.S. Pat. No. 6,482,742. Each of the '776 and '174 applications together with the '360 and '742 patents, is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60708454 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10161776 | Jun 2002 | US |
Child | 11464942 | US | |
Parent | 09618174 | Jul 2000 | US |
Child | 10161776 | US |