1. Field of the Invention
The present invention disclosure is directed generally to the field of mass spectrometers, and in particular to focal plane detectors thereof.
2. Description of the Related Art
Mass spectrometry is widely used in many applications ranging from process monitoring to life sciences. Over the course of the last 60 years, a wide variety of instruments has been developed. The focus of new developments has been two fold: (1) a push for ever higher mass range with high mass resolution, and (2) on developing small, desktop mass spectrometry instruments.
Mass spectrometers are often coupled with gas chromatographs for analysis of complex mixtures. This is particularly useful for analysis of volatile organic compounds (VOCs) and semi-volatile organic compounds (semi-VOCs). A combined gas chromatograph and mass spectrometer or spectrograph (GC/MS) instrument typically includes a gas inlet system, which may include the gas chromatograph portion of the GC/MS instrument. The GC/MS instrument typically also includes an electron impact (EI) based ionizer with ion extractor, ion optic components to focus the ion beam, ion separation components, and ion detection components. Ionization can also be carried out via chemical ionization.
Ion separation can be performed in the time or spatial domain. An example for mass separation in the time domain is a time of flight mass spectrometer. Spatial separation is seen in commonly used quadrupole mass spectrometers. Here the “quadrupole filter” allows only one mass/charge ratio to be transmitted from the ionizer to the detector. A full mass spectrum is recorded by scanning the mass range through the “mass filter.” Other spatial separation is based on magnetic fields where either the ion energy or the magnetic field strength is varied, again the mass filter allowing only one mass/charge ratio to be transmitted and a spectrum can be recorded by scanning through the mass range.
One type of mass spectrometer is a mass spectrograph. In a mass spectrograph the ions are spatially separated in a magnetic field and detected with a position sensitive detector. The concept of a double focusing mass spectrograph was first introduced by Mattauch and Herzog (MH) in 1940 (J. Mattauch, Ergebnisse der exakten Naturwissenschaften, vol. 19, pages 170-236, 1940).
Double focusing refers to an instrument's ability to refocus both the energy spread as well as the spatial beam spread. Modern developments in magnet and micro machining technologies allow dramatic reductions in the size of these instruments. The length of the focal plane in a mass spectrometer capable of VOC and semi-VOC analysis is reduced to a few centimeters.
The typical specifications of a small confocal plane layout Mattauch-Herzog instrument are summarized below:
Electron impact ionization, Rhenium filament
DC-voltages and permanent magnet
Ion Energy: 0.5-2.5 kV DC
Mass Range: 2-200 D
Faraday cup detector array or strip charge detector
Integrating operational amplifier with up to 10^11 gain
Duty Cycle: >99%
Read-Out time: 0.03 sec to 10 sec
Sensitivity: approximately 10 ppm with strip charge detector
In addition, the ion optic elements are mounted in the vacuum chamber floor or on chamber walls. The optics can also be an integral part of the vacuum housing. In small instruments, however, the ion optic elements can be built on a base plate which acts as an “optical bench.” This bench supports the ion optic elements. The base plate is mounted against a vacuum or master flange to provide a vacuum seal needed to operate the mass spectrometer under vacuum. The base plate can also function as the vacuum or master flange itself.
A Mattauch-Herzog ion detector is a position sensitive detector. Numerous concepts have been developed over the last decades. Recent developments focus on solid state based direct ion detection as an alternative to previously used electro optical ion detection (EOID).
The electro optical ion detector (EOID) converts the ions in a multi-channel-plate (MCP) into electrons, amplifies the electrons (in the same MCP), and illuminates a phosphorus film bombarded with the electrons emitted from the MCP. The image formed on phosphorus film is recorded with a photo diode array via a fiber optic coupler. This type of EOID is described in detail in U.S. Pat. No. 5,801,380. The EOID is intended for the simultaneous measurement of ions spatially separated along the focal plane of the mass spectrometer. The EOID operates by converting ions to electrons and then to photons. The photons form images of the ion-induced signals. The ions generate electrons by impinging on a microchannel electron multiplier array. The electrons are accelerated to a phosphor-coated fiber-optic plate that generates photon images. These images are detected using a photodetector array.
