The present disclosure relates generally to micro-electro-mechanical sensors (MEMS). More particularly, the present disclosure relates to MEMS accelerometers.
Mechanical accelerometers are used to sense acceleration. In various forms accelerometers are often employed as a critical sensor for vehicles, such as aircraft and automobiles. They are generally useful for navigation, stabilization, crash sensing, and pointing or whenever it is necessary to autonomously determine the acceleration or motion of a free object.
A typical electromechanical accelerometer includes a mass on a spring and readout electronics. The readout electronics are typically in close proximity to the proof mass, and are internally mounted to a case which also provides the electrical feed-through connections to the platform electronics and power supply.
Older conventional mechanical accelerometers were very heavy mechanisms by current standards, employing relatively large masses. Existing MEMS (micro-electro-mechanical systems) accelerometers, on the other hand, utilize small masses with small electrodes.
Currently, the spring stiffness is chosen such as to ensure a displacement at a maximum applied survivable acceleration below the motion clearance of the mass. For high precision operation, a force rebalance loop is typically employed to maintain the position of the mass at a fixed location set point, and the applied restoring force is then a direct measure of acceleration. The main source of bias error in such a system, assuming perfect sensing and control electronics, is the change in the measurement baseline, i.e. the shift of the spring attachment position relative to the mass set point position.
The following summary is included in order to provide a basic understanding of some aspects and features of the invention. This summary is not an extensive overview of the invention and as such it is not intended to particularly identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented below.
Embodiments of the invention relate to a MEMS accelerometer that incorporates a metrology element, such as a metrology bar (MB), which is employed to directly measure the minute changes in measurement baseline. Embodiments of the invention also relate to stress isolation in the sensor design to isolate the sensitive areas of the resonator.
According to one aspect of the invention, an accelerometer is disclosed that includes a resonator comprising a plurality of slots arranged in a symmetrical pattern, the resonator configured to move upon excitation; at least one excitation electrode within at least one of the plurality of slots of the planar resonator to excite movement of the planar resonator; at least one sensing electrode within at least one of the plurality of slots of the planar resonator for sensing the movement; a metrology bar within at least one of the plurality of slots, the metrology bar configured for measuring the average distance change of the at least one sensing electrode.
According to another aspect of the invention, an accelerometer is disclosed that includes a resonator body having a central mounting point; a plurality of slot openings in the resonator body, wherein the plurality of slot openings are symmetrically arranged in the resonator body; an excitation electrode in at least one of the plurality of slot openings; a sensing electrode in at least one of the plurality of slot openings, wherein the excitation electrode and the sensing electrode together comprise a drive/sense electrode pair; and a metrology bar in at least one of the plurality of slot openings.
The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more examples of embodiments and, together with the description of example embodiments, serve to explain the principles and implementations of the embodiments.
In the following description of embodiments of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
Overview
Embodiments of the invention achieve bias stability and sensitivity previously only achievable in large accelerometers and seismometers in a miniature MEMS die.
As explained in the Background, current accelerometer technology utilizes a mass on the spring to sense acceleration, and a force rebalance loop is typically employed to maintain the position of the mass at a fixed location set point, and the applied restoring force is then a direct measure of acceleration. The main source of bias error in such a system, assuming perfect sensing and control electronics, is the change in the measurement baseline, i.e. the shift of the spring attachment position relative to the mass set point position. This shift typically occurs when the mounting stress changes with temperature due to thermal mismatch of the die, die attach and package materials, or relaxes due to aging or thermal cycling. The resulting acceleration error is calculated to be Δa=ω2Δx where ω is the resonance angular frequency, and Δx is the change in the measurement baseline. On one hand, to survive 100 g shocks in an unpowered state, the natural frequency of the system has to be above 2 kHz. On the other hand, to minimize bias, as low a frequency as possible is desired. An ideal accelerometer has a natural frequency of 0, i.e. an unattached free mass, and consequently having no bias errors stemming from the mounting.
There are three was to reduce the bias:
To address the mounting stress bias error, embodiments of the invention employ a dual approach. In some embodiments, a metrology element is incorporated into the accelerometer to independently measure/and compensate for bias. In some embodiments, stress isolation is incorporated into the accelerometer to reduce Δl. Embodiments of the invention also incorporate both the metrology element and stress isolation.
