Furniture-mounted electrical charging station

Information

  • Patent Grant
  • 10680392
  • Patent Number
    10,680,392
  • Date Filed
    Monday, July 23, 2018
    6 years ago
  • Date Issued
    Tuesday, June 9, 2020
    4 years ago
Abstract
An electrical charging station includes a main housing and a separate receptacle housing, both configured for coupling to a furniture article. The charging station includes an electrical output connector that is accessible at the receptacle housing, a self-contained electrical power source such as a rechargeable battery inside the main housing, and a wiring harness electrically disposed (and directing power) between the self-contained electrical power source and the electrical output connector.
Description
FIELD OF THE INVENTION
Field of the Invention

The present invention relates to electrical power supplies and, more particularly, to electrical power supplies having rechargeable batteries or the like.


Background of the Invention

Rechargeable electrical supplies are used to provide a convenient but limited supply of electrical power at various locations that may be separated from, or that may not have convenient access to, traditional wired power supplies.


SUMMARY OF THE INVENTION

The present invention provides an independently-powered or self-powered electrical charging station that can be unobtrusively mounted to furniture articles including shelves, work surfaces, tables, desks, and the like, and which is supplied with electrical energy from a rechargeable battery or other independent and replaceable power source (e.g., a capacitor or fuel cell), to provide at least a limited amount of electrical energy for charging portable phones, handheld computers and media players, and other electrical or electronic devices, especially portable electrical or electronic devices. The charging station may include several electrical connectors or receptacles or ports that allow multiple devices to be charged or supplied with power simultaneously. The battery or other self-contained power source associated with the charging station may be contained within a main housing, and may be rechargeable while positioned in the main housing. A separate outlet receptacle housing may be spaced from the main housing or mounted to and extending outwardly from the main housing, and positioned in a convenient user-accessible location along a furniture article.


According to one form of the present invention, a furniture-mountable electrical charging station includes a main housing configured for coupling to a furniture article, a self-contained electrical power source, a receptacle housing spaced apart from the main housing and also configured for coupling to the furniture article, an electrical output connector positioned in the receptacle housing, and an electrical wiring harness in electrical communication with the electrical output connector and the self-contained electrical power source. The main housing defines an interior region for mounting the self-contained electrical power source, and the electrical wiring harness extends between the main housing and the receptacle housing, and enables the self-contained electrical power source to supply DC electrical power to the electrical output connector.


According to another form of the present invention, a furniture-mountable electrical charging station includes a main housing defining an interior region, a self-contained electrical power source mounted in the interior region, a receptacle housing, and an electrical output connector. The receptacle housing has a lower region that is at least partially insertable into the interior region of the main housing, and an upper region that is at least partially insertable into an opening formed in the furniture article. The electrical output connector is mounted in the receptacle housing, and is in electrical communication with the self-contained electrical power source so that the self-contained electrical power source can supply DC electrical power to the electrical output connector.


Thus, the furniture-mountable electrical charging station of the present invention provides a source of electrical energy at portable furniture articles, which is capable of charging or energizing small electrical or electronic devices, and which permits the associated furniture articles to be moved to substantially any desired location without regard for the location of traditional wall outlets, floor outlets, or other wired power sources. The charging station is energized for at least a limited time by a self-contained electrical power source, such as a rechargeable battery, until its battery is depleted and will need to be recharged or exchanged for a charged battery.


These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic end elevation of a furniture-mounted electrical charging station in accordance with the present invention, shown supported at a table;



FIG. 2 is an exploded perspective view of the furniture-mounted electrical charging station of FIG. 1;



FIG. 3 is a top plan view of a main housing cover of the furniture-mounted electrical charging station;



FIG. 4 is a rear elevation of the furniture-mounted electrical charging station;



FIG. 5 is a left side elevation of furniture-mounted electrical charging station;



FIG. 6 is a top-front perspective view of another furniture-mounted electrical charging station in accordance with the present invention, shown supported at a section of a work surface;



FIG. 7 is a bottom-rear perspective view of the furniture-mounted electrical charging station of FIG. 6;



FIG. 8 is a bottom-front perspective view of the furniture-mounted electrical charging station of FIG. 6;



FIG. 9 is an exploded perspective view of the furniture-mounted electrical charging station of FIG. 6;



FIG. 10 is a top-rear perspective view of the furniture-mounted electrical charging station of FIG. 6, with portions of the work surface and charging station cut away to show interior detail;