According to a different configuration, a direct charge measurement can be based on a micro-machined Faraday cup detector array. Here, an array of individually addressable Faraday cups monitors the ion beam. The charge collected in individual elements of the array is handed over to an amplifier via a multiplexer unit. This layout reduces the number of amplifiers and feedthroughs needed. This concept is described in detail in recent publications, such as “A. A. Scheidemann, R. B. Darling, F. J. Schumacher, and A. Isakarov, Tech. Digest of the 14th Int. Forum on Process Analytical Chem. (IFPAC-2000), Lake Las Vegas, Nev., Jan. 23-26, 2000, abstract 1-067”; “R. B. Darling, A. A. Scheidemann, K. N. Bhat, and T.-C. Chen., Proc. of the 14th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS-2001), Interlaken, Switzerland, Jan. 21-25, 2001, pp. 90-93”; and Non-Provisional patent application Ser. No. 09/744,360 titled “Charged Particle Beam Detection System.”
Other important references regarding spectrometers are Nier, D. J. Schlutter Rev. Sci. Instrum. 56(2), page 214-219, 1985; “Fundamentals of Focal Plane Detector cs” K. Birkinshaw Jrnl. of Mass Spectrometry, Vol. 32,795-806 (1997); and T. W. Burgoyne et. al. J. Am. Soc. Mass Spectrum 8, pages 307-318, 1997.
Alternatively, especially for low energy ions, a flat metallic strip (referred to as a strip charge detector (SCD)) on a grounded and insulated background can be used with an MCP. As described above, an MCP converts ions into electrons and amplifies the electrons. The SCD detects the electrons and generates a charge. Again the charge is handed over to an amplifier via a multiplexer.
Another embodiment of an ion detector array is disclosed in U.S. Pat. No. 6,576,899 and is referred to as a shift register based direct ion detector.
The shift register based direct ion detector defines a charge sensing system that can be used in a GC/MS system, with a modification to allow direct measurement of ions in the mass spectrometer device without conversion to electrons and photons (e.g., EOID prior to measurement). The detector may use charge coupled device (CCD) technology with metal oxide semiconductors. The GC/MS system may use direct detection and collection of the charged particles using the detector. The detected charged particles form the equivalent of an image charge that directly accumulates in a shift register associated with a part of the CCD. This signal charge can be clocked through the CCD in a conventional way, to a single output amplifier. Since the CCD uses only one charge-to-voltage conversion amplifier for the entire detector, signal gains and offset variation of individual elements in the detector array are minimized.
A Mattauch-Herzog detector array, which can be composed of a Faraday cup detector array, a strip charge detector, or another type of the aforementioned detectors, is placed at the exit end of the magnet, which is commonly designed to be coplanar with the focal plane of the device.
The Faraday cup detector array (FCDA) can be made by deep reactive ion etching (DRIE). The strip charge detector (SCD) can be made by vapor deposition. A die with an active element (FCDA or SCD) is usually cut out of a wafer with conventional techniques such as laser cutting or sawing.
The FCDA or SCD die is placed in front of the magnet and electronically connected to the multiplexer and amplifier unit, which is referred to as a “F
Patents representing major advances in the art of mass spectrometers and gas chromatographs/mass spectrometers are U.S. Pat. Nos. 5,317,151; 5,801,380; 6,046,451; 6,182,831; 6,191,419; 6,403,956; 6,576,899; and 6,847,036. Also U.S. patent application Ser. Nos. 10/811,576 and 10/860,776.
In one aspect, a focal plane detector assembly of a mass spectrometer comprises an ion detector configured to detect ions crossing a focal plane of the spectrometer and an electrically conductive mesh lying in a plane parallel to the focal plane and positioned such that ions exiting a magnet of the mass spectrometer pass through the mesh before contacting the ion detector. The mesh is maintained at a low voltage potential, relative to a circuit ground. The mesh may be mounted directly to the magnet or positioned some distance away.
The ion detector includes a microchannel plate electron multiplier and a detector array positioned and configured to detect electrons emitting from a the first microchannel plate electron multiplier. Ions transiting the magnet are shielded by the mesh from a high negative voltage field generated by a negative potential on a first face of the electron multiplier.
According to another embodiment of the invention, the first face of the electron multiplier is maintained at a much lower voltage level, i.e., much closer to circuit ground, thus avoiding the formation of a negative field, and obviating the need for the mesh.
The detector array may include any suitable device, such as a faraday cup detector array, a strip charge detector array, or a CCD detector array.
In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the art will understand that an embodiment may be practiced without these details. In other instances, well-known structures associated with a mass spectrometer, such as computers, microprocessors, memories, and the like have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the illustrated embodiments.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”
In operation, gaseous or vaporized material is introduced into the ionizer 14, where it is bombarded by electrons, thus producing ions, which are focused by the shunt and aperture section 16 to produce an ion beam 24. Paths of the ions are adjusted according to their electrical charge by the electrostatic energy analyzer 18, and separated according to their charge/mass ratio in the magnet 20. The ions exiting magnet 20 are separated and distributed spatially according to their charge/mass ratios, their electrical characteristics having been compensated for by the electrostatic energy analyzer 18. The physics of the energy analyzer 18 and the magnet 20 are selected such that ions of any charge mass ratio within a selected range of ratios reach a point of maximum resolution in a common plane P. This plane P is referred to as the focal plane of the mass spectrometer.
