The present disclosure relates to the formation of Fin Field Effect Transistors (FinFETs). The present disclosure is particularly applicable to formation of gate spacers on FinFETs.
The escalating requirements for high density and performance associated with ultra large scale integration semiconductor devices require design features, such as gate lengths below 100 nanometer (nm), high reliability and increased manufacturing throughput. When the gate length of a conventional planar metal oxide semiconductor field effect transistor (MOSFET) is scaled below 100 nm, problems associated with short channel effects, such as excessive leakage between the source and drain, become increasingly difficult to overcome. In addition, mobility degradation and process issues make scaling down device features of conventional MOSFETs difficult. The FinFET design relies upon a thin vertical silicon “fin” to help control current leakage through the transistor in the “off” stage and a double gate structure to control short channel effects.
A need therefore exists for methodology to facilitate fabrication of gate spacers on FinFETs employing conventional etching techniques.
An aspect of the present disclosure is a semiconductor including gate spacers having top and bottom portions, with the bottom portions being the same height as the fins of the gate.
Another aspect of the present disclosure is a method of fabricating a semiconductor including forming a planarizing layer to the height of the gate fins prior to forming gate spacers.
Additional aspects and other features of the present disclosure will be set forth in the description which follows and in part will be apparent to those having ordinary skill in the art upon examination of the following or may be learned from the practice of the present disclosure. The advantages of the present disclosure may be realized and obtained as particularly pointed out in the appended claims.
According to the present disclosure, some technical effects may be achieved in part by a method of fabricating a semiconductor, the method comprising: forming a fin structure on a substrate, the fin structure having a height and having a top surface and side surfaces; forming a gate perpendicular to the fin structure over a portion of the top and side surfaces, for example over a center portion; forming a planarizing layer over the gate, the fin structure, and the substrate; removing the planarizing layer from the substrate, gate, and fin structure down to the height of the fin structure; and forming spacers on the fin structure and the planarizing layer, adjacent the gate.
Aspects of the present disclosure include removing the planarizing layer by etching. Further aspects include forming the spacers by depositing a conformal layer over the gate, the fin structure, and the planarizing layer, and etching the conformal layer. Other aspects include forming the planarizing layer of spin-on-glass or a spin-on dielectric. Another aspect includes removing the remaining planarizing layer using the spacers as a mask, for example by etching. Additional aspects include forming a first layer, planarizing by chemical mechanical polishing (CMP), and then etching back before depositing the conformal layer. Other aspects include depositing the conformal layer by chemical vapor deposition. Another aspect includes forming the conformal layer of a suitable conformal material, such as an oxide or a nitride. Further aspects include a degree of etch selectivity between the planarizing layer and the conformal layer being greater than or equal to about 3 to 1. Additional aspects include depositing the conformal layer to a thickness of about 5 nm to about 80 nm.
Another aspect of the present disclosure is a semiconductor device comprising: a fin structure on a substrate, the fin structure having a height and having top and side surfaces; a gate formed perpendicular to the fin structure over a portion of the top and side surfaces, for example over a center portion; and first and second spacers adjacent the gate, the first spacers being formed on the fin structure and the second spacers being formed on the substrate wherein: the first spacers are formed of a first material; and the second spacers comprise a first portion having a height the same as the fin structure and a second portion on top of the first portion, the first portion being formed of a second material and the second portion being formed of the first material.
Aspects include a semiconductor device wherein the first portion of the second spacers is formed by depositing a planarizing layer over the gate, fin structure, and substrate and etching to the height of the fin structure. Further aspects include a semiconductor device wherein the planarizing layer comprises spin-on-glass or a spin-on dielectric. Another aspect includes a semiconductor device wherein the first spacers and the second portion of the second spacers are formed simultaneously. Additional aspects include a semiconductor device wherein the first spacers and the second portion of the second spacers are formed by depositing a conformal layer over the gate, the fin structure, and the planarizing layer and etching the conformal layer. Other aspects include a semiconductor device wherein the conformal layer comprises a suitable conformal material, such as an oxide or a nitride. Further aspects include a semiconductor device wherein a degree of selectivity between the planarizing layer and the conformal layer is greater than or equal to about 3 to 1. Another aspect includes a semiconductor device wherein the conformal layer is deposited to a thickness of about 5 nm to about 80 nm.
