The present invention relates generally to integrated circuit technology and, in particular, to the formation of a ferromagnetic alloy core for high frequency micro-fabricated inductors and transformers utilizing multiple electro-deposition and chemical mechanical polishing (CMP) steps over a patterned thick photoresistive film.
Among the known methods for forming laminations in micro-fabricated high frequency inductors and transformers, the utilization of thick, non-removable photoresist (PR) is the most efficient since it provides a high volume of magnetic material while maintaining the small thickness of the film, which is important for minimizing eddy current losses.
With the continuous increase in frequency of operation in many IC applications (e.g., switching frequency of a buck converter), skin effect contribution into the power loss becomes more pronounced. An obvious solution is plating thinner magnetic films. However, this has the undesirable effect of reducing the cross-sectional area of the magnetic core which, in turn, linearly reduces the inductance.
In a disclosed embodiment, sequential electro-deposition, planarization and insulator deposition steps are performed over a patterned thick photoresist film to form a laminated ferromagnetic alloy core for micro-fabricated inductors and transformers. The use of a plurality of contiguous thin laminations within deep patterns in non-removable photoresist film provides sufficient volume of magnetic material in, for example, high frequency applications, and reduces eddy current loss at high frequency.
The features and advantages of the various aspects of the subject matter disclosed herein will be more fully understood and appreciated upon consideration of the following detailed description and accompanying drawings, which set forth illustrative embodiments in which the concepts of the claimed subject matter are utilized.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual implementation, numerous specific decisions must be made to achieve the designer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The present subject matter will now be described with reference to the attached drawings. Various structures and methods are schematically depicted in the drawings for purposes of explanation only and so as not to obscure the present disclosure with details that are well known to those skilled in the art. Nevertheless, the attached drawings are included to describe illustrative embodiments of the present disclosure. The words and phrases utilized herein should be understood and interpreted to have a meaning consistent with the understanding of those words and phrases by those skilled in the relevant art. No special definition of a term or phrase, i.e., a definition that is different from the ordinary and customary meaning as understood by those skilled in the art, is intended to be implied by consistent usage of the term or phrase herein. To the extent that a term or phrase is intended to have a special meaning, i.e., a meaning other than that understood by those skilled in the art, such a special meaning will be expressly set forth in the specification in a definitional manner that directly and unequivocally provides the special definition for the term or phrase.
As stated above, generally, the present disclosure provides methods for the formation of a ferromagnetic alloy core for high frequency micro-fabricated inductors and transformers utilizing multiple electro-deposition and chemical mechanical polishing (CMP) steps over a patterned thick film photorestive film. With reference to
Next, as shown in
Referring to
Those skilled in the art will appreciate that, as stated above, additional ferromagnetic laminations may be formed in each of the vias 204 by the sequential formation of a dielectric material layer, conductive material seed layer and ferromagnetic material layer and subsequent planarization thereof, as described in conjunction with
It should be understood that the particular embodiments described herein have been provided by way of example and that other modifications may occur to those skilled in the art without departing from the scope of the claimed subject matter as expressed in the appended claims and their equivalents.
This application is related to co-pending and commonly-assigned U.S. patent application Ser. No. [Attorney Docket No. NSC1-N5000 [P07683]], filed on Sep. 12, 2011, and titled “A Method of Selectively Etching a Conductive Seed Layer in the Damascene Electroplating of Magnetic Alloy Laminations.” Application Ser. No. [Attorney Docket No NSC1-N5000 [P07682]].