Fluoropolymer stamp fabrication method

Information

  • Patent Grant
  • 11927885
  • Patent Number
    11,927,885
  • Date Filed
    Monday, August 8, 2022
    a year ago
  • Date Issued
    Tuesday, March 12, 2024
    a month ago
Abstract
An imprint lithography stamp includes a stamp body having a patterned surface and formed from a fluorinated ethylene propylene copolymer. The imprint lithography stamp further includes a backing plate with a plurality of through-holes with portions of the stamp body extending into the through-holes to adhere the stamp body to the backing plate. The patterned surface of the stamp body has a plurality of protrusions extending from the stamp body, which are used to form high aspect ratio features at high processing temperatures. A mold design for forming the imprint lithography stamp and an injection molding process for forming the imprint lithography stamp are also provided.
Description
BACKGROUND
Field

The present disclosure relates generally to imprint lithography techniques and in particular to a stamp that is used in UV-micro/nanoimprint lithography processes or thermal micro/nanoimprint lithography processes and a method for manufacturing the stamp.


Description of the Related Art

As circuit densities increase and device sizes decrease for next generation semiconductor devices, providing the external connections, such as wiring, to these devices involves advanced packaging technologies. One such packaging technology is wafer level packaging.


Wafer level packaging streamlines the manufacturing and packaging processes of semiconductor devices by integrating device manufacturing, package assembly (packaging), electrical testing, and reliability testing (burn-in) at wafer level, where forming of the top and bottom layers of the packaging, creating the I/O connections, and testing the packaged device are all performed before the devices are singulated into individual packaged components. The advantages of wafer level packaging include reduced overall manufacturing costs of the resulting device, reduced package size, and improved electrical and thermal performance. However, typical wafer level packaging schemes limit the number of I/O connections that can be made to the semiconductor device to the number of I/O terminals that can be spread over the surface of the die. Fan-out wafer level packaging retains the advantages of wafer level packaging while increasing the area available for I/O terminals by redistributing the I/O terminals to areas exterior of the surface of the die, using one or more redistribution layers (RDL).


Fan-out wafer level packaging processes entail that the surface area of the I/O terminal redistribution layer for each individual die be larger than the surface area of the individual die itself. However, maximizing the number of devices (dies) on a wafer minimizes costs during manufacturing of the device, and thus the spaces between individual devices (dice lines) are usually only large enough to accommodate the width of the dicing saw used to dice the wafer into its individual dies. One method of creating the additional surface area external of the die surface is to form a new wafer with dies redistributed in a spaced apart pattern, known as a reconstituted substrate.


Typically, to form a reconstituted substrate, a wafer is singulated into individual die which are then positioned on a molding plate (carrier substrate) spaced apart from one another and temporarily secured thereto by an adhesion layer. A molding compound is dispensed onto the carrier substrate and the dies secured thereto and subsequently cured, which embeds the spaced apart dies in the molding compound to form the reconstituted substrate. The terminal sides of the dies are then exposed by removing the adhesion layer, and redistribution layers, having interconnects disposed therein, are subsequently formed on the reconstituted substrate, to redistribute a portion, or all, of the device's I/O terminals to areas exterior of the surface of the die, which increases the area available for I/O connections and thus the number of possible I/O terminals.


Process defects associated with forming the reconstituted substrate, such as undesirable repositioning of the dies within the reconstituted substrate from their original placement location on the adhesion layer, also known as die shift, cause misalignment between the via interconnects in the subsequently formed redistribution layer and the electrical contacts on the dies. Additionally, the redistribution layers are typically formed using conventional photolithography and etch processes, which are costly, equipment intensive, and time consuming. For example, in some stages of manufacture, a photopatternable dielectric polymer material, such as a polyimide material, is used in the formation of a redistribution layer (RDL) for making wiring connections from chip surface contacts to ball grid array (BGA) pads. In general, photolithographic processes are sensitive to topographic effects, such as differences in patterning layer heights or thickness, due to limitations on the achievable depth of focus (DOF) during exposure processes.


Accordingly, there is a need in the art for improved methods of forming reconstituted substrate and redistribution layers disposed thereon.


SUMMARY

The present disclosure relates generally to imprint lithography techniques and in particular, to a stamp used in UV-micro/nanoimprint lithography processes or thermal micro/nanoimprint lithography processes and a method for manufacturing the stamp.


In one aspect, an imprint lithography stamp includes a backing plate and a stamp body. The backing plate includes a front surface and a backside surface opposite the front surface, wherein the backing plate has a plurality of through-holes extending from the front surface to the backside surface. The stamp body includes a patterned surface having a plurality of protrusions extending from the stamp body and a back surface opposite the patterned surface. The back surface of the stamp body contacts the front surface of the backing plate and a portion of the stamp body extends from the back surface of the stamp body into the plurality of through-holes formed in the backing plate.


Implementations may include one or more of the following. The stamp body may be fabricated from a fluorinated ethylene propylene (FEP) copolymer. The backing plate may be fabricated from glass, ceramic, fiberglass, chrome, stainless steel, or nickel. At least one protrusion of the plurality of protrusions may have a diameter in a range from about 1 micrometer to about 20 micrometers. At least one protrusion of the plurality of protrusions may have a diameter in a range from about 5 micrometers to about 15 micrometers. At least one protrusion of the plurality of protrusions may have a diameter in a range from about 5 micrometers to about 10 micrometers. At least one through-hole of the plurality of through-holes may have a diameter in a range from about 0.5 millimeters to about 1 millimeter. Adjacent protrusions may be separated by a gap which is about twice a diameter of the protrusion or greater. An aspect ratio of at least one protrusion of the plurality of protrusions may be greater than one. The stamp body may have a thickness measured from the patterned surface to the back surface of from about 0.1 millimeters to about 2 millimeters.


In another aspect, a method for forming a redistribution layer includes depositing a polymer layer onto a surface of a reconstituted substrate, the reconstituted substrate comprising a plurality of devices disposed in a molding compound. The method further includes heating the polymer layer to a temperature in a range from about 120 degrees Celsius to about 150 degrees Celsius. The method further includes physically imprinting a pattern into the polymer layer with an imprint lithography stamp to form a plurality of openings therein, wherein the imprint lithography stamp comprises fluorinated ethylene propylene (FEP).


Implementations may include one or more of the following. The imprint lithography stamp may include a backing plate, including a front surface and a backside surface opposite the front surface, wherein the backing plate has a plurality of through-holes extending from the front surface to the backside surface; and a stamp body, including a patterned surface having a plurality of protrusions extending from the stamp body and a back surface opposite the patterned surface, wherein the back surface contacts the front surface of the backing plate and a portion of the stamp body extends from the back surface of the stamp body into the plurality of through-holes formed in the backing plate. The method may further include heating the polymer layer to a temperature in a range from about 180 degrees Celsius to about 200 degrees Celsius after imprinting the pattern. The polymer layer may include a polyimide or an Ajinomoto Build-up Film. Imprinting the pattern into the polymer layer may include heating the imprint lithography stamp to a temperature in a range from about 100 degrees Celsius to about 150 degrees Celsius. Imprinting the pattern into the polymer layer may take place in an environment at less than about atmospheric pressure. Imprinting the pattern into the polymer layer may include exposing the polymer to UV radiation through the imprint lithography stamp. The reconstituted substrate may further include a previously formed redistribution layer disposed on the plurality of devices, the previously formed redistribution layer comprising a dielectric polymer layer having a plurality of metal interconnects disposed therein, wherein the surface of the previously formed redistribution layer has been planarized to remove portions of a seed layer and a metal layer therefrom.


In another aspect, a packaging method includes depositing a polymer layer onto a first surface of a substrate. The method further includes physically imprinting a pattern into the polymer layer with an imprint lithography stamp to form a polymer layer with a plurality of openings therethrough, wherein the imprint lithography stamp is fabricated from fluorinated ethylene propylene (FEP). The method further includes forming a plurality of metal interconnects in the polymer layer including depositing a seed layer onto the substrate and the polymer layer formed thereon and forming a copper layer on the seed layer. The method further includes removing portions of the seed layer and the copper layer from a second surface of the polymer layer.


Implementations may include one or more of the following. The polymer layer may include an Ajinomoto Build-up Film. The method may further include heating the polymer layer to a temperature in a range from about 180 degrees Celsius to about 200 degrees Celsius after imprinting the pattern. Physically imprinting the polymer layer may include heating the imprint lithography stamp to a temperature in a range from about 100 degrees Celsius to about 150 degrees Celsius. Physically imprinting the pattern into the polymer layer may take place in an environment at less than about atmospheric pressure.


In another aspect, a method of manufacturing an imprint lithography stamp includes injecting a fluorinated ethylene propylene polymer melt into an injection mold assembly. The injection mold assembly includes an upper half mold body that defines a first recess; a backing plate inserted in the first recess, the backing plate having a plurality of through-holes; a lower half mold body that defines a second recess; a stamp master plate inserted in the second recess, the stamp master plate having a negative patterned surface that has a plurality of negative features; and a spacer gasket positioned in between the upper half mold body and the lower half mold body, wherein the upper half mold body, the lower half mold body, and the spacer gasket define a cavity in which the imprint lithography stamp is formed. The method further includes filling the cavity and at least a portion of the through-holes of the backing plate with the fluorinated ethylene propylene polymer melt and curing the fluorinated ethylene propylene polymer melt material to form the imprint lithography stamp.