As described in more detail in the background section of this specification, the focal plane section 22 includes sensors, amplifiers, and processors configured to detect and record the position of ions crossing the focal plane P as well as the relative quantities of ions crossing the plane P at any given point thereon. Accordingly, it is desirable that the sensors of the focal plane section 22 be sensitive to individual ions crossing the focal plane P, as well as large masses of ions crossing at a common point on the plane P. Additionally, resolution is important to enable the differentiation between ions having different, but very similar, mass charge ratios.
Referring to
The SCD 106 and the insulator 108 are formed using known semiconductor manufacturing techniques on the semiconductor substrate 110. The SCD 106 comprises a plurality of detector electrodes 114 coupled to logic circuitry, processors, memories, etc.
The microchannel plate 104 includes a plurality of capillary tubes 116 passing from a first face 118 to a second face 120. The second face 120 may be opposite the first face 118, as illustrated in
The term “first face” is used in this specification generally to refer a face or side of a device facing into an oncoming stream of ions, and “second face” is used to refer to a face or side opposing the first face.
In operation, the first face 118 of the MCP 104 is maintained at a negative voltage potential relative to the second face 120. For example, the first face 118 may have a voltage potential of −1400 volts, while the second face 120 has a voltage potential of −500 volts, resulting in a voltage differential of 900 volts, from the first face 118 to the second face 120. When an ion strikes the first face 118 of the MCP 104, it enters one of the tubes 116 and impacts a sidewall of the tube 116. The impact of the ion causes a number of electrons to be ejected from the sidewall.
Because of the positive charge of the second face 120, relative to the first face 118, the electrons ejected from the sidewall of the tube 116 are drawn toward the second face 120. As the electrons move down the tube 116, the electrons, in turn, each strike the sidewall, causing additional electrons to be ejected therefrom. This process continues until a cloud of electrons exits the tube 116 at the second face of the MCP 104. The electrons exiting the tube 116 disburse into a space between the MCP 104 and the strip charge detector array 106. Electrons striking the electrodes 114 of the strip charge detector array 106 induce a current in the respective electrode 114, which is detected by the detection circuitry. Inasmuch as electrons disburse outward from the second face 120 of the MCP 104 in all directions, it is desirable that the space between the second face 120 of the MCP 104 and the strip charge detector array 106 be maintained as close together as possible to maintain resolution.
According to one embodiment, the MCP 104 has a voltage differential of greater than 500 volts, from the first face 118 to the second face 120.
Referring again to
When the detector assembly 100 is properly positioned at the focal plane P, the mesh 102 is positioned between the MCP 104 and a back face of the magnet 20, and is provided with a low voltage potential. For example, the mesh 102 may be electrically coupled to circuit ground, or may be maintained at a voltage of less than 100 volts. The mesh 102 serves to block the strong negative electrical field of the MCP 104, preventing that electrical field from influencing the paths of the ions as they approach the focal plane P. The effectiveness of the mesh 102 at blocking the electrical field is inversely related to the size of the openings in the mesh 102. On the other hand, ions that actually contact the material of the mesh will not pass through to make contact with the MCP, so it is desirable that the mesh 102 be substantially transparent to the ions. Given these constraints, a very fine mesh 102 having an open area exceeding 80% or 90% is preferable. The mesh 102 may have a thickness of less than 0.5 millimeters.
Referring now to
The term “absolute” is used in this specification to refer to a voltage potential, without reference to polarity.
Turning now to
The assembly 130 is shown diagrammatically in
According to an embodiment, a voltage difference across the first to second faces of each of the MCPs 138, 140 is in the range of around 500-900 volts, and is provided at the respective electrodes 134-137. Additionally, a voltage difference between the second electrode 135 and the third electrode 136 may be equal to or greater tha zero.
Components of the assembly may be spaced as closely as possible together without making electrical contact In order to maximize resolution of the assembly. For example, according to one embodiment, the mesh 102 is be placed directly at the focal plane P, or within 1 millimeter thereof. A first face 139 of the first MCP 138 may be positioned within 2 millimeters of the mesh 102, and preferably within 0.5 millimeters. According to an embodiment of the invention, a first face 143 of the second MCP 140 is positioned within 2 millimeters of a second face 141 of the first MCP 138, and preferably within 0.5 millimeters.
