This application is related to U.S. Patent Application 2008/0187915 filed Feb. 2, 2002, U.S. Patent Application 2010/0025249 filed Aug. 13, 2009, entitled “FORMING AN ELECTRODE HAVING REDUCED CORROSION AND WATER DECOMPOSITION ON SURFACE USING A CUSTOM OXIDE LAYER” filed on Jun. 22, 2010 having Ser. No. 12/820,487, “REDUCING CORROSION AND WATER DECOMPOSITION ON A SURFACE OF A TITANIUM NITRIDE ELECTRODE” filed on Jun. 22, 2010 having Ser. No. 12/820,574, the contents of which are incorporated herein by reference.
The field of the present invention relates generally to thin film electrodes and, more particularly, to forming an electrode having reduced corrosion and water decomposition on the surface of the electrode.
Electrochemical corrosion of an electrode causes deterioration of the electrode and reduced functionality. Further, if the electrode is immersed in an aqueous solution and a voltage is applied, then water decomposes forming oxygen and hydrogen bubbles on the surface of an electrode.
Protecting surfaces against corrosion by coating such surfaces with an inert substance is known. The protective coating can be a layer of a metal with better protection properties than the bulk material, for example, covering iron or unalloyed steal with a layer of treated zinc. A second option is the protective coating can be an enamel layer or glass-like layer of an inorganic non-metallic material. The third option for corrosion protection is coating with an organic polymer, for example, intrinsically conducting polymers. There is a need for an improved method of inhibiting electrochemical corrosion and water decomposition on electrode surfaces.
Accordingly, the present invention provides a method of forming an electrode having reduced corrosion and water decomposition on a surface thereof. A substrate which has a conductive layer disposed thereon is provided and the conductive layer has an oxide layer with an exposed surface. The exposed surface of the oxide layer contacts a solution of an organic surface active compound in an organic solvent to form a protective layer of the organic surface active compound over the oxide layer. The protective layer has a thickness of from about 0.5 nm to about 5 nm and ranges therebetween depending on a chemical structure of the surface active compound.
Thin film electrodes are used in the emerging technology of DNA-Transistors. For a detailed explanation of DNA-Transistors see U.S. Patent Application 2008/0187915 and U.S. Patent Application 2010/0025249, both incorporated herein by reference.
It is essential for maintaining functionality of the DNA-Transistor device 100 that the nanopore 102 dimensions are not spatially altered and continuous solution 107 flow inside the pore is not compromised during device operation. Specifically, this means that corrosion of the electrode 108 surface areas inside the nanopore 102 must be reduced and water decomposition catalyzed on the surface areas of electrodes 108 must be reduced.
The substrate 301 can be any type of common substrate material such as Kapton, silicon, amorphous hydrogenated silicon, silicon carbide (SiC), silicon dioxide (SiO2), quartz, sapphire, glass, metal, diamond-like carbon, hydrogenated diamond-like carbon, gallium nitride, gallium arsenide, germanium, silicon-germanium, indium tin oxide, boron carbide, boron nitride, silicon nitride (Si3N4), alumina (Al2O3), cerium(IV) oxide (CeO2), tin oxide (SnO2), zinc titanate (ZnTiO2), AlGaAs, CN, InP, GaP, In0.53Ga0.47As, chalcogenides, a plastic material and a combination thereof.
The conductive layer 302 can be a metal, semiconductor or a doped semiconductor. Preferably, the conductive layer is titanium nitride; however, other conductive materials can be used. The conductive layer 302 can be a metal such as platinum, rhodium, gold, silver, zinc, titanium, ruthenium and aluminum. The conductive layer 302 can be a semiconductor such as GaAs, AlGaAs, NC, Ge, SiGe, InP, GaP, GaN, In0.53Ga0.47As and chalcogenides. The chalcogenide can be a compound of a metal such as Ge, Sn, Pb, Sb, Bi, Ga, In, TI and a combination thereof and a chalcogen such as S, Se, Te and a combination thereof. The conductive layer 105 can also be a doped semiconductor such as aluminum doped zinc oxide, phosphorus doped silicon, boron doped silicon, lanthanum doped zirconium dioxide, scandium doped zirconium dioxide, and yttrium doped zirconium dioxide. The conductive layer 302 can be deposited by any deposition process such as sputtering, molecular beam epitaxy, ion beam lithography and atomic layer deposition.
The oxide layer 303 can be formed through any known method of oxidation; however, preferably the oxidation is carried out by plasma oxidation in order to create an ultra-thin oxide layer 303. A preferred custom oxygen plasma process uses a working pressure of 150 mT, an oxygen flow rate of 100 sccm, a power of 40-200 W and a time of 0-80 seconds. The custom process provides a uniform oxide layer 303 free of surface defects. The thickness of the oxide layer 303 can be reduced to a thickness of 0.09 nm with a precision of 0.2 nm. It is beneficial that the oxide layer 303 be ultra-thin and highly uniform in application inside a nanopore. The custom oxygen plasma process can be applied not only to planar surfaces but also to topographically patterned surfaces isotropically oxidizing angled and vertical sidewalls as found inside a nanopore.