Implementations may include one or more of the following. The imprint lithography stamp may include the backing plate. The stamp master plate may be fabricated from nickel, polydimethylsiloxane (PDMS), or a combination thereof. The backing plate may be fabricated from glass, ceramic, fiberglass, chrome, stainless steel, or nickel. At least one feature of the plurality of negative features may be an aperture having a diameter in a range from about 1 micrometer to about 20 micrometers. The aperture may have a diameter in a range from about 5 micrometers to about 15 micrometers. The aperture may have a diameter in a range from about 5 micrometers to about 10 micrometers. Adjacent features may be separated by a distance in a range from about 1 millimeter to about 2 millimeters. At least one through-hole of the plurality of through-holes may have a diameter in a range from about 0.5 millimeters to about 1 millimeter. The spacer gasket may have a thickness of from about 0.1 millimeters to about 2 millimeters.


In another aspect, a non-transitory computer readable medium has stored thereon instructions, which, when executed by a processor, causes the process to perform operations of the above apparatus and/or method.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description of the implementations, briefly summarized above, may be had by reference to implementations, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical implementations of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective implementations.



FIG. 1A illustrates a schematic cross-sectional view of an example of an imprint lithography stamp according to aspects disclosed herein.



FIG. 1B illustrates a partial perspective view of an example of a patterned surface of an imprint lithography stamp according to aspects disclosed herein.



FIG. 1C illustrates an enlarged cross-sectional view of a portion of the imprint lithography stamp taken along line 1C-1C of FIG. 1A.



FIG. 2 Illustrates an exploded schematic cross-sectional view of an example of an injection mold assembly for forming an imprint lithography stamp according to aspects disclosed herein.



FIG. 3 illustrates a schematic cross-sectional view of the imprint lithography stamp of FIG. 1 formed in the injection mold assembly of FIG. 2 according to aspects disclosed herein.



FIG. 4A illustrates a perspective view of an example of an injection mold assembly for forming an imprint lithography stamp according to aspects disclosed herein.



FIG. 4B illustrates an exploded perspective view of the injection mold assembly depicted in FIG. 4A.



FIG. 4C illustrates another exploded perspective view of the injection mold assembly depicted in FIG. 4A.



FIG. 5 illustrates a flowchart of a method of manufacturing an imprint lithography stamp according to aspects disclosed herein.



FIG. 6 illustrates a flowchart of a method of using an imprint lithography stamp according to aspects disclosed herein.



FIGS. 7A-7F illustrate various stages of a substrate imprint lithography process according to aspects disclosed herein.





To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one implementation may be beneficially incorporated in other implementations without further recitation.


DETAILED DESCRIPTION

In some wafer-level packaging processes a redistribution layer (RDL) is used to reroute connections to chosen locations. In some stages of manufacture, a patternable dielectric polymer material, such as a polyimide material or Ajinomoto Build-up Film (ABF), is used in the formation of the RDL. Features, such as vias for example, are formed in the patternable dielectric polymer material. In some processes, small vias for example, less than 10 micrometers, are formed in the patternable dielectric polymer material.


Via formation by micro/nanoimprint lithography in dielectric polymer materials such as ABF and polyimide has been proposed. Current materials used for forming the imprint lithography stamps used in the micro/nanoimprint lithography processes include polydimethylsiloxane (PDMS). However, there are problems with imprint lithography stamps formed from PDMS material when high temperatures, such as temperatures greater than 50 degrees Celsius are used during the lithography process. For example, in an imprint lithography process that uses ABF, temperatures of 120 to 150 degrees Celsius or more can be used. At these high temperatures, PDMS loses its rigidity, which can lead to feature deformation in the patternable dielectric polymer material such as bending of the features formed in the patternable dielectric polymer material. Other materials such as fused silica do not have anti-stiction properties and thus cannot demold from ABF.


As noted above, imprinting with lithography stamps composed of materials such as PDMS has been proposed. As described herein, by manufacturing the imprint lithography stamp with a more durable material, high aspect ratio vias, for example, vias having an aspect ratio greater than one can be formed in photopatternable dielectric polymer materials that involve higher processing temperatures without the feature deformation caused by imprinting with PDMS lithography stamps.


In one aspect of the present disclosure, a microimprint lithography stamp is formed from fluorinated ethylene propylene (FEP) copolymer material. FEP is a copolymer of hexafluoropropylene and tetrafluoroethylene. FEP material typically has 200 times higher Young's Modulus and twice as much hardness as PDMS, yet has superior anti-stick properties. Similar to PDMS, FEP is transparent and also has a thermal expansion coefficient (CTE) that is lower than PDMS. However, FEP is more difficult to mold than PDMS. Thus, in additional aspects of the present disclosure, an injection mold assembly and an injecting molding method for forming an FEP imprint lithography stamp are provided. In one aspect, the injection mold assembly includes a PDMS stamp insert that is positioned in the injection mold assembly and used to transfer a pattern to the FEP imprint lithography stamp. In one example, the pattern transfer is obtained using a PDMS stamp insert, which is positioned in the injection mold.



FIG. 1A illustrates a schematic cross-sectional view of an example of an imprint lithography stamp 100. In one example, the imprint lithography stamp 100 is a microimprint lithography stamp. In another example, the imprint lithography stamp is a nanoimprint lithography stamp. The imprint lithography stamp 100 includes a backing plate 110 and a stamp plate 130 coupled with the backing plate 110.


The backing plate 110 includes a front surface 112, a backside surface 114 opposite the front surface 112, and an outer peripheral wall 116 which define a body 118.


The backing plate 110 includes a plurality of through-holes 120. The plurality of through-holes 120 extend from the front surface 112 through the body 118 to the backside surface 114. In one example, at least one through-hole of the plurality of the plurality of through-holes has a diameter in a range from about 0.1 millimeter to about 1 millimeter, for example, in a range from about 0.5 millimeters to about 1 millimeter. The plurality of through-holes 120 are dimensioned to accommodate at least a portion of the stamp plate 130.


The backing plate 110 further includes an injection port 122, which extends from the front surface 112 through the body 118 to the backside surface 114. The injection port 122 provides a port for delivery of polymer melt material into an injection mold assembly, which is used to form the stamp plate 130. The injection port 122 will be discussed in further detail with reference to FIG. 2.


The body 118 of the backing plate 110 can be formed of glass, ceramic, fiberglass, chrome, stainless steel, or nickel. In one example, the backing plate 110 is formed from glass. Forming the backing plate 110 from a transparent or a semi-transparent material permits easier alignment of the imprint lithography stamp 100. The body 118 of the backing plate 110 can have a thickness in a range from about 0.2 mm to about 1.0 mm, for example from about 0.3 mm to about 0.75 mm. The body 118 of the backing plate 110 can be from about 20 mm across to about 30 mm across, for example, about 25 mm across. The body 118 of the backing plate 110 can be square (from a top view of the backing plate 110), rectangular, circular or any other shape. In one implementation, the body 118 of the backing plate 110 has a surface area from about 500 mm2 to about 700 mm2, for example, from about 600 mm2 to about 650 mm2, such as about 625 mm2. In one example, where the body 118 of the backing plate 110 is square, the body 118 of the backing plate 110 has dimensions of 25 mm by 25 mm.


The backing plate 110 provides rigidity to the imprint lithography stamp 100. For example, if the imprint lithography stamp 100 were made without the backing plate 110, the stamp plate 130 can expand upon heating, which shifts the position of the protrusions 140 adversely affecting the pattern formed in the dielectric polymer material. In addition, the backing plate 110 also serves as an insert in the injection mold assembly 200, which is used to form the imprint lithography stamp 100.


The stamp plate 130 includes a patterned surface 132, a back surface 134 opposite the patterned surface 132, and an outer peripheral wall 136 which define a body 138. The body 138 of the stamp plate 130 can be formed of a polymer that does not deform above 50 degrees Celsius. In one example, the body 138 of the stamp plate 130 is formed of fluorinated ethylene propylene (FEP) copolymer. The stamp plate 130 can be formed using the injection molding process described herein. The body 138 of the stamp plate 130 can have a thickness in a range from about 0.1 mm to about 2.0 mm, for example from about 0.1 mm to about 1 mm such as from about 0.3 mm to about 0.75 mm. The body 138 of the stamp plate 130 can be from about 20 mm across to about 30 mm across, for example, about 25 mm across. The body 138 of the stamp plate 130 can be square (from a top view of the backing plate 110), rectangular, circular or any other shape. In one implementation, the patterned surface 132 of the stamp plate 130 has a surface area from about 500 mm2 to about 700 mm2, for example, from about 600 mm2 to about 650 mm2, such as about 625 mm2. In one example, where the body 138 of the stamp plate 130 is square, the patterned surface 132 has dimensions of 25 mm by 25 mm.



FIG. 1B illustrates a partial perspective view of an example of the patterned surface 132 of the imprint lithography stamp 100 according to aspects disclosed herein. The patterned surface 132 includes a plurality of protrusions 140 extending from the patterned surface 132. The protrusions 140 are arranged in an x-y grid pattern across the patterned surface 132. FIG. 1C illustrates an enlarged cross-sectional view of a portion of the imprint lithography stamp 100 take along line 1C-1C of FIG. 1A. In the example of FIGS. 1A-1C, the protrusions 140 have a pillar shape with a tapered profile. However, other suitable shapes for the protrusions 140 are also contemplated.