According to one embodiment, the first face 139 of the first MCP 138 is maintained at a relatively low voltage level, such that an electrical field created thereby does not have sufficient strength to interfere with the operation of the magnet 122. For example, the first face 139 of the first MCP 138 may have a potential of less than 100 volts, absolute. Voltage levels of other components of the assembly are selected to maintain desired voltage differences as outlined above. In accordance with this embodiment, the mesh 102 is not required, since there is no appreciable electrical field.
Turning now to
In the device shown in
While the mesh 102 is described as being attached to a back face of the magnet 122, according to another embodiment, the mesh 102 is attached to the assembly holder 132 such that the assembly holder 132 forms an insulator between the mesh and the first electrode 134. According to an alternate embodiment, the mesh 102 is positioned between the assembly holder 132 and the first electrode 134, in which case another insulator is provided between the mesh 102 and the first electrode 134.
The invention has been described with reference to a double focus mass spectrometer and with reference to a strip charge detector array. These embodiments are described for illustration only, and do not limit the scope of the invention. For example, the detector array may include a Faraday cup detector array or a CCD type detector array. According to an embodiment of the invention, the detector assembly may include a direct charge measuring device.
All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet including but not limited to U.S. Provisional Patent Application No. 60/557,920; U.S. Provisional Patent Application No. 60/557,969; U.S. Provisional Patent Application No. 60/550,663; and U.S. Provisional Patent Application No. 60/550,664; U.S. Non-Provisional Patent Application 10/811,576; U.S. Non-Provisional Patent Application 10/860,776; U.S. Pat. No. 5,317,151; U.S. Pat. No. 5,801,380; U.S. Pat. No. 6,046,451; U.S. Pat. No. 6,182,831; U.S. Pat. No. 6,191,419; U.S. Pat. No. 6,403,956; U.S. Pat. No. 6,576,899; and U.S. Pat. No. 6,847,036, are incorporated herein by reference, in their entirety.
In addition, the published materials by J. Mattauch, Ergebnisse der exakten Naturwissenschaften, vol. 19, pages 170-236, 1940; “Fundamentals of Focal Plane Detector cs” K. Birkinshaw Jrnl. of Mass Spectrometry, Vol. 32,795-806 (1997); A. A. Scheidemann, R. B. Darling, F. J. Schumacher, and A. Isakarov, Tech. Digest of the 14th Int. Forum on Process Analytical Chem. (IFPAC-2000), Lake Las Vegas, Nev., Jan. 23-26, 2000, abstract 1-067”; “R. B. Darling, A. A. Scheidemann, K. N. Bhat, and T.-C. Chen., Proc. of the 14th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS-2001), Interlaken, Switzerland, Jan. 21-25, 2001, pp. 90-93; Nier, D. J. Schlutter Rev. Sci. Instrum. 56(2), page 214-219, 1985; and T. W. Burgoyne et. al., J. Am. Soc. Mass Spectrum 8, pages 307-318, 1997, are incorporated by reference in their entirety.
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 60/557,920, filed on Mar. 31, 2004; U.S. Provisional Patent Application No. 60/557,969, filed on Mar. 31, 2004; U.S. Provisional Patent Application No. 60/550,663, filed on Mar. 5, 2004; and U.S. Provisional Patent Application No. 60/550,664, filed on Mar. 5, 2004.