The protective layer 304 is formed by self assembly of an organic surface active compound. The organic surface active compound has a structure which includes a polar end and a non-polar end. The polar end of the organic surface active compound forms a hydrogen bond with oxygen of the oxide layer 303 and the non-polar end forms the protective layer 304.
Preferably the protective layer 304 is a highly compact self assembled monolayer of a long chain organic phosphonic acid or hydroxamic acid. More specifically, the preferred organic surface active compound is represented by the formula:
R—(CH2)n—XH
wherein R is an alkyl group of 1-4 carbon atoms; n is from 0 to about 18; and —XH is a moiety selected from the group consisting of: —CONHOH, —COOH, —SO2OH, —SOON, —SO2NHOH, —P(O)2NHOH, —P(O)2OH, —PO3H, and mixtures thereof. The alkyl chains of phosphnoic or hyroxamic acids can also be partically or fully fluorinated to impart yet higher hydrophobicity on the exposed surface.
In step 401 the electrode is immersed in a solvent having an electrolyte dissolved therein. Preferably, the solvent is an organic solvent such as methanol, ethanol, propanol, butanol, ethylene glycol, ethyl acetate, 1,2-propanediol, 1,3-propanediol, diethyl ether, methyl ethyl ketone, methoxyethyl acetate, methoxypropyl acetate, methylene chloride, acetone, aliphatic hydrocarbons, aromatic hydrocarbons, and mixtures thereof.
In order to inhibit corrosion and water decomposition, the solvent contains a hydroxyl-functional compound such as a linear, branched, or cyclic alcohol of 1 to 6 carbon atoms, ethylene glycol, propylene glycol, butane diol, pentane diol, hexan diol, polyethylene glycol, glycerol, trimethylol ethane, trimethylol propane, isomers thereof, aqueous solutions thereof, and mixtures any of the preceding hydroxyl-functional compounds. Preferably, the solution containing hydroxyl-functional compound has a viscosity from about 1 centi Stokes (cSt) to about 250 centi Stokes.
Further, preferably the solvent also contains a solubility promoter such as dimethylsulfoxide, N,N-dimethylformaide, N,N-dimethylacetamaide, tri(dimethylamino)phosphine, tri(dimethylamino)phosphoramide, ethyl acetate, diethyl ether, methyl ethyl ketone, methoxyethyl acetate, methoxypropyl acetate, methylene chloride, acetone, and mixtures thereof.
The electrolyte dissolved in the solvent can be a salt, an ammonium salt, a quaternary ammonium salt, a substantially dissociated compound, ionic liquids, and mixtures thereof. The electrolyte is preferably at a concentration from about 0.001 weight percent to about 10 weight percent.
In step 402 a voltage is applied to the conductive layer to induce a current therein. The current can be either AC or DC current.
In step 403 the extent of oxidation of the conductive layer is measured. Preferably, this is carried out by using cross-sectional transmission electron microscopy, cross-section scanning electron microscopy and/or using a top view atomic force microscopy.
In step 404 the extent of water decomposition is measured by visually observing the formation of hydrogen and oxygen bubbles.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
This invention was made with Government support under Contract No.: 1R01HG005110-01 awarded by the National Institute of Health. The Government may have certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
4389371 | Wilson et al. | Jun 1983 | A |
5795782 | Church et al. | Aug 1998 | A |
6352838 | Krulevitch et al. | Mar 2002 | B1 |
6627067 | Branton et al. | Sep 2003 | B1 |
6682659 | Cho et al. | Jan 2004 | B1 |
6716620 | Bashir et al. | Apr 2004 | B2 |
6863833 | Bloom et al. | Mar 2005 | B1 |
6905586 | Lee | Jun 2005 | B2 |
7001792 | Sauer et al. | Feb 2006 | B2 |
7238485 | Akeson et al. | Jul 2007 | B2 |
7279337 | Zhu | Oct 2007 | B2 |
7468271 | Golovchenko et al. | Dec 2008 | B2 |
7625706 | Akeson et al. | Dec 2009 | B2 |
8003319 | Polonsky et al. | Aug 2011 | B2 |
8039250 | Peng et al. | Oct 2011 | B2 |
20020088712 | Miles | Jul 2002 | A1 |
20030085719 | Yoon et al. | May 2003 | A1 |
20030161951 | Yuan et al. | Aug 2003 | A1 |