The plurality of protrusions 140 extend from the patterned surface 132 of the stamp body 138. Referring to FIG. 7B, the protrusions 140 form the corresponding features in the dielectric polymer material. Referring to FIG. 1C, in one example, a height “H” of the protrusions 140 can be from about 5 microns to about 20 microns, for example, from about 10 micrometers to about 15 micrometers and a width or diameter “D” measured at the base of the protrusions 140 can be from about 1 micrometer to about 20 micrometers, for example, from about 5 micrometers to about 15 micrometers, such as from about 5 micrometers to about 10 micrometers. The plurality of protrusions 140 are unitary with the stamp body 138. The plurality of protrusions 140 can be formed with the stamp body 138 using the injection molding process described herein.


In one example, the patterned surface 132 has a surface area from about 500 mm2 to about 700 mm2 and has from about 100 to about 500 protrusions 140, for example, from about 150 to about 200 protrusions 140 that occupy from about 3% to about 9% of the surface area of the patterned surface 132. In another example, the patterned surface 132 has a surface area of from about 625 mm2 to about 650 mm2 and has from about 100 to about 200 protrusions 140 that occupy from about 3% to about 9% of the area of the patterned surface 132.


In one example, the protrusions 140 are arranged in a substantially linear arrangement across the patterned surface 132. In another example, the protrusions 140 are arranged in a radial pattern emanating from a center of the patterned surface 132. In another example, as shown in FIG. 1B, the protrusions 140 are arranged in an x-y grid pattern across the patterned surface 132. In yet another example, the protrusions 140 are arranged in an array of staggered rows. In one example, the protrusions 140 are uniformly spaced with a pitch “P.” In one example, the pitch “P” is 2 times the diameter “D” of the protrusions 140. In another example, the pitch “P” is 3 times the diameter “D” of the protrusions 140. In yet another example, the pitch “P” is 4 times the diameter “D” of the protrusions 140. In yet another example, the pitch “P” is 5 times the diameter “D” of the protrusions 140.


The protrusions 140 are shaped to form a corresponding via of chosen shape in the dielectric polymer material to be patterned. In one example, as depicted in FIGS. 1A-1C, the pillar shape of the protrusions 140 is cylindrical with a planarized top surface 144 and tapered sidewall(s) 146. As depicted in FIG. 1C, the sidewall(s) 146 of the protrusion 140 can be tapered from a base 148 to the planarized top surface 144. In one example, the sidewall(s) are tapered, for example, at an angle “α” from about 2 degrees to about 8 degrees from vertical, for example, from about 4 degrees to about 6 degrees from vertical, such as about 5 degrees from vertical. Tapering the sidewall(s) makes it easier to demold the imprint lithography stamp 100 from the material that is patterned. In another example, the shape of the protrusions 140 has a square foundation with a planarized surface. Other suitable shapes for the plurality of protrusions 140 can include cylindrical mounds, posts, pyramids, cones, rectangular blocks, protrusions of varying sizes, or a combination thereof.


The stamp plate 130 further includes the back surface 134 opposite the patterned surface 132. As depicted in FIG. 1A, the back surface 134 of the stamp plate 130 contacts the front surface 112 of the backing plate 110. Portion(s) 150 of the stamp body 138 extend from the back surface 134 of the stamp body 138 into the plurality of through-holes 120 formed in the backing plate 110, which helps bond the stamp plate 130 to the backing plate 110. Since FEP is generally hydrophobic and has poor sticking properties, the portion(s) 150 help the stamp plate 130 adhere to the backing plate 110. In one example, the portion(s) 150 of the stamp plate 130 that extends into at least one through-hole 120 substantially fills the through-hole 120. In another example, the portion(s) 150 of the stamp plate 130 that extends into the at least one through-hole 120 fills only a portion of the through-hole 120. Any suitable amount of the portion(s) 150 of the stamp plate 130 can extend into the through-hole 120 as long as the portion is sufficient to secure the stamp plate 130 to the backing plate 110.



FIG. 2 Illustrates an exploded schematic cross-sectional view of an example of an injection mold assembly 200 used in an injection molding process for forming an imprint lithography stamp according to aspects disclosed herein. The imprint lithography stamp formed by the injection mold assembly 200 can be the imprint lithography stamp 100 depicted in FIG. 1. The injection mold assembly 200 includes an upper half mold body 210, the backing plate 110, a spacer gasket 230, a stamp master plate 240, and a lower half mold body 250.


The upper half mold body 210 is defined by a first surface 216, a second surface 218 opposite the first surface 216, a third surface 219 opposite the first surface 216, at least one outer sidewall 222, and at least one inner peripheral wall 224. The upper half mold body 210 defines a first recess 212. The first recess 212 is defined by the second surface 218 and the inner peripheral wall 224, which extends from the second surface 218 to the third surface 219. As depicted in FIG. 3, the first recess 212 of the upper half mold body 210 is sized to accommodate the backing plate 110.


The upper half mold body 210 further includes an injection port 214, which extends from the first surface 216 of the upper half mold body 210 to the second surface 218 of the upper half mold body 210, which also serves as the bottom surface of the first recess 212. The injection port 214 of the upper half mold body 210 aligns with the injection port 122 of the backing plate 110. The injection port 214 is typically coupled with an injection molding machine. Polymer material is melted in the injection molding machine and then injected into the injection mold assembly 200 via the injection port 214, where the polymer material melt cools and solidifies to form the imprint lithography stamp 100.


The upper half mold body 210 can be composed of any material that can withstand process temperatures while demolding from the formed imprint lithography stamp 100. In one example, the upper half mold body 210 is composed of stainless steel.


The injection mold assembly 200 further includes the lower half mold body 250. The lower half mold body 250 is defined by a first surface 256, a second surface 258 opposite the first surface 256, a third surface 259 opposite the first surface 256, at least one outer sidewall 262, and at least one inner peripheral wall 264. The lower half mold body 250 defines a second recess 252. The second recess 252 is defined by the second surface 258 and the inner peripheral wall 264, which extends from the second surface 258 to the third surface 259. As depicted in FIG. 3, the second recess 252 of the lower half mold body 250 is sized to accommodate the stamp master plate 240.


The lower half mold body 250 can be composed of any material that can withstand process temperatures while demolding from the formed imprint lithography stamp 100. In one example, the lower half mold body 250 is composed of stainless steel.


The injection mold assembly 200 further includes the spacer gasket 230. The spacer gasket 230 includes an annular band 232. As depicted in FIG. 3, the spacer gasket 230 is positioned in between the upper half mold body 210 and the lower half mold body 250. When pressed together, the spacer gasket 230, the upper half mold body 210, and the lower half mold body 250 define a cavity 260 in which the imprint lithography stamp 100 is formed. The spacer gasket 230 defines a thickness of the stamp plate 130 extending from the patterned surface 132 to the back surface 134. The thickness of the stamp plate 130 can be either increased or decreased by either increasing or decreasing the thickness of the spacer gasket 230. In one example, the spacer gasket 230 has a thickness measured from a top surface 234 of the spacer gasket 230 to a bottom surface 236 of the spacer gasket 230 in a range from about 0.1 mm to about 2.0 mm, for example from about 0.1 mm to about 1 mm such as from about 0.3 mm to about 0.75 mm. The spacer gasket 230 is also positioned between the front surface 112 of the backing plate 110 and a negative patterned surface 242 of the stamp master plate 240. Thus, the spacer gasket 230 supports the backing plate 110 when the injection mold assembly 200 is empty preventing the backing plate 110 from contacting the stamp master plate 240. The spacer gasket 230 can be composed of any material that can withstand process temperatures while demolding from the formed imprint lithography stamp 100. In one example, the spacer gasket 230 is composed of stainless steel. In another example, the spacer gasket 230 is composed of brass.


The injection mold assembly 200 further includes the stamp master plate 240. As depicted in FIG. 3, the stamp master plate 240 is inserted in the second recess 252 of the lower half mold body 250. The stamp master plate 240 includes a negative patterned surface 242, a bottom surface 244 opposite the negative patterned surface 242, and an outer peripheral wall 246. The negative patterned surface 242 defines a negative mold, which includes a plurality of negative features 248 that form the protrusions 140 on the patterned surface 132 of the stamp body 138. The negative patterned surface 242 is representative of the patterned surface 132 of the stamp body 138 in that the negative features 248 of the negative patterned surface 242 appear as protrusions 140 on the stamp body 118. Thus, the negative features 248 of the negative patterned surface 242 are used to make the positive protrusions 140 of the patterned surface 132.


In one example, at least one feature of the plurality of negative features 248 is an aperture having a diameter in a range from about 1 micrometer to about 20 micrometers. In another example, at least one feature of the plurality of negative features 248 is an aperture having a diameter in a range from about 5 micrometers to about 15 micrometers. In yet another example, at least one feature of the plurality of negative features 248 is an aperture having a diameter in a range from about 5 micrometers to about 10 micrometers. In one example, adjacent features of the plurality of negative features 248 are separated by a distance in a range from about 1 millimeter to about 2 millimeters.


The injection mold assembly 200 can further include internal cooling or heating lines where a fluid is cycled through the injection mold assembly 200.