Number | Name | Date | Kind |
---|---|---|---|
2309414 | Nobbs | Jan 1943 | A |
2964627 | Wild | Dec 1960 | A |
3478204 | Brubaker et al. | Nov 1969 | A |
3521054 | Webb | Jul 1970 | A |
3555331 | Chuan | Jan 1971 | A |
3898456 | Dietz | Aug 1975 | A |
4016421 | Hull et al. | Apr 1977 | A |
4071848 | Leeper | Jan 1978 | A |
4182984 | MacFadden et al. | Jan 1980 | A |
4409482 | Scheid et al. | Oct 1983 | A |
4456898 | Frischmann | Jun 1984 | A |
4476732 | Yang | Oct 1984 | A |
4672204 | Slodzian et al. | Jun 1987 | A |
4757198 | Korte et al. | Jul 1988 | A |
4808818 | Jung | Feb 1989 | A |
4855747 | Steinberg | Aug 1989 | A |
4859848 | Bowman et al. | Aug 1989 | A |
4988867 | Laprade | Jan 1991 | A |
5038149 | Aubry et al. | Aug 1991 | A |
5039280 | Saulgeot et al. | Aug 1991 | A |
5046018 | Flewelling et al. | Sep 1991 | A |
5135870 | Williams et al. | Aug 1992 | A |
5146088 | Kingham et al. | Sep 1992 | A |
5231591 | Flewelling et al. | Jul 1993 | A |
5259735 | Takahashi et al. | Nov 1993 | A |
5264813 | Byers, Jr. | Nov 1993 | A |
5299577 | Brown et al. | Apr 1994 | A |
5313061 | Drew et al. | May 1994 | A |
5317151 | Sinha et al. | May 1994 | A |
5331158 | Dowell | Jul 1994 | A |
5382793 | Weinberger et al. | Jan 1995 | A |
5386115 | Freidhoff et al. | Jan 1995 | A |
5461235 | Cottrell et al. | Oct 1995 | A |
5490765 | Bailey et al. | Feb 1996 | A |
5561292 | Buckley et al. | Oct 1996 | A |
5686655 | Itoi | Nov 1997 | A |
5801380 | Sinha | Sep 1998 | A |
5808299 | Syage | Sep 1998 | A |
5929819 | Grinberg | Jul 1999 | A |
6004109 | Gebele et al. | Dec 1999 | A |
6046451 | Sinha | Apr 2000 | A |
6051831 | Koster | Apr 2000 | A |
6051832 | Bradshaw | Apr 2000 | A |
6135971 | Hutchinson et al. | Oct 2000 | A |
6155097 | Arnold | Dec 2000 | A |
6180942 | Tracy et al. | Jan 2001 | B1 |
6182831 | Scheidemann et al. | Feb 2001 | B1 |
6191419 | Sinha | Feb 2001 | B1 |
6195705 | Leung | Feb 2001 | B1 |
6198096 | Le Cocq | Mar 2001 | B1 |
6300626 | Brock et al. | Oct 2001 | B1 |
6316768 | Rockwood et al. | Nov 2001 | B1 |
6403956 | Sinha | Jun 2002 | B1 |
6576899 | Sinha et al. | Jun 2003 | B2 |
6614019 | Feller et al. | Sep 2003 | B2 |
6635883 | Torti et al. | Oct 2003 | B2 |
6646256 | Gourley et al. | Nov 2003 | B2 |
6649908 | Apffel, Jr. et al. | Nov 2003 | B2 |
6680477 | Beck et al. | Jan 2004 | B2 |
6734423 | Bryden | May 2004 | B2 |
6750448 | Turecek et al. | Jun 2004 | B2 |
6831276 | Berger et al. | Dec 2004 | B2 |
6838663 | Coon et al. | Jan 2005 | B2 |
6839476 | Kim et al. | Jan 2005 | B2 |
6843375 | Scheidemann et al. | Jan 2005 | B2 |
6847036 | Darling et al. | Jan 2005 | B1 |
6858839 | Anderson et al. | Feb 2005 | B1 |
6879423 | Kim et al. | Apr 2005 | B2 |
6906333 | Scheidemann et al. | Jun 2005 | B2 |
6978058 | Kim et al. | Dec 2005 | B2 |
6979818 | Scheidemann et al. | Dec 2005 | B2 |
7075072 | Hatakeyama et al. | Jul 2006 | B2 |
7197202 | Kim et al. | Mar 2007 | B2 |
20020117617 | Sinha et al. | Aug 2002 | A1 |
20030197121 | Turecek et al. | Oct 2003 | A1 |
20040109627 | Kim et al. | Jun 2004 | A1 |
20040109628 | Kim et al. | Jun 2004 | A1 |
20040120631 | Kim et al. | Jun 2004 | A1 |
20040136099 | Kim et al. | Jul 2004 | A1 |
20040222374 | Scheidemann et al. | Nov 2004 | A1 |
20050017166 | Scheidemann et al. | Jan 2005 | A1 |
20050119868 | Scheidemann et al. | Jun 2005 | A1 |
20050248826 | Tsarev | Nov 2005 | A1 |
20060076482 | Hobbs et al. | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
0 745 847 | Dec 1996 | EP |
650 861 | Mar 1951 | GB |
674 729 | Jul 1952 | GB |
1 396 937 | Jun 1975 | GB |
2 249 426 | May 1992 | GB |
WO 9916103 | Apr 1999 | WO |
WO 9917865 | Apr 1999 | WO |
WO 0020851 | Apr 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060011826 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
60557920 | Mar 2004 | US | |
60557969 | Mar 2004 | US | |
60550663 | Mar 2004 | US | |
60550664 | Mar 2004 | US |