FIG. 11 is a top plan view of the furniture-mounted electrical charging station of FIG. 6;



FIG. 12 is a side sectional elevation taken along line XII-XII of FIG. 11; and



FIG. 13 is a front sectional elevation taken along line XIII-XIII of FIG. 11.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings and the illustrative embodiments depicted therein, a furniture-mountable electrical charging station 10 is configured for mounting to a table 12, or to a desk, work surface, room divider, or substantially any furniture article where a self-contained power source may be desired, such as shown in FIG. 1. Charging station 10 is particularly well-suited for use with portable furniture articles such as chairs, tables, and desks in reconfigurable spaces such as cafes, restaurants, bars, banquet halls, airports and other public transit spaces, and in office or work areas. For example, patrons of bars and cafes, and users of reconfigurable work areas, often desire to move tables together or apart in order to accommodate different groups or to achieve a desired level of privacy, and also have a need to recharge small electronic devices such as mobile phones, media players, handheld computers, and tablet computers, all of which are commonly charged via low voltage DC connectors and cords. By mounting a self-contained charging station 10 at a movable table 12 or the like, patrons and/or staff are free to move the table or other furniture article to any desired location, while still having access to at least low voltage DC power for recharging purposes, without requiring a continuous electrical connection from an AC electrical wall outlet 14 (FIG. 1) or other separate electrical power source to the charging station 10.


Furniture-mounted electrical charging station 10 includes a main housing 16 including a base or tub portion 16a and a top or cover portion 16b, which cooperate to defines an interior region 18, such as shown in FIG. 2. A self-contained electrical power source such as a rechargeable battery 20 is mounted inside the main housing's interior region 18 using a pair of mounting straps 22, and an electronic circuit board 24 is also mounted inside interior region 18 and is in electrical communication with battery 20 via a battery connector 26. A recharging connector 28 is provided at a rear of circuit board 24 and is accessible from outside main housing 16 via an opening 30 formed in a rear wall of the housing's tub portion 16a.


Mounting straps 22 may be generally L-shaped as shown in FIG. 2, and may be rigid or semi-rigid (e.g., of sheet metal) with distal upwardly-bent tips 22a that are received in respective slots 32 formed in the tub portion 16a of main housing 16 (FIG. 10), and with proximal forwardly-bent tips 22b with respective bores for receiving threaded fasteners that also extend downwardly into respective mounting holes 34 formed in a bottom panel of tub portion 16a (only one mounting hole 34 is shown in FIG. 2). Optionally, a slot 36 formed in the bottom panel of tub portion 16a receives a downwardly-extending wall or other projection (not shown) of battery 20, which aids in properly positioning battery 20 in tub portion 16a during assembly. Optionally, main housing 16 can be made more aesthetically pleasing by applying a decorative cover or coating to the exposed outer surfaces thereof. For example, a woven layer of polyethylene terephthalate (PET) may be thermoformed and adhered to the main housing 16, which may be made from formed sheet metal.


Once battery 20 and circuit board 24 are properly mounted in tub portion 16a, and an electrical wiring harness 38 is connected to circuit board 24 via a first harness connector 40, interior region 18 is enclosed by the housing cover portion 16b using suitable fasteners, such as self-tapping threaded screws, rivets, or threaded nuts and corresponding bolts that pass through respective fastener openings 42 formed in laterally outwardly-extending flanges 46 at each corner of main housing 16. Wiring harness 38 extends up and out through an opening 44 formed in housing cover portion 16b for connection to a low voltage DC receptacle board 48, as will be described below. Once main housing 16 has been assembled (FIGS. 1, 4 and 5), it is ready for attachment to the table 12 or other furniture article, such as using threaded fasteners that extend upwardly through respective fastener openings 50 formed at each corner of main housing 16, at each flange 46, to threadedly engage a portion of the table 12, such as the table underside as shown in FIG. 2.