The stamp master plate 240 is molded from a master. In one example, the stamp master plate 240 is made from a semi-transparent material such as PDMS or nickel. Materials such as nickel or PDMS easily demold from the formed patterned surface 132 of the stamp plate 130.



FIG. 4A illustrates a perspective view of another example of an injection mold assembly 400 for forming an imprint lithography stamp according to aspects disclosed herein. FIG. 4B illustrates an exploded perspective view of the injection mold assembly 400 depicted in FIG. 4A. FIG. 4C illustrates another exploded perspective view of the injection mold assembly 400 depicted in FIG. 4A. Similar to the injection mold assembly 200, the injection mold assembly 400 includes an upper half mold body 410, the backing plate 110, a spacer gasket 430, a stamp master plate 440, and a lower half mold body 450. The upper half mold body 410 is similar to the upper half mold body 210 of the injection mold assembly 200. The spacer gasket 430 is similar to the spacer gasket 230 of the injection mold assembly 200. The stamp master plate 440 can be similar to the stamp master plate 240. As depicted in FIG. 4A, the spacer gasket 430 is sandwiched in between the upper half mold body 410 and the lower half mold body 450. Referring to FIG. 4B, the upper half mold body 410 defines a first recess 412 sized to accommodate the backing plate 110. Referring to FIG. 4C, the lower half mold body 450 defines a second recess 452 sized to accommodate the stamp master plate 440.



FIG. 5 illustrates a flowchart of a method 500 of manufacturing an imprint lithography stamp according to aspects disclosed herein. The method 500 can be used to form the imprint lithography stamp 100. At operation 510 an injection mold assembly is provided. The injection mold assembly can be the injection mold assembly 200 or the injection mold assembly 400. The injection mold assembly is typically coupled with an injection molding unit. The method 500 begins as the mold closes.


At operation 520, molten polymer material, for example, heated FEP copolymer is injected into the injection mold assembly. In one example, prior to injecting the molten polymer material into the injection mold assembly, the two halves of the injection mold assembly are securely closed together with the spacer gasket sandwiched in between. The polymer material is delivered to the injection molding unit, usually in the form of pellets, and advanced toward the injection mold assembly by the injection molding unit. The polymer material is melted in the injection molding unit by temperature and/or pressure and then the molten polymer material is injected into the injection mold assembly. As the molten polymer material enters the injection mold assembly, the displaced air escapes through vents in the injection mold assembly design, for example, air can escape through vents in the injection pins and along the parting line.


Referring to FIG. 2, the molten polymer material is delivered to the injection mold assembly 200 via injection port 214. In one example, the polymer melt material travels through the injection port 122 of backing plate 110 and fills the cavity 260 defined by the negative patterned surface 242 of the stamp master plate 240, the front surface 112 of the backing plate 110, and the spacer gasket 230. The polymer melt material flows from the cavity 260 into the through-holes 120 to form portion(s) 150.


At operation 530, the polymer material is cured to form the imprint lithography stamp. The polymer melt material that is inside the injection mold assembly begins to cool as it contacts the interior surfaces of the injection mold assembly. Once the injection mold assembly is filled, the polymer melt material is allowed to cool for the amount of time needed to harden the polymer material to form the imprint lithography stamp. Cooling time typically depends on the type of polymer melt used and the thickness of the imprint lithography stamp.


After sufficient time has passed, at operation 540, the imprint lithography stamp is removed from the injection mold assembly. After operation 540, some post processing can occur. For example, during cooling polymer material in the injection port can solidify and attach to the imprint lithography stamp. This excess material along with any flash that has occurred can be trimmed from the part, using, for example, cutters. In some examples, the scrap material resulting from the trimming is can be recycled and reused in the method 500.



FIG. 6 illustrates a flowchart of a method 600 of using an imprint lithography stamp according to aspects disclosed herein. FIGS. 7A-7F illustrate various stages of a substrate imprint lithography process according to aspects disclosed herein. Although method 600 and FIGS. 7A-7F are discussed in the context for forming a redistribution layer, it should be understood that the imprint lithography stamp can be used to physically imprint other types of polymer layers.


The method 600 begins at operation 610 with depositing a polymer layer 721, such as a dielectric polymer layer, such as a polyimide layer or ABF layer, onto a surface of a reconstituted substrate (not shown). In one example, the ABF layer is a three-layer polymer system including a polyethylene terephthalate (PET) support film, a resin layer, and a cover film. Herein, the polymer layer 721 is deposited using a spin coating and soft bake method where a dielectric polymer precursor, for example, a polyimide precursor or an ABF precursor, is dispensed onto a rotating reconstituted substrate until a uniform layer of the dielectric polymer precursor is formed thereon. The reconstituted substrate and the dielectric polymer precursor disposed thereon are heated to a temperature in a range from about 120 degrees Celsius to about 150 degrees Celsius (soft baked) to remove only a portion of the solvents contained in the dielectric polymer precursor making the polymer layer 721 suitable for subsequent imprinting.



FIG. 7A shows a portion of a device 704 embedded in a reconstituted substrate (not shown) having the polymer layer 721 disposed thereon. The device 704 includes an active portion 701 having a metal layer and a passivation layer 705 disposed thereon and an opening formed in the passivation layer 705 to expose a contact pad(s) 703 of the metal layer therebeneath.


The method 600 continues at operation 620 with physically imprinting a pattern into the polymer layer 721 using an imprint lithography stamp, such as the imprint lithography stamp 100 shown in FIG. 1. In one example, operation 620 includes a thermal imprint process where at least one of the imprint lithography stamp 100 and the polymer layer 721 is heated. The polymer layer 721 can be a non-photosensitive dielectric polymer. In another example, operation 620 includes a UV imprint lithography process where the polymer layer 721 comprises a photosensitive dielectric material.


Herein, the imprint lithography stamp 100 includes a via pattern used in forming a fanned out redistribution layer over one or more individual die of the reconstituted substrate in a step and repeat in another area process. In other examples, the imprint lithography stamp 100 includes a plurality of patterns used in forming a plurality of fanned out redistribution interconnects over a plurality of dies in a single imprint. In some implementations, a single imprint lithography stamp is used to form a plurality of openings in the polymer layer 721 over the entire reconstituted substrate in a single imprint. In one example, the imprint lithography stamp 100 is heated to a temperature in a range from about 100 degrees Celsius to about 150 degrees Celsius and is pressed into the polymer layer 721, which is displaced around the pattern of the imprint lithography stamp 100. In another example, the polymer layer 721 is heated to a temperature in a range from about 120 degrees Celsius to about 150 degrees Celsius, for example from about 130 degrees Celsius to about 140 degrees Celsius, and the imprint lithography stamp 100 is pressed into the heated polymer layer 721. In yet another example, both the polymer layer 721 and the imprint lithography stamp 100 are heated.


The imprint lithography stamp 100 is subsequently cooled and removed from the polymer layer 721 leaving a via opening formed therein, such as opening(s) 725 shown in FIG. 7C. The imprint lithography stamp 100 is moved over another die on the reconstituted substrate and the process is repeated until the opening(s) 725 is formed in the polymer layer 721 over all chosen dies on the reconstituted substrate. In implementations using a UV imprint lithography process, the imprint lithography stamp 100 includes a UV transparent material, such as FEP, and a polymer layer 721 comprising a photosensitive dielectric polymer is exposed to UV radiation through the imprint lithography stamp 100. In one example, the UV radiation includes about 365 nm at 200 mJ/cm2. In some implementations, operation 620 takes place in a low pressure atmosphere, such as in a processing system having a processing volume maintained at a pressure less than atmospheric pressure, such as less than one half of atmospheric pressure, or less than about 400 Torr, for example less than about 300 Torr. Physically imprinting a pattern into the polymer layer 721 using imprint lithography stamp 100 in a low pressure atmosphere desirably removes, reduces, and/or substantially eliminates voids (not shown) formed in the polymer layer 721 during and/or subsequent to the formation thereof.


After formation of the opening(s) 725, the reconstituted substrate can be thermally cured in a nitrogen environment. In one example, the reconstituted substrate is thermally cured at a temperature from about 180 degrees Celsius to about 200 degrees Celsius. Residual polymer on the contact pad(s) 703 can be subsequently removed using an oxygen plasma descum or other suitable method. In some implementations, such as implementations using a UV imprint lithography process the oxygen plasma descum is before the thermal cure.


The method 600 continues at operation 630 with depositing a seed layer 709 over the polymer layer 721 and the opening(s) 725 disposed therein. The seed layer 709 enables subsequent electroplating of a metal layer, herein copper, and provides a barrier to prevent diffusion of copper atoms, from the subsequently formed metal layer, into the surrounding polymer layer 721 and the contact pad(s) 703. Herein, the seed layer 709 includes tantalum, tantalum nitride, tungsten, titanium, titanium tungsten, titanium nitride, tungsten nitride, titanium copper, or a combination thereof. The seed layer 709 is deposited using any suitable method such as chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), or a combination thereof.


The method 600 continues at operation 640 with forming a metal layer, such as the metal layer 717 shown in FIG. 7E, on the seed layer 709 using an electroplating process. Herein, the metal layer 717 includes copper. In other implementations, the metal layer 717 and subsequently formed metal interconnect comprises copper, nickel, gold, antimony silver, or a combination thereof.


