This invention relates to optical tools for measuring and evaluating semiconductor wafers. In particular, the present invention relates to objectives used to focus light onto semiconductor wafers and to gather light reflected by semiconductor wafers as part of a measurement process.
As semiconductor geometries continue to shrink, manufacturers have increasingly turned to optical techniques to perform non-destructive inspection and analysis of semiconductor wafers. Techniques of this type, known generally as optical metrology, operate by illuminating a sample with an incident field (typically referred to as a probe beam) and then detecting and analyzing the reflected energy. Ellipsometry and reflectometry are two examples of commonly used optical techniques. For the specific case of ellipsometry, changes in the polarization state of the probe beam are analyzed. Reflectometry is similar, except that changes in intensity are analyzed. Scatterometry is a specific type of optical metrology that is used when the structural geometry of a sample creates diffraction (optical scattering) of the probe beam. Scatterometry systems analyze diffraction to deduce details of the structures that cause the diffraction to occur.
Various optical techniques have been used to perform optical scatterometry. These include broadband spectroscopy (U.S. Pat. Nos. 5,607,800; 5,867,276 and 5,963,329), spectral ellipsometry (U.S. Pat. No. 5,739,909) single-wavelength optical scattering (U.S. Pat. No. 5,889,593), and spectral and single-wavelength beam profile reflectance and beam profile ellipsometry (U.S. Pat. No. 6,429,943). Scatterometry, in these cases generally refers to optical response information in the form of diffraction orders produced by periodic structures (e.g., gratings on a wafer). In addition it may be possible to employ any of these measurement technologies, e.g., single-wavelength laser BPR or BPE, to obtain critical dimension (CD) measurements on non periodic structures, such as isolated lines or isolated vias and mesas. The above cited patents and patent applications, along with PCT Application WO03/009063, US Application 2002/0158193, US Application 2003/0147086, US Application 2001/0051856 A1, PCT Application WO 01/55669 and PCT Application WO 01/97280 are all incorporated herein by reference.
As shown in
The decreasing size of semiconductor geometries forces metrology to analyze increasingly small areas. In practice, the area being measured is typically a test feature that is often less than 50 μm wide and is often surrounded by a completely different material or film stack. Accurately analyzing small areas requires that the illumination spot and the measurement spot be relatively small. This, in turn requires that the incoming and reflected probe beams be tightly focused to support small spot sizes.
One way of meeting these requirements (at least partially) is by using small angles of incidence for the incoming and reflected probe beams. Small angle of incidence systems reduce the amount by which the sample projects the illumination and measurement spots. This is one of the main motivations behind metrology systems of the type shown in
In systems where normal incidence is used (e.g., the system of
It is another common practice to use rotationally symmetric reflective designs such as Schwarzschild microscope objectives. As shown in
The present invention includes a system for focusing broadband light within an ellipsometer, reflectometer or other optical metrology tool. One implementation of the focusing system uses a two-mirror system. A concave spherical mirror is used to gather light from the surface of a sample under inspection. The concave spherical mirror projects the received light to a convex spherical mirror. The combination of the two mirrors captures the light diverging from the sample and collimates the light into parallel rays. The light can then be passed through an aperture stop prior to entering a detector.
Each of the mirrors is an off-axis section of a parent spherical mirror. The two parent mirrors are monocentric or nearly monocentric (i.e., they have the same or nearly the same center of curvatures). The aperture stop is located at or near one of the mirrors, (i.e. pupil-centric design). This design utilizes the beneficial monocentric and pupil-centric properties of the parent mirrors and can be substantially free of third order spherical aberration, coma and astigmatism and chromatic aberration. The mirror radii are chosen for small focal spot. The mirror offsets and spacing are chosen to avoid beam obscuration. Additional optics may be added to the base design to achieve telecentricity or improve spot size or achieve desired probe beam incidence angle at the sample. This design obtains many of the benefits of a conventional Schwarzschild design without the associated diffraction effects of a central obscuration.
A second implementation of the focusing system replaces the convex spherical mirror with a flat mirror. The concave spherical mirror is replaced with an off axis paraboloid mirror. In either implementation, the focusing system may be placed on the illumination side or collection side of a reflectometer or other optical metrology tool.
The present invention includes a system for focusing broadband light within an ellipsometer, reflectometer or other optical metrology tool. One possible implementation for the focusing system is shown in
As shown in
Each of mirrors 406, 408 is an off-axis section of a parent spherical mirror. Mirrors 406, 408 are positioned as if their parents were monocentric or nearly monocentric (i.e., they have the same or nearly the same center of curvatures). Aperture stop 410 is located at or near one of the mirrors 406, 408 (i.e. pupil-centric design). This design utilizes the beneficial monocentric and pupil-centric properties of the parent mirrors and can be substantially free of third order spherical aberration, coma and astigmatism and chromatic aberration. The mirror radii are chosen for small focal spot. The mirror offsets and spacing are chosen to avoid beam obscuration. Additional optics may be added to the base design to achieve telecentricity or improve spot size. This design obtains many of the benefits of a conventional Schwarzschild design without the associated problem of a central obscuration.
Focusing system 400 has the following characteristics:
The following table outlines one possible recipe for focusing system 400:
As mentioned previously, focusing system 400 can be used for either collection or illumination. It is also possible to use focusing system 400 to provide both collection and illumination to the sample. This is accomplished by rotating focusing system 400 with respect to sample 402, so the incident and reflected probe beams have substantially normal incidence angle at sample 402. One or more flat mirrors may be added to focusing system 400, typically before mirror 406 or after mirror 408, so rays 412 and beam reflected off sample 402 are parallel, for purpose of packaging. A beam splitter is then used to is then used to simultaneously direct the probe beam output of an illumination source to mirror 408 (and on to sample 402) while allowing the returning probe beam to enter detector 404.
A second possible implementation for the focusing system is shown in
As shown in
Focusing system 600 has the following characteristics:
The following table outlines one possible recipe for focusing system 600:
Aspheric Constants:
Z is surface sag, C is curvature, Y is semi-aperture and K is conic constant.
As mentioned previously, focusing system 600 can be used for either collection or illumination. It is also possible to use focusing system 600 to provide both collection and illumination to the sample. Typically, this is accomplished by adding a beam splitter (or other optical device) between mirror 608 and detector 604. The beam splitter (not shown) allows the probe beam output of an illumination source to be directed to mirror 608 (and on to sample 602) while simultaneously allowing the returning probe beam to enter detector 604.
The 45 degree off-axis paraboloid mirror 606 [with smaller NA and equivalently larger airy diameter] has much tighter encircled energy [total energy vs. distance from core] values than corresponding 20× objective. This is because of the central obscuration of typical 20× objective diffracts several percent of the light out of the core.
Focusing systems 400 and 600 can be scaled to any size or focal length and may be used in a range of metrology systems of which ellipsometers and reflectometers are only examples.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 60/429,152, filed Nov. 26, 2002, which is incorporated herein by reference
Number | Name | Date | Kind |
---|---|---|---|
3524983 | Voelz | Aug 1970 | A |
4205902 | Shafer | Jun 1980 | A |
RE32912 | Doyle | Apr 1989 | E |
5106196 | Brierley | Apr 1992 | A |
5608526 | Piwonka-Corle et al. | Mar 1997 | A |
5661561 | Wurz et al. | Aug 1997 | A |
5917594 | Norton | Jun 1999 | A |
6310687 | Stumbo et al. | Oct 2001 | B1 |
6778273 | Norton et al. | Aug 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040125369 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60429152 | Nov 2002 | US |