Low voltage DC receptacle board 48 is electrically coupled to electrical wiring harness 38 via a second harness connector 52 and is supported inside a DC receptacle housing formed by a base or tub portion 54a and a top or cover portion 54b, such as shown in FIG. 2. As best shown in FIG. 10, a pair of locating inserts 58 support receptacle board 48 in a fixed location inside a cavity 57 defined by tub portion 54a and cover portion 54b, so that individual DC receptacles 56 are properly aligned with respective receptacle openings 60 formed in cover portion 54b upon assembly. Tub portion 54a includes an upper flange 62 that permits the DC receptacle housing to rest in an opening 63 formed in a tabletop or other surface, such as shown in FIGS. 1, 6, 9 and 10. A gasket 64 (FIGS. 2 and 9) may be provided between flange 62 and cover portion 54b to resist intrusion of liquids and other contaminants into cavity 57. Although it is envisioned that the DC receptacle housing would typically be spaced apart from the main housing 16, it is envisioned that for applications where compactness is desired, at least the base or tub portion 54a may be inserted at least partially into the opening 44 formed in the cover portion 16b of main housing 16, such as shown in FIGS. 12 and 13. In this arrangement, the tub portion 54a may rest atop a pair of spacers in the form of tubular bosses 65 that extend upwardly from a bottom surface of the main housing 16a (FIGS. 9, 10, 12 and 13), and may be secured at the tubular bosses 65 by a pair of mechanical fasteners 67 (FIGS. 9, 12 and 13). The lengths of the tubular bosses 65 may be selected according to the thickness of the table top or work surface 82 to which the charging station 10 is attached, with taller bosses 65 used for thicker work surfaces 82. In this manner, the height to which the DC receptacle housing's cover portion 54b extends above the housing cover portion 16b can be adjusted for a particular application.


In the illustrated embodiment, DC receptacle board 48 includes four status indicator lamps 66 that can provide general information to a user, such as the state of charge of battery 20 (e.g., one illuminated lamp 66 indicating about 0%-25% charge remaining, two illuminated lamps 66 indicating about 26%-50% charge remaining, three illuminated lamps 66 indicating about 51%-75% charge remaining, and four illuminated lamps 66 indicating about 76%-100% charge remaining). Other information that can be provided by indicator lamps 66 includes whether a corresponding DC receptacle 56 is electrically energized and/or currently providing electrical power to an electrical connected device, such as a portable phone or computer 68 that is connected to one of the DC receptacles 56 via a charging cord 70 and plug 72, such as shown in FIG. 1, and whether battery 20 is being charged by an electrical power source, such as a DC power converter 74 plugged into AC wall outlet 14 and having an associated DC charging cord 76 with connector 78 adapted to engage the recharging connector 28 that is accessible at the back of main housing 16a.


In addition to sending power to DC receptacle board 48, electronic circuit board 24 may control the charging of battery 20 when connected to a suitable energized power source such as wall outlet 14, and also the illumination of status indicator lamps 66, which may provide different colors and/or flashing patterns to provide information as desired. It will further be appreciated that rechargeable battery 20 is representative of substantially any rechargeable or renewable electrical storage device, including a rechargeable chemical pile battery or a capacitor, a fuel cell, or the like.


It is envisioned that, in most applications, the furniture-mounted electrical charging station 10 would primarily be used to supply small or portable electronic devices, including mobile phones, electronic media players, hand-held or tablet computers, and the like, with low voltage DC power for recharging purposes. Therefore, electrical output connectors 16 may be low voltage DC connectors or receptacles of substantially any type, including USB connectors, mini-USB connectors, micro-USB connectors, USB-C connectors, USB-A connectors (shown), round and/or co-axial receptacles or ports, and the like, and may include two or more electrical connectors of the same or different configurations to provide access to electrical power for common types of devices. In the illustrated embodiment, the DC receptacle housing is readily fitted and re-fitted with different receptacle boards having substantially any desired selection and number of connectors, based on the needs of a particular application.


Although the furniture charging station described herein is primarily intended to provide users with access to low voltage DC power, it will be appreciated that high voltage AC power may optionally be provided at AC power outlets, such as in a modified receptacle housing similar to DC receptacle housing 54. Such AC power outlets may be energized when the charging station 10 is equipped with a rechargeable battery having sufficient capacity, and a DC-to-AC converter contained inside the interior of main housing 16. It is also envisioned that AC outlets may be energized only when a separate or optional power cord is connected to an energized wall outlet 14 or other power source to supply high voltage AC power directly to charging station 10. Optionally, wireless power transmission technologies such as a support pad with conductive surfaces in an alternating-polarity arrangement, or with magnetic field inductive resonance or electric field resonant capacitive coupling technologies, may be provided at DC receptacle housing 54.