At operation 650, the method 600 includes planarizing the surface of the reconstituted substrate to remove portions of the metal layer 717 and the seed layer 709 disposed on the surface of the polymer layer 721 to form one or more interconnect structures 727 in a redistribution layer 714 as shown in FIG. 7F. Planarization of the surface of the reconstituted substrate is done using a chemical mechanical polishing (CMP) and/or a grinding process.


Implementations of the present disclosure can include one or more of the following potential advantages. By manufacturing the imprint lithography stamp with a more durable material, such as FEP, high aspect ratio vias, for example, vias having an aspect ratio greater than one can be formed in photopatternable dielectric polymer materials that involve higher processing temperatures, such as ABF and polyimides, without the feature deformation caused by imprinting with currently available PDMS lithography stamps. The imprint lithography stamp includes a glass backing plate, which provides rigidity to the stamp. The glass backing plate includes a plurality of through-holes, portions of the stamp body extend into the through-holes, which helps bond the stamp plate to the backing plate. An injection mold design for forming the imprint lithography stamp is also provided. The injection mold includes the backing plate as an insert. The injection mold further includes a stamp master plate, which contains the negative pattern of the protrusions formed on the imprint lithography stamp. The stamp master plate is fabricated from PDMS or nickel, which easily demolds from the FEP stamp body.


Implementations and all of the functional operations described in this specification can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structural means disclosed in this specification and structural equivalents thereof, or in combinations of them. Implementations described herein can be implemented as one or more non-transitory computer program products, i.e., one or more computer programs tangibly embodied in a machine readable storage device, for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple processors or computers.


The processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).


The term “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them. Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.


Computer readable media suitable for storing computer program instructions and data include all forms of nonvolatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.


When introducing elements of the present disclosure or exemplary aspects or implementation(s) thereof, the articles “a,” “an,” “the” and “said” are intended to mean that there are one or more of the elements.


The terms “comprising,” “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.


The present disclosure describes imprint lithography stamps, methods of manufacturing imprint lithography stamps, and methods of using imprint lithography stamps. Certain details are set forth in the description and in FIGS. 1-7F to provide a thorough understanding of various implementations of the disclosure. Other details describing well-known structures and systems often associated with imprint lithography stamps, injection molding processes for forming imprint lithography stamps, and methods of using imprint lithography stamps to pattern polymer materials are not set forth in the present disclosure to avoid unnecessarily obscuring the description of the various implementations.


Many of the details, dimensions, angles and other features shown in the Figures are merely illustrative of particular implementations. Accordingly, other implementations can have other details, components, dimensions, angles and features without departing from the spirit or scope of the present disclosure. In addition, further implementations of the disclosure can be practiced without several of the details described herein.


While the foregoing is directed to implementations of the present disclosure, other and further implementations of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. An imprint lithography stamp, comprising: a backing plate, comprising: a front surface; anda backside surface opposite the front surface, wherein the backing plate has a plurality of through-holes extending from the front surface to the backside surface; anda stamp body, comprising: a patterned surface having a plurality of protrusions extending from the stamp body; anda back surface opposite the patterned surface, wherein the back surface contacts the front surface of the backing plate and a portion of the stamp body extends from the back surface of the stamp body into the plurality of through-holes formed in the backing plate.
  • 2. The imprint lithography stamp of claim 1, wherein the stamp body comprises fluorinated ethylene propylene (FEP).
  • 3. The imprint lithography stamp of claim 2, wherein the backing plate comprises glass, ceramic, fiberglass, chrome, stainless steel, or nickel.
  • 4. The imprint lithography stamp of claim 1, wherein the stamp body comprises a polymer that does not deform above 50° C.
  • 5. The imprint lithography stamp of claim 1, wherein at least one protrusion of the plurality of protrusions has a diameter in a range from about 1 micrometer to about 20 micrometers.
  • 6. The imprint lithography stamp of claim 1, wherein at least one protrusion of the plurality of protrusions has a diameter in a range from about 5 micrometers to about 15 micrometers.
  • 7. The imprint lithography stamp of claim 1, wherein at least one through-hole of the plurality of through-holes has a diameter in a range from about 0.5 millimeters to about 1 millimeter.
  • 8. The imprint lithography stamp of claim 1, wherein an aspect ratio of at least one protrusion of the plurality of protrusions is greater than one.
  • 9. The imprint lithography stamp of claim 1, wherein the stamp body has a thickness measured from the patterned surface to the back surface of from about 0.1 millimeters to about 2 millimeters.
  • 10. The imprint lithography stamp of claim 1, wherein the stamp body has a thickness measured from the patterned surface to the back surface of from about 0.5 millimeters to about 1 millimeter.
  • 11. The imprint lithography stamp of claim 1, wherein the patterned surface of the stamp body has: a surface area of about 500 mm2 to about 700 mm2;about 100 to about 500 protrusions; ora combination thereof.
  • 12. The imprint lithography stamp of claim 1, wherein the patterned surface of the stamp body has from about 100 to about 500 protrusions that occupy from about 3% to about 9% of a surface area of the patterned surface.
  • 13. An imprint lithography stamp, comprising: a backing plate, comprising: a front surface; anda backside surface opposite the front surface, wherein the backing plate has a plurality of through-holes extending from the front surface to the backside surface; anda stamp body comprising fluorinated ethylene propylene (FEP), the imprint lithography stamp further comprising: a patterned surface having a plurality of protrusions extending from the stamp body; anda back surface opposite the patterned surface, wherein the back surface contacts the front surface of the backing plate and a portion of the stamp body extends from the back surface of the stamp body into the plurality of through-holes formed in the backing plate.
  • 14. The imprint lithography stamp of claim 1, wherein: at least one protrusion of the plurality of protrusions has a diameter in a range from about 1 micrometer to about 20 micrometers;at least one through-hole of the plurality of through-holes has a diameter in a range from about 0.5 millimeters to about 1 millimeter;the stamp body has a thickness measured from the patterned surface to the back surface of from about 0.1 millimeters to about 2 millimeters;the patterned surface of the stamp body has a surface area of about 500 mm2 to about 700 mm2;the patterned surface of the stamp body has from about 100 to about 500 protrusions; orcombinations thereof.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 16/849,393, filed Apr. 15, 2020, which is incorporated herein by reference in its entirety.