20030211502 | Sauer et al. | Nov 2003 | A1 |
20040011650 | Zenhausern et al. | Jan 2004 | A1 |
20040163955 | Miles et al. | Aug 2004 | A1 |
20060019259 | Joyce | Jan 2006 | A1 |
20060057585 | McAllister | Mar 2006 | A1 |
20060068401 | Flory | Mar 2006 | A1 |
20060165896 | Afzali-Ardakani et al. | Jul 2006 | A1 |
20060210990 | Todd et al. | Sep 2006 | A1 |
20080129185 | Eden et al. | Jun 2008 | A1 |
20080171316 | Golovchenko et al. | Jul 2008 | A1 |
20080187915 | Polonsky et al. | Aug 2008 | A1 |
20090038938 | Mezic et al. | Feb 2009 | A1 |
20090093376 | Wo et al. | Apr 2009 | A1 |
20100025249 | Polonsky et al. | Feb 2010 | A1 |
20100112667 | Sundaram et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
WO-0036407 | Jun 2000 | WO |
WO-0181896 | Nov 2001 | WO |
WO-2006027780 | Mar 2006 | WO |
WO-2008092760 | Aug 2008 | WO |
Entry |
---|
Polonsky, et al., “Nanopore in metal-dielectric sandwich for DNA position control,” Applied Physics Letters, American Institute of Physics, vol. 91, No. 15, Oct. 18, 2007. |
Lin, et al., “Positioning of extended individual DNA molecules on electrodes by non-uniform AC electric fields,” Nanotechnology, IOP, vol. 16, No. 11, No. 1, 2005. |
D. J. Branton et al., “The potential and challenges of nanopore sequencing,” Nature biotechnology, vol. 26, No. 10, 2008, pp. 1146-1153. |
K. Jo et al. “A single molecule barcoding system using nanoslits for DNA analysis.” PNAS vol. 104, No. 8, 2007, pp. 2673-2678. |
D. J. Bonnthuis et al., “Conformation and dynamics of DNA confined in slitlike nanofluidic channels,” Phys. Rev. Lett., vol. 101, 2008, pp. 108303-108306. |
J. J. Kasianowicz et al., “Characterization of Individual Polynucleotide Molecules Using a Membrane Channel,” Proc. Natl. Acad. Sci. USA, vol. 93, 1996, pp. 13770-13773. |
Z. Zou et al., “Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement,” Sensors and Actuator A 136, 2007, pp. 518-526. |
D. Fologea et al., “Slowing DNA Translocation in a Solid-State Nanopore,” American Chemical Society, Nano Letters, 2005, pp. 1734-1737, vol. 5, No. 9. |
J. Lagerqvist et al., “Fast DNA Sequencing via Transverse Electronic Transport,” American Chemical Society, Nano Letters, 2006, pp. 779-782, vol. 6, No. 4. |
U.S. Appl. No. 12/820,516, Afzali-Ardakani, et al. |
U.S. Appl. No. 12/820,487, Afzali-Ardakani, et al. |
U.S. Appl. No. 12/820,574, Afzali-Ardakani, et al. |
Totta, “In-process intergranular corrosion in Al alloy thin films”, Journal of Vacuum Science and Technology, vol. 13, Issue: 1, 1976, pp. 26-27. |
Schmutz, et al., Corrosion Studies with the Atomic Force Micorscope, Part I: Characterization of Potential Inhomogeneities on Passive Surfaces by Surfance Potential Imaging, 2005 Veeco Instruments Inc. |
WO-PCTEP08050562, May 27, 2008, search report. |
J. Li et al., “Ion-Beam Sculpting at Nanometre Length Scales,” Macmillan Magazines Ltd., Nature, Jul. 2001, pp. 166-169, vol. 412. |
A.J. Storm et al., “Translocation of Double-Strand DNS Through a Silicon Oxide Nanopore,” The American Physical Society, Physical Review, 2005, pp. 1-10, E71. |
Habib, et al., “Atmospheric oxygen plasma activation of silicon (100) surfaces”, Journal of Vacuum Science Technology, May/Jun. 2010. |
Kakiuchi, et al., “Highly efficient oxidation of silicon at low temperatures using atmospheric pressure plasma”, Appl. Phys. Lett. 90, 091909 (2007). |
Han, et al., “Oxygen plasma treatment of gate metal in organic thin-film transistors,” Applied Physics Letters , vol. 88, No. 23, pp. 233509-233509-3, Jun. 2006. |
Park, et al., “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells”, OPTICS EXPRESS, Nov. 14, 2005 / vol. 13, No. 23. |
Tizazu, et al., “Photopatterning, Etching, and Derivatization of Self-Assembled Monolayers of Phosphonic Acids on the Native Oxide of Titanium”, Langmuir, 2009, 25 (18), pp. 10746-10753 |
Tan, et al., “Self-assembled organic thin films on electroplated copper for prevention of corrosion”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Jul. 2004, vol. 22, Issue 4, pp. 1917-1925. |
Number | Date | Country | |
---|---|---|---|
20110312176 A1 | Dec 2011 | US |