Additional aspects and technical effects of the present disclosure will become readily apparent to those skilled in the art from the following detailed description wherein embodiments of the present disclosure are described simply by way of illustration of the best mode contemplated to carry out the present disclosure. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the present disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
The present disclosure is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawing and in which like reference numerals refer to similar elements and in which:
In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of exemplary embodiments. It should be apparent, however, that exemplary embodiments may be practiced without these specific details or with an equivalent arrangement. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring exemplary embodiments.
The present disclosure addresses and solves the etching problem attendant upon forming gate spacers on FinFETs. In accordance with embodiments of the present disclosure, a first or planarizing layer is etched to the same height as the fins to level the base of the spacers around the gate. Consequently, the spacers may be etched the same amount or to the same height all around the gate, and conventional spacer etch techniques may be employed.
Methodology in accordance with embodiments of the present disclosure includes forming a FinFET, forming a planarizing layer over the gate, the fin structure, and the substrate, removing the planarizing layer from the substrate, gate, and fin structure down to the height of the fin structure, and forming spacers on the fin structure and the planarizing layer, adjacent the gate.
Still other aspects, features, and technical effects will be readily apparent to those skilled in this art from the following detailed description, wherein preferred embodiments are shown and described, simply by way of illustration of the best mode contemplated. The disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
In
Planarizing layer 301 is then etched back to the height of fins 203, for example, about 10 nm to about 60 nm, thereby forming elements 401 (adjacent gate 201) and 403 (adjacent fin 203) (see
Adverting to
As illustrated in
The embodiments of the present disclosure can achieve several technical effects, including formation of gate spacers in FinFETS using conventional etching techniques. The present disclosure enjoys industrial applicability in any of various types of highly integrated semiconductor devices employing FinFETs.
In the preceding description, the present disclosure is described with reference to specifically exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the present disclosure, as set forth in the claims. The specification and drawings are, accordingly, to be regarded as illustrative and not as restrictive. It is understood that the present disclosure is capable of using various other combinations and embodiments and is capable of any changes or modifications within the scope of the inventive concept as expressed herein.
Number | Name | Date | Kind |
---|---|---|---|
5498882 | Houston | Mar 1996 | A |
7179692 | Yu et al. | Feb 2007 | B2 |
7259420 | Anderson et al. | Aug 2007 | B2 |
7718489 | Anderson et al. | May 2010 | B2 |
7759179 | Anderson et al. | Jul 2010 | B2 |
7923314 | Tezuka et al. | Apr 2011 | B2 |
7982269 | Anderson et al. | Jul 2011 | B2 |
20030178670 | Fried et al. | Sep 2003 | A1 |
20040036126 | Chau et al. | Feb 2004 | A1 |
20040169239 | Rim | Sep 2004 | A1 |
20050101069 | Mathew et al. | May 2005 | A1 |
20060022253 | Anderson et al. | Feb 2006 | A1 |
20060022268 | Oh et al. | Feb 2006 | A1 |
20060154423 | Fried et al. | Jul 2006 | A1 |
20060220131 | Kinoshita et al. | Oct 2006 | A1 |
20060292765 | Blanchard et al. | Dec 2006 | A1 |
20080054374 | Mikasa | Mar 2008 | A1 |
20080217694 | Anderson et al. | Sep 2008 | A1 |
20080224213 | Dyer et al. | Sep 2008 | A1 |
20090134463 | Abadeer et al. | May 2009 | A1 |
20090206406 | Rachmady et al. | Aug 2009 | A1 |
20090294800 | Cheng et al. | Dec 2009 | A1 |
20090302402 | Anderson et al. | Dec 2009 | A1 |
20100041198 | Zhu et al. | Feb 2010 | A1 |
20100044758 | Cohen et al. | Feb 2010 | A1 |
20110037104 | Anderson et al. | Feb 2011 | A1 |
20110042744 | Cheng et al. | Feb 2011 | A1 |
20110084336 | Luning et al. | Apr 2011 | A1 |
20110101455 | Basker et al. | May 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20110198673 A1 | Aug 2011 | US |