Metrology Bar
The accelerometer 200 includes a resonator 204, which includes a proof mass 208. The proof mass 208 acts as an integral proof mass of the resonator. Although the proof mass 208 is illustrated as a square, it will be appreciated that other geometries are also possible using the principles of this invention. In
The proof mass 208 includes a plurality of openings or slots 212a-212i. The slots or openings 212a-212i are sized such that electrodes 216, 218, which are discussed below, can be formed in the openings or slots 212a-212i and will depend on the manufacturing process and materials used to form the electrodes. As shown in
The resonator 204 further includes at least one sensing electrode 216 and at least one forcing or excitation electrode 218 embedded in the slots or openings of the resonator body 204. Together one sensing electrode 216 and one excitation electrode from a drive/sense electrode pair 222. Typically, each resonator 204 includes multiple drive/sense electrode pairs 222 as shown for example in
The resonator 204 also includes spring flexures 226 in the openings. The thickness of the spring flexures 226 may be any value or range of values between about 1-10 μm; it will be appreciated that they may be greater than 10 μm. The spring flexures 226 impact the compliance of the resonator body 101, and thus the amount of movement that can be induced and sensed by the accelerometer. It will be appreciated that the number of spring flexures 226 may differ from that shown in
The arrangement and distribution of the excitation and sensing electrodes 216, 218 can be varied as desired, however, placement of the electrodes will vary depending on SNR and dynamic range requirements. This aspect constitutes one of the ways the design can be scaled to meet varying sensor needs. For example, accelerometer applications for measuring gravity (i.e. inclinometer) may have a different placement of electrodes than accelerometer applications for measuring accelerations that have more variance. The placement of the electrodes changes the capacitance and thus impacts the changes in capacitance that can be sensed by the electrodes.
In one embodiment, the sensing electrodes 216 are used to sense the displacement of the proof mass 208 due to applied acceleration. The excitation electrodes 218 are then energized such that the displacement is zeroed out and the mass 204 is returned to its nominal position. The force applied by the excitation electrodes 218 required to keep the proof mass 208 from moving is directly related to the applied acceleration. In another embodiment, the excitation electrodes 218 within the resonator 204 are driven to induce movement in the proof mass 208. Movement of the platform to which the accelerometer 200 is attached causes changes in the movement of the resonator 204. The sensing electrodes 216, also within the resonator 204, sense these changes in movement of the proof mass 208 as a measurement of force. The acceleration corresponding to the movement can then be determined from the force measurement.
In embodiments of the invention, the resonator 204 further includes a sensing baseline metrology bar 230. The metrology bar (MB) 230 is employed to directly measure minute changes in measurement baseline. The metrology bar 230 provides an independent reference of the drive/sense electrode position relative to the mounting point. In particular, the metrology bar 230 measures the average distance change to the drive/sense (DS) electrode pair 222.
In general, the metrology bar is made of the same material that the proof mass and the electrodes are made of. In one embodiment, they are all made from silicon. Other exemplary materials include other dimensionally stable materials, such as fused silica, low expansion glass and the like. The metrology bar 230 is wired to a separate set of sense electronics which provide for the DS electrode position readout; alternatively, the same sensing electrodes 216 can measure the position difference.
As shown in
As explained above, the metrology bar 230 provides an independent reference of the drive/sense electrode pair 222 position relative to the mounting point. More specifically, the metrology bar 230 is used as an independent measure of the position of the sensing electrode(s) 216 relative to the center mounting point of the metrology bar 230 to the resonator 204. The same set of sensing electrodes 216 may be used to measure the position of the proof mass 208 and the metrology bar 230. The proof mass 208 is free to move; the metrology bar 230 is not. Any apparent motion of the metrology bar 230 constitutes a shift of the position of the sensing electrodes 216.
The resonator 204 may further include tuning electrodes 236. The tuning electrodes 236 can be used to lower the natural frequency (spring constant) of the resonator 204. Given sufficient tuning authority the resonant frequency may be tuned all the way to 0 Hz thus producing a sensor with an effectively free mass element. This may be advantageous where accelerations are small—the acceleration inputs may be integrated by the element itself up to some small displacement limit, thus bypassing some of the errors inherent in electronic and numerical integration of the acceleration input to calculate position. It is also possible, given a pair of such accelerometers, to continuously use at least one in a self-integrating mode while the other's mass position is being reset. Lowering the natural frequency of the resonator 204 using the tuning electrodes 236 directly reduces the Δa=Δlω2 bias term by reducing ω2. In addition, the spring constant (and consequently ω2) can be modulated to extract the Δl thus providing another independent measurement of the bias-causing stress asymmetry.