US Referenced Citations (314)
Number Name Date Kind
4073610 Cox Feb 1978 A
5126016 Glenning et al. Jun 1992 A
5268194 Kawakami et al. Dec 1993 A
5353195 Fillion et al. Oct 1994 A
5367143 White, Jr. Nov 1994 A
5374788 Endoh et al. Dec 1994 A
5474834 Tanahashi et al. Dec 1995 A
5670262 Dalman Sep 1997 A
5767480 Anglin et al. Jun 1998 A
5783870 Mostafazadeh et al. Jul 1998 A
5841102 Noddin Nov 1998 A
5878485 Wood et al. Mar 1999 A
6013948 Akram et al. Jan 2000 A
6039889 Zhang et al. Mar 2000 A
6087719 Tsunashima Jul 2000 A
6117704 Yamaguchi et al. Sep 2000 A
6211485 Burgess Apr 2001 B1
6384473 Peterson et al. May 2002 B1
6388202 Swirbel et al. May 2002 B1
6388207 Figueroa et al. May 2002 B1
6392290 Kasem et al. May 2002 B1
6459046 Ochi et al. Oct 2002 B1
6465084 Curcio et al. Oct 2002 B1
6489670 Peterson et al. Dec 2002 B1
6495895 Peterson et al. Dec 2002 B1
6506632 Cheng et al. Jan 2003 B1
6512182 Takeuchi et al. Jan 2003 B2
6538312 Peterson et al. Mar 2003 B1
6555906 Towle et al. Apr 2003 B2
6576869 Gower et al. Jun 2003 B1
6593240 Page Jul 2003 B1
6631558 Burgess Oct 2003 B2
6661084 Peterson et al. Dec 2003 B1
6677552 Tulloch et al. Jan 2004 B1
6713719 De Steur et al. Mar 2004 B1
6724638 Inagaki et al. Apr 2004 B1
6775907 Boyko et al. Aug 2004 B1
6781093 Conlon et al. Aug 2004 B2
6799369 Ochi et al. Oct 2004 B2
6894399 Vu et al. May 2005 B2
7028400 Hiner et al. Apr 2006 B1
7062845 Burgess Jun 2006 B2
7064069 Draney et al. Jun 2006 B2
7078788 Vu et al. Jul 2006 B2
7091589 Mori et al. Aug 2006 B2
7091593 Ishimaru et al. Aug 2006 B2
7105931 Attarwala Sep 2006 B2
7129117 Hsu Oct 2006 B2
7166914 DiStefano et al. Jan 2007 B2
7170152 Huang et al. Jan 2007 B2
7192807 Huemoeller et al. Mar 2007 B1
7211899 Taniguchi et al. May 2007 B2
7271012 Anderson Sep 2007 B2
7274099 Hsu Sep 2007 B2
7276446 Robinson et al. Oct 2007 B2
7279357 Shimoishizaka et al. Oct 2007 B2
7312405 Hsu Dec 2007 B2
7321164 Hsu Jan 2008 B2
7449363 Hsu Nov 2008 B2
7458794 Schwaighofer et al. Dec 2008 B2
7511365 Wu et al. Mar 2009 B2
7690109 Mori et al. Apr 2010 B2
7714431 Huemoeller et al. May 2010 B1
7723838 Takeuchi et al. May 2010 B2
7754530 Wu et al. Jul 2010 B2
7808799 Kawabe et al. Oct 2010 B2
7839649 Hsu Nov 2010 B2
7843064 Kuo et al. Nov 2010 B2
7852634 Sakamoto et al. Dec 2010 B2
7855460 Kuwajima Dec 2010 B2
7868464 Kawabata et al. Jan 2011 B2
7887712 Boyle et al. Feb 2011 B2
7914693 Jeong et al. Mar 2011 B2
7915737 Nakasato et al. Mar 2011 B2
7932595 Huemoeller et al. Apr 2011 B1
7932608 Tseng et al. Apr 2011 B2
7955942 Pagaila et al. Jun 2011 B2
7978478 Inagaki et al. Jul 2011 B2
7982305 Railkar et al. Jul 2011 B1
7988446 Yeh et al. Aug 2011 B2
8069560 Mori et al. Dec 2011 B2
8137497 Sunohara et al. Mar 2012 B2
8283778 Trezza Oct 2012 B2
8314343 Inoue et al. Nov 2012 B2
8367943 Wu et al. Feb 2013 B2
8384203 Toh et al. Feb 2013 B2
8390125 Tseng et al. Mar 2013 B2
8426246 Toh et al. Apr 2013 B2
8470708 Shih et al. Jun 2013 B2
8476769 Chen et al. Jul 2013 B2
8518746 Pagaila et al. Aug 2013 B2
8536695 Liu et al. Sep 2013 B2
8628383 Starling et al. Jan 2014 B2
8633397 Jeong et al. Jan 2014 B2
8698293 Otremba et al. Apr 2014 B2
8704359 Tuominen et al. Apr 2014 B2
8710402 Lei et al. Apr 2014 B2
8710649 Huemoeller et al. Apr 2014 B1
8728341 Ryuzaki et al. May 2014 B2
8772087 Barth et al. Jul 2014 B2
8786098 Wang Jul 2014 B2
8877554 Tsai et al. Nov 2014 B2
8890628 Nair et al. Nov 2014 B2
8907471 Beyne et al. Dec 2014 B2
8921995 Railkar et al. Dec 2014 B1
8952544 Lin et al. Feb 2015 B2
8980691 Lin Mar 2015 B2
8980727 Lei et al. Mar 2015 B1
8990754 Bird et al. Mar 2015 B2
8994185 Lin et al. Mar 2015 B2
8999759 Chia Apr 2015 B2
9059186 Shim et al. Jun 2015 B2
9064936 Lin et al. Jun 2015 B2
9070637 Yoda et al. Jun 2015 B2
9099313 Lee et al. Aug 2015 B2
9111914 Lin et al. Aug 2015 B2
9142487 Toh et al. Sep 2015 B2
9159678 Cheng et al. Oct 2015 B2
9161453 Koyanagi Oct 2015 B2
9210809 Mallik et al. Dec 2015 B2
9224674 Malatkar et al. Dec 2015 B2
9275934 Sundaram et al. Mar 2016 B2
9318376 Holm et al. Apr 2016 B1
9355881 Goller et al. May 2016 B2
9363898 Tuominen et al. Jun 2016 B2
9396999 Yap et al. Jul 2016 B2
9406645 Huemoeller et al. Aug 2016 B1
9499397 Bowles et al. Nov 2016 B2
9530752 Nikitin et al. Dec 2016 B2
9554469 Hurwitz et al. Jan 2017 B2
9660037 Zechmann et al. May 2017 B1
9698104 Yap et al. Jul 2017 B2
9704726 Toh et al. Jul 2017 B2
9735134 Chen Aug 2017 B2
9748167 Lin Aug 2017 B1
9754849 Huang et al. Sep 2017 B2
9837352 Chang et al. Dec 2017 B2
9837484 Jung et al. Dec 2017 B2
9859258 Chen et al. Jan 2018 B2
9875970 Yi et al. Jan 2018 B2
9887103 Scanlan et al. Feb 2018 B2
9887167 Lee et al. Feb 2018 B1
9893045 Pagaila et al. Feb 2018 B2
9978720 Theuss et al. May 2018 B2
9997444 Meyer et al. Jun 2018 B2
10014292 Or-Bach et al. Jul 2018 B2
10037975 Hsieh et al. Jul 2018 B2
10053359 Bowles et al. Aug 2018 B2
10090284 Chen et al. Oct 2018 B2
10109588 Jeong et al. Oct 2018 B2
10128177 Kamgaing et al. Nov 2018 B2
10134687 Kim et al. Nov 2018 B1
10153219 Jeon et al. Dec 2018 B2
10163803 Chen et al. Dec 2018 B1
10170386 Kang et al. Jan 2019 B2
10177083 Kim et al. Jan 2019 B2
10211072 Chen et al. Feb 2019 B2
10229827 Chen et al. Mar 2019 B2
10256180 Liu et al. Apr 2019 B2
10269773 Yu et al. Apr 2019 B1
10297518 Lin et al. May 2019 B2
10297586 Or-Bach et al. May 2019 B2
10304765 Chen et al. May 2019 B2
10347585 Shin et al. Jul 2019 B2
10410971 Rae et al. Sep 2019 B2
10424530 Alur et al. Sep 2019 B1
10515912 Lim et al. Dec 2019 B2
10522483 Shuto Dec 2019 B2
10553515 Chew Feb 2020 B2
10570257 Sun et al. Feb 2020 B2
10658337 Yu et al. May 2020 B2
10886232 Chen et al. Jan 2021 B2
11264331 Chen et al. Mar 2022 B2
11676832 Leschkies et al. Jun 2023 B2
20010020548 Burgess Sep 2001 A1
20010030059 Sugaya et al. Oct 2001 A1
20020036054 Nakatani et al. Mar 2002 A1
20020048715 Walczynski Apr 2002 A1
20020070443 Mu et al. Jun 2002 A1
20020074615 Honda Jun 2002 A1
20020135058 Asahi et al. Sep 2002 A1
20020158334 Vu et al. Oct 2002 A1
20020170891 Boyle et al. Nov 2002 A1
20030059976 Nathan et al. Mar 2003 A1
20030221864 Bergstedt et al. Dec 2003 A1
20030222330 Sun et al. Dec 2003 A1
20040080040 Dotta et al. Apr 2004 A1
20040118824 Burgess Jun 2004 A1
20040134682 En et al. Jul 2004 A1
20040248412 Liu et al. Dec 2004 A1
20050012217 Mori et al. Jan 2005 A1
20050070092 Kirby Mar 2005 A1
20050170292 Tsai et al. Aug 2005 A1
20060014532 Seligmann et al. Jan 2006 A1
20060073234 Williams Apr 2006 A1
20060128069 Hsu Jun 2006 A1
20060145328 Hsu Jul 2006 A1
20060160332 Gu et al. Jul 2006 A1
20060270242 Verhaverbeke et al. Nov 2006 A1
20060283716 Hafezi et al. Dec 2006 A1
20070035033 Ozguz et al. Feb 2007 A1
20070042563 Wang et al. Feb 2007 A1
20070077865 Dysard et al. Apr 2007 A1
20070111401 Kataoka et al. May 2007 A1
20070130761 Kang et al. Jun 2007 A1
20070290300 Kawakami Dec 2007 A1
20080006945 Lin et al. Jan 2008 A1
20080011852 Gu et al. Jan 2008 A1
20080076256 Kawai et al. Mar 2008 A1
20080090095 Nagata et al. Apr 2008 A1
20080113283 Ghoshal et al. May 2008 A1
20080119041 Magera et al. May 2008 A1
20080173792 Yang et al. Jul 2008 A1
20080173999 Chung et al. Jul 2008 A1
20080296273 Lei et al. Dec 2008 A1
20090084596 Inoue et al. Apr 2009 A1
20090243065 Sugino et al. Oct 2009 A1
20090250823 Racz et al. Oct 2009 A1
20090278126 Yang et al. Nov 2009 A1
20100013081 Toh et al. Jan 2010 A1
20100062287 Beresford et al. Mar 2010 A1
20100068837 Kumar et al. Mar 2010 A1
20100078805 Li et al. Apr 2010 A1
20100144101 Chow et al. Jun 2010 A1
20100148305 Yun Jun 2010 A1
20100160170 Horimoto et al. Jun 2010 A1
20100248451 Pirogovsky et al. Sep 2010 A1
20100264538 Swinnen et al. Oct 2010 A1
20100301023 Unrath et al. Dec 2010 A1
20100307798 Izadian Dec 2010 A1
20110062594 Maekawa et al. Mar 2011 A1
20110097432 Yu et al. Apr 2011 A1
20110111300 DelHagen et al. May 2011 A1
20110151663 Chatterjee et al. Jun 2011 A1
20110204505 Pagaila et al. Aug 2011 A1
20110259631 Rumsby Oct 2011 A1
20110272191 Li et al. Nov 2011 A1
20110291293 Tuominen et al. Dec 2011 A1
20110304024 Renna Dec 2011 A1
20110316147 Shih et al. Dec 2011 A1
20120128891 Takei et al. May 2012 A1
20120135608 Shimoi et al. May 2012 A1
20120146209 Hu et al. Jun 2012 A1
20120164827 Rajagopalan et al. Jun 2012 A1
20120261805 Sundaram et al. Oct 2012 A1
20130074332 Suzuki Mar 2013 A1
20130105329 Matejat et al. May 2013 A1
20130196501 Sulfridge Aug 2013 A1
20130200528 Lin et al. Aug 2013 A1
20130203190 Reed et al. Aug 2013 A1
20130286615 Inagaki et al. Oct 2013 A1
20130341738 Reinmuth et al. Dec 2013 A1
20140054075 Hu Feb 2014 A1
20140092519 Yang Apr 2014 A1
20140094094 Rizzuto et al. Apr 2014 A1
20140103499 Andry et al. Apr 2014 A1
20140252655 Tran et al. Sep 2014 A1
20140353019 Arora et al. Dec 2014 A1
20150187691 Vick Jul 2015 A1
20150228416 Hurwitz et al. Aug 2015 A1
20150255344 Ebefors et al. Sep 2015 A1
20150296610 Daghighian et al. Oct 2015 A1
20150311093 Li et al. Oct 2015 A1
20150359098 Ock Dec 2015 A1
20150380356 Chauhan et al. Dec 2015 A1
20160013135 He et al. Jan 2016 A1
20160020163 Shimizu et al. Jan 2016 A1
20160049371 Lee et al. Feb 2016 A1
20160088729 Kobuke et al. Mar 2016 A1
20160095203 Min et al. Mar 2016 A1
20160118325 Wang et al. Apr 2016 A1
20160118337 Yoon et al. Apr 2016 A1
20160270242 Kim et al. Sep 2016 A1
20160276325 Nair et al. Sep 2016 A1
20160329299 Lin et al. Nov 2016 A1
20160336296 Jeong et al. Nov 2016 A1
20170047308 Ho et al. Feb 2017 A1
20170064835 Ishihara et al. Mar 2017 A1
20170207197 Yu et al. Jul 2017 A1
20170223842 Chujo et al. Aug 2017 A1
20170229432 Lin et al. Aug 2017 A1
20170338254 Reit et al. Nov 2017 A1
20180019197 Boyapati et al. Jan 2018 A1
20180033779 Park et al. Feb 2018 A1
20180047666 Lin et al. Feb 2018 A1
20180116057 Kajihara et al. Apr 2018 A1
20180182727 Yu Jun 2018 A1
20180197831 Kim et al. Jul 2018 A1
20180204802 Lin et al. Jul 2018 A1
20180308792 Raghunathan et al. Oct 2018 A1
20180352658 Yang Dec 2018 A1
20180374696 Chen et al. Dec 2018 A1
20180376589 Harazono Dec 2018 A1
20190088603 Marimuthu et al. Mar 2019 A1
20190131224 Choi et al. May 2019 A1
20190131270 Lee et al. May 2019 A1
20190131284 Jeng et al. May 2019 A1
20190189561 Rusli Jun 2019 A1
20190229046 Tsai et al. Jul 2019 A1
20190237430 England Aug 2019 A1
20190285981 Cunningham et al. Sep 2019 A1
20190306988 Grober et al. Oct 2019 A1
20190326224 Aoki Oct 2019 A1
20190355675 Lee et al. Nov 2019 A1
20190355680 Chuang et al. Nov 2019 A1
20190369321 Young et al. Dec 2019 A1
20200003936 Fu et al. Jan 2020 A1
20200039002 Sercel et al. Feb 2020 A1
20200130131 Togawa et al. Apr 2020 A1
20200163218 Mok May 2020 A1
20200357947 Chen et al. Nov 2020 A1
20200358163 See et al. Nov 2020 A1
20200395306 Chen et al. Dec 2020 A1
20210005550 Chavali et al. Jan 2021 A1
Foreign Referenced Citations (89)
Number Date Country
2481616 Jan 2013 CA
1646650 Jul 2005 CN
1971894 May 2007 CN
100463128 Feb 2009 CN
100502040 Jun 2009 CN
100524717 Aug 2009 CN
100561696 Nov 2009 CN
102024713 Apr 2011 CN
102437110 May 2012 CN
104637912 May 2015 CN
105436718 Mar 2016 CN
105575938 May 2016 CN
106531647 Mar 2017 CN
106653703 May 2017 CN
107428544 Dec 2017 CN
108028225 May 2018 CN
109155246 Jan 2019 CN
111492472 Aug 2020 CN
0264134 Apr 1988 EP
1536673 Jun 2005 EP
1478021 Jul 2008 EP
2023382 Feb 2009 EP
1845762 May 2011 EP
2942808 Nov 2015 EP
H06152089 May 1994 JP
2001244591 Sep 2001 JP
2002208778 Jul 2002 JP
2002246755 Aug 2002 JP
2003188340 Jul 2003 JP
2004311788 Nov 2004 JP
2004335641 Nov 2004 JP
2006032556 Feb 2006 JP
2008066517 Mar 2008 JP
4108285 Jun 2008 JP
2009081423 Apr 2009 JP
2010529664 Aug 2010 JP
2012069926 Apr 2012 JP
5004378 Aug 2012 JP
5111342 Jan 2013 JP
2013176835 Sep 2013 JP
2013207006 Oct 2013 JP
2013222889 Oct 2013 JP
5693977 Apr 2015 JP
5700241 Apr 2015 JP
2015070007 Apr 2015 JP
201692107 May 2016 JP
5981232 Aug 2016 JP
2016171118 Sep 2016 JP
2017148920 Aug 2017 JP
2017197708 Nov 2017 JP
6394136 Sep 2018 JP
2018195620 Dec 2018 JP
2019009297 Jan 2019 JP
2019512168 May 2019 JP
6542616 Jul 2019 JP
6626697 Dec 2019 JP
20040096537 Mar 2007 KP
20160038293 Apr 2016 KP
100714196 May 2007 KR
100731112 Jun 2007 KR
10-2008-0037296 Apr 2008 KR
2008052491 Jun 2008 KR
20100097893 Sep 2010 KR
101301507 Sep 2013 KR
20140086375 Jul 2014 KR
101494413 Feb 2015 KR
20160013706 Feb 2016 KR
20180113885 Oct 2018 KR
101922884 Nov 2018 KR
101975302 Aug 2019 KR
102012443 Aug 2019 KR
201042019 Dec 2010 TW
201536130 Sep 2015 TW
I594397 Aug 2017 TW
201805400 Feb 2018 TW
201943321 Nov 2019 TW
201944533 Nov 2019 TW
2011130300 Oct 2011 WO
2013008415 Jan 2013 WO
2013126927 Aug 2013 WO
2014186538 Nov 2014 WO
2015126438 Aug 2015 WO
2016143797 Sep 2016 WO
2017111957 Jun 2017 WO
2018013122 Jan 2018 WO
2018125184 Jul 2018 WO
2019023213 Jan 2019 WO
2019066988 Apr 2019 WO
2019177742 Sep 2019 WO
Non-Patent Literature Citations (68)
Entry
Allresist Gmbh—Strausberg et al: “Resist-Wiki: Adhesion promoter HMDS and diphenylsilanedio (AR 300-80)- . . . -ALLRESIST GmbH—Strausberg, Germany”, Apr. 12, 2019 (Apr. 12, 2019), XP055663206, Retrieved from the Internet: URL:https://web.archive.org/web/2019041220micals-adhesion-promoter-hmds-and-diphenyl2908/https://www.allresist.com/process-chemicals-adhesion-promoter-hmds-and-diphenylsilanedio/, [retrieved on Jan. 29, 2020].
Amit Kelkar, et al. “Novel Mold-free Fan-out Wafer Level Package using Silicon Wafer”, IMAPS 2016—49th International Symposium on Microelectronics—Pasadena, CA USA—Oct. 10-13, 2016, 5 pages. (IMAPS 2016—49th International Symposium on Microelectronics—Pasadena, CA USA—Oct. 10-13, 2016, 5 pages.).
Arifur Rahman. “System-Level Performance Evaluation of Three-Dimensional Integrated Circuits”, vol. 8, No. 6, Dec. 2000. pp. 671-678.
Baier, T. et al., Theoretical Approach to Estimate Laser Process Parameters for Drilling in Crystalline Silicon, Prog. Photovolt: Res. Appl. 18 (2010) 603-606, 5 pages.
Chien-Wei Chien et al “Chip Embedded Wafer Level Packaging Technology for Stacked RF-SiP Application”,2007 IEEE, pp. 305-310.
Chien-Wei Chien et al. “3D Chip Stack With Wafer Through Hole Technology”. 6 pages.
Doany, F.E., et al.—“Laser release process to obtain freestanding multilayer metal-polyimide circuits,” IBM Journal of Research and Development, vol. 41, Issue 1/2, Jan./Mar. 1997, pp. 151-157.
Dyer, P.E., et al.—“Nanosecond photoacoustic studies on ultraviolet laser ablation of organic polymers,” Applied Physics Letters, vol. 48, No. 6, Feb. 10, 1986, pp. 445-447.
Han et al.—“Process Feasibility and Reliability Performance of Fine Pitch Si Bare Chip Embedded in Through Cavity of Substrate Core,” IEEE Trans. Components, Packaging and Manuf. Tech., vol. 5, No. 4, pp. 551-561, 2015. [Han et al. IEEE Trans. Components, Packaging and Manuf. Tech., vol. 5, No. 4, pp. 551-561, 2015.]
Han et al.—“Through Cavity Core Device Embedded Substrate for Ultra-Fine-Pitch Si Bare Chips; (Fabrication feasibility and residual stress evaluation)”, ICEP-IAAC, 2015, pp. 174-179. [Han et al., ICEP-IAAC, 2015, pp. 174-179.]
Han, Younggun, et al.—“Evaluation of Residual Stress and Warpage of Device Embedded Substrates with Piezo-Resistive Sensor Silicon Chips” technical paper, Jul. 31, 2015, pp. 81-94.
International Search Report and the Written Opinion for International Application No. PCT/US2019/064280 dated Mar. 20, 2020, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2020/026832 dated Jul. 23, 2020.
Italian search report and written opinion for Application No. IT 201900006736 dated Mar. 2, 2020.