Accelerometer Stress Isolation
As shown in
Since the bending stiffness of a beam scales as thickness cubed, a pair of rings 1× and 10 in width would reduce the asymmetric stress by a factor of 1,000 (while reducing the symmetric component by a factor of 10. Consequently, the configuration shown in
The invention has been described in relation to particular examples, which are intended in all respects to be illustrative rather than restrictive. Those skilled in the art will appreciate that many different combinations will be suitable for practicing the present invention. Moreover, other implementations of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. Various aspects and/or components of the described embodiments may be used singly or in any combination. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 62/248,904, filed Oct. 30, 2015, entitled “Free Mass MEMS Accelerometer,” the entirety of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5767405 | Bernstein | Jun 1998 | A |
5914553 | Adams | Jun 1999 | A |
5992233 | Clark | Nov 1999 | A |
6065341 | Ishio | May 2000 | A |
6079272 | Stell | Jun 2000 | A |
6082197 | Mizuno | Jul 2000 | A |
6230563 | Clark | May 2001 | B1 |
6276207 | Sakai | Aug 2001 | B1 |
6360601 | Challoner | Mar 2002 | B1 |
6367786 | Gutierrez | Apr 2002 | B1 |
6393913 | Dyck | May 2002 | B1 |
6439051 | Kikuchi | Aug 2002 | B2 |
6467346 | Challoner | Oct 2002 | B1 |
6584845 | Gutierrez | Jul 2003 | B1 |
6598455 | Raevis | Jul 2003 | B1 |
6675630 | Challoner | Jan 2004 | B2 |
6796179 | Bae | Sep 2004 | B2 |
6823734 | Hayworth | Nov 2004 | B1 |
6845670 | McNeil | Jan 2005 | B1 |
6882964 | Bayard | Apr 2005 | B2 |
6915215 | M'Closkey | Jul 2005 | B2 |
6944931 | Shcheglov | Sep 2005 | B2 |
6955084 | Challoner | Oct 2005 | B2 |
6990863 | Challoner | Jan 2006 | B2 |
7017410 | Challoner | Mar 2006 | B2 |
7040163 | Shcheglov | May 2006 | B2 |
7159441 | Challoner | Jan 2007 | B2 |
7168318 | Challoner | Jan 2007 | B2 |
7210350 | Ogura | May 2007 | B2 |
7267006 | Malvern | Sep 2007 | B2 |
7285844 | Hayworth | Oct 2007 | B2 |
7368861 | Tanaya | May 2008 | B2 |
7401397 | Shcheglov | Jul 2008 | B2 |
7412885 | Ogura | Aug 2008 | B2 |
7412887 | Memishian | Aug 2008 | B2 |
7437253 | Shcheglov | Oct 2008 | B2 |
7464592 | Ohta | Dec 2008 | B2 |
7552638 | Menard | Jun 2009 | B2 |
7637160 | Koury, Jr. | Dec 2009 | B2 |
7640786 | Stewart | Jan 2010 | B2 |
7640803 | Gutierrez | Jan 2010 | B1 |
7690254 | Pilchowski | Apr 2010 | B2 |
7793541 | Challoner | Sep 2010 | B2 |
7818871 | Shcheglov | Oct 2010 | B2 |
7980115 | Stewart | Jul 2011 | B2 |
8011246 | Stewart | Sep 2011 | B2 |
8053957 | Sugiyama | Nov 2011 | B2 |
8158448 | Ge | Apr 2012 | B2 |
8186221 | Lin | May 2012 | B2 |
8220330 | Miller | Jul 2012 | B2 |
8393212 | Ge | Mar 2013 | B2 |
8418554 | Joyce | Apr 2013 | B2 |
8443671 | Classen | May 2013 | B2 |
8453503 | Oshio | Jun 2013 | B2 |
8549915 | Schofield | Oct 2013 | B2 |
8584522 | Acar | Nov 2013 | B2 |
8659101 | Yamanaka | Feb 2014 | B2 |
8689633 | Classen | Apr 2014 | B2 |
8752430 | Burghardt | Jun 2014 | B2 |
8766745 | Kubena | Jul 2014 | B1 |
9046541 | Kubena | Jun 2015 | B1 |
9075079 | Yoneoka | Jul 2015 | B2 |
9246017 | van der Heide | Jan 2016 | B2 |
9360496 | Naumann | Jun 2016 | B2 |
9547020 | Liukku | Jan 2017 | B2 |
10161957 | Townsend | Dec 2018 | B2 |
20150168146 | Shcheglov | Jun 2015 | A1 |
20150301075 | Yamanaka | Oct 2015 | A1 |
20160033273 | Kamisuki | Feb 2016 | A1 |
20160047839 | Tanaka | Feb 2016 | A1 |
20160084872 | Naumann | Mar 2016 | A1 |
20160169931 | Tocchio | Jun 2016 | A1 |
20170074653 | Kanazawa | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
WO 2005100237 | Oct 2005 | WO |
Entry |
---|
U.S. Appl. No. 15/337,436, Shcheglov, filed Oct. 28, 2016. |
U.S. Appl. No. 15/337,480, Shcheglov, filed Oct. 28, 2016. |
U.S. Appl. No. 15/337,627, Shcheglov, filed Oct. 28, 2016. |
U.S. Appl. No. 15/337,681, Shcheglov, filed Oct. 28, 2016. |
Number | Date | Country | |
---|---|---|---|
62248904 | Oct 2015 | US |