Italian Search Report and Written Opinion for Application No. IT 201900006740 dated Mar. 4, 2020.
Junghoon Yeom', et al. “Critical Aspect Ratio Dependence in Deep Reactive Ion Etching of Silicon”, 2003 IEEE. pp. 1631-1634.
K. Sakuma et al. “3D Stacking Technology with Low-vol. Lead-Free Interconnections”, IBM T.J. Watson Research Center. 2007 IEEE, pp. 627-632.
Kenji Takahashi et al. “Current Status of Research and Development for Three-Dimensional Chip Stack Technology”, Jpn. J. Appl. Phys. vol. 40 (2001) pp. 3032-3037, Part 1, No. 4B, Apr. 2001. 6 pages.
Kim et al. “A Study on the Adhesion Properties of Reactive Sputtered Molybdenum Thin Films with Nitrogen Gas on Polyimide Substrate as a Cu Barrier Layer,” 2015, Journal of Nanoscience and Nanotechnology, vol. 15, No. 11, pp. 8743-8748, doi: 10.1166/jnn.2015.11493.
Knickerbocker, J.U., et al.—“Development of next-generation system-on-package (SOP) technology based on silicon carriers with fine-pitch chip interconnection,” IBM Journal of Research and Development, vol. 49, Issue 4/5, Jul./Sep. 2005, pp. 725-753.
Knickerbocker, John U., et al.—“3-D Silicon Integration and Silicon Packaging Technology Using Silicon Through-Vias,” IEEE Journal of Solid-State Circuits, vol. 41, No. 8, Aug. 2006, pp. 1718-1725.
Knorz, A. et al., High Speed Laser Drilling: Parameter Evaluation and Characterisation, Presented at the 25th European PV Solar Energy Conference and Exhibition, Sep. 6-10, 2010, Valencia, Spain, 7 pages.
L. Wang, et al. “High aspect ratio through-wafer interconnections for 3Dmicrosystems”, 2003 IEEE. pp. 634-637.
Lee et al. “Effect of sputtering parameters on the adhesion force of copper/molybdenum metal on polymer substrate,” 2011, Current Applied Physics, vol. 11, pp. S12-S15, doi: 10.1016/j.cap.2011.06.019.
Liu, C.Y. et al., Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation, Journal of Physics: Conference Series 59 (2007) 338-342, 6 pages.
Narayan, C., et al.—“Thin Film Transfer Process for Low Cost MCM's,” Proceedings of 1993 IEEE/CHMT International Electronic Manufacturing Technology Symposium, Oct. 4-6, 1993, pp. 373-380.
NT Nguyen et al. “Through-Wafer Copper Electroplating for Three-Dimensional Interconnects”, Journal of Micromechanics and Microengineering. 12 (2002) 395-399. 2002 IOP.
PCT International Search Report and Written Opinion dated Aug. 28, 2020, for International Application No. PCT/US2020/032245.
PCT International Search Report and Written Opinion dated Sep. 15, 2020, for International Application No. PCT/US2020/035778.
Ronald Hon et al. “Multi-Stack Flip Chip 3D Packaging with Copper Plated Through-Silicon Vertical Interconnection”, 2005 IEEE. pp. 384-389.
S. W. Ricky Lee et al. “3D Stacked Flip Chip Packaging with Through Silicon Vias and Copper Plating or Conductive Adhesive Filling”, 2005 IEEE, pp. 798-801.
Shen, Li-Cheng, et al.—“A Clamped Through Silicon Via (TSV) Interconnection for Stacked Chip Bonding Using Metal Cap on Pad and Metal col. Forming in Via,” Proceedings of 2008 Electronic Components and Technology Conference, pp. 544-549.
Shi, Tailong, et al.—“First Demonstration of Panel Glass Fan-out (GFO) Packages for High I/O Density and High Frequency Multi-chip Integration,” Proceedings of 2017 IEEE 67th Electronic Components and Technology Conference, May 30-Jun. 2, 2017, pp. 41-46.
Srinivasan, R., et al.—“Ultraviolet Laser Ablation of Organic Polymers,” Chemical Reviews, 1989, vol. 89, No. 6, pp. 1303-1316.
Taiwan Office Action dated Oct. 27, 2020 for Application No. 108148588.
Trusheim, D et al., Investigation of the Influence of Pulse Duration in Laser Processes for Solar Cells, Physics Procedia Dec. 2011, 278-285, 9 pages.
Wu et al., Microelect. Eng., vol. 87 2010, pp. 505-509.
Yu et al. “High Performance, High Density RDL for Advanced Packaging,” 2018 IEEE 68th Electronic Components and Technology Conference, pp. 587-593, DOI 10.1109/ETCC.2018.0009.
Yu, Daquan—“Embedded Silicon Fan-out (eSiFO) Technology for Wafer-Level System Integration,” Advances in Embedded and Fan-Out Wafer-Level Packaging Technologies, First Edition, edited by Beth Keser and Steffen Kroehnert, published 2019 by John Wiley & Sons, Inc., pp. 169-184.
PCT International Search Report and Written Opinion dated Feb. 17, 2021 for International Application No. PCT/US2020/057787.
PCT International Search Report and Written Opinion dated Feb. 19, 2021, for International Application No. PCT/US2020/057788.
U.S. Office Action dated May 13, 2021, in U.S. Appl. No. 16/870,843.
Chen, Qiao—“Modeling, Design and Demonstration of Through-Package-Vias in Panel-Based Polycrystalline Silicon Interposers for High Performance, High Reliability and Low Cost,” a Dissertation presented to the Academic Faculty, Georgia Institute of Technology, May 2015, 168 pages.
Annon, John Jr., et al.—“Fabrication and Testing of a TSV-Enabled Si Interposer with Cu- and Polymer-Based Multilevel Metallization,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, No. 1, Jan. 2014, pp. 153-157.
Malta, D., et al.—“Fabrication of TSV-Based Silicon Interposers,” 3D Systems Integration Conference (3DIC), 2010 IEEE International, Nov. 16-18, 2010, 6 pages.
Tecnisco, Ltd.—“Company Profile” presentation with product introduction, date unknown, 26 pages.
Wang et al. “Study of Direct Cu Electrodeposition on Ultra-Thin Mo for Copper Interconnect”, State key lab of ASIC and system, School of microelectronics, Fudan University, Shanghai, China; 36 pages.
International Search Report and Written Opinion dated Oct. 7, 2021 for Application No. PCT/US2021037375.
PCT International Search Report and Written Opinion dated Oct. 19, 2021, for International Application No. PCT/US2021/038690.
PCT International Search Report and Written Opinion dated Feb. 4, 2022, for International Application No. PCT/US2021/053830.
PCT International Search Report and Written Opinion dated Feb. 4, 2022, for International Application No. PCT/US2021/053821.
Taiwan Office Action dated Feb. 25, 2022, for Taiwan Patent Application No. 109119795.
PCT International Search Report and Written Opinion dated Aug. 12, 2022 for International Application No. PCT/US2022/026652.
Taiwan Office Action dated Sep. 22, 2022, for Taiwan Patent Application No. 111130159.
Japanese Office Action dated Feb. 28, 2023, for Japanese Patent Application No. 2021-574255.
PCT International Search Report and Written Opinion dated Nov. 4, 2022, for International Application No. PCT/US2022/036724.
Taiwan Office Action dated Jan. 9, 2023, for Taiwan Patent Application No. 109140460.
Japanese Office Action dated Jan. 31, 2023, for Japanese Patent Application No. 2021-566586.
Korean Office Action dated Mar. 10, 2023, for Korean Patent Application No. 10-2021-7040360.
Korean Office Action dated Mar. 10, 2023, for Korean Patent Application No. 10-2021-7040365.
Japanese Office Action dated Feb. 7, 2023, for Japanese Patent Application No. 2021-566585.
Taiwan Office Action issued to Application No. 10914056 dated Apr. 27, 2023.
Korean Office Action issued to Patent Application No. 109140506 dated May 11, 2023.
Japanese Office Action issued to Patent Application No. 2021-574255 dated Sep. 12, 2023.
Japanese Office Action dated Aug. 29, 2023, for Japanese Patent Application No. 2022-529566.
PCT International Search Report and Written Opinion dated Sep. 15, 2023, for International Application No. PCT/US2023/021345.
Office Action for Korean Application No. 10-2022-7001325 dated Nov. 16, 2023.
Taiwan Office Action dated Oct. 17, 2023, for Taiwan Patent Application No. 110138256.
Related Publications (1)
Number Date Country
20220373883 A1 Nov 2022 US
Divisions (1)
Number Date Country
Parent 16849393 Apr 2020 US
Child 17883422 US