It is further envisioned that charging station 10 may be equipped with a power switch that selectively energizes and de-energizes the DC receptacles 56. Optionally, charging station 10 may include circuitry enabling it to send a wireless signal to a monitoring station, the wireless signal including information such as energy level of the battery 20 or other onboard power source, current and historical rates of energy consumption, and approximate time remaining before battery 20 will need to be recharged. Moreover, it will be appreciated that although the charging station 10 is described and illustrated herein as being configured for under-mount applications, such as being attached to the bottom surface of table 12, charging stations may be adapted for attachment to various other types of furniture articles and in other locations, such as mounted in an opening formed in a table or desk surface, along a wall or room divider, or under the seat portion of a chair, without departing from the spirit and scope of the present invention.


Referring now to FIGS. 6-13, the charging station 10 is provided with a contoured cover 80 made from molded resinous plastic, which surrounds and cooperates with a portion of a work surface 82 (such as a tabletop or desktop or shelf) to enclose the main housing 16a. Cover 80 provides a more aesthetically pleasing appearance, to the extent that it may be visible beneath the work surface 82, and provides smoother and more rounded outer surfaces that are less likely to cause discomfort if contacted by a user's hands or legs while the user is at the work surface 82. Cover 80 is attached to the main housing 16a after the main housing is secured to the underside of the table 12 or work surface 82 as described above, using mechanical fasteners or adhesive strips positioned in surface recesses 84 along an upwardly-facing bottom surface 86 of the cover 80, such as shown in FIG. 9. A charging connector opening 88 is formed in a rear wall of the cover and is aligned with the recharging connector 28 and the opening 30 formed in the main housing's tub portion 16a.


Accordingly, the furniture-mounted electrical charging station of the present invention provides a self-contained power supply that is capable of charging mobile phones and other small or portable electronic or electrical devices, and which may be particularly well suited for use by patrons or customers of commercial establishments or work areas in which a temporary low voltage power supply is occasionally needed or desired. The operators or administrators of many such establishments and work areas often permit or encourage patrons or users to move furniture as desired, so that the use of self-contained furniture-mounted electrical charging stations facilitates moving furniture and/or reconfiguring work or gathering areas without concern for maintaining continuous electrical connections for power cords or disabling electrical power if the furniture is moved away from traditional wall outlets.


Changes and modifications in the specifically-described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims
  • 1. A furniture-mountable electrical charging station comprising: a main housing defining an interior region and having a housing surface defining an opening, wherein said housing is configured for coupling to a furniture article and oriented with said housing surface positioned along and facing a first surface of the furniture article;a self-contained electrical power source disposed in said interior region;a receptacle housing having a proximal portion sized and shaped to extend through said opening in said housing surface and into said interior region, said receptacle housing having a distal portion spaced outside of said interior region and a flange of said distal portion configured for mounting along a second surface of the furniture article opposite the first surface at an opening formed in the furniture article;an electrical output connector mounted in said receptacle housing; anda plurality of electrical conductors establishing electrical communication from said self-contained power source to said electrical output connector;wherein said self-contained electrical power source is operable to supply DC electrical power to said electrical output connector; andwherein said proximal portion of said receptacle housing is insertable to different depths into said interior region of said main housing according to a distance between the first and second surfaces of the furniture article.
  • 2. The furniture-mountable electrical charging station of claim 1, wherein said plurality of electrical conductors form an electrical wiring harness extending from said interior region of said main housing to said receptacle housing.
  • 3. The furniture-mountable electrical charging station of claim 2, further comprising an electronic circuit board disposed in said interior region and in electrical communication with said electrical wiring harness and said self-contained electrical power source, wherein said electronic circuit board is operable to control recharging of said self-contained electrical power source.
  • 4. The furniture-mountable electrical charging station of claim 3, further comprising a recharging connector at said electronic circuit board and accessible through an opening formed in said main housing, wherein said recharging connector is configured to selectively receive a detachable charging plug associated with an external power source.
  • 5. The furniture-mountable electrical charging station of claim 4, further comprising a cover configured to cooperate with the first surface of the furniture article to fully enclose said main housing, wherein said cover defines a charging plug opening that is aligned with said opening formed in said main housing.
  • 6. The furniture-mountable electrical charging station of claim 1, wherein said receptacle housing is configured to be spaced apart from said main housing and mounted remotely from said main housing along the furniture article with said plurality of electrical conductors extending outwardly through said opening formed in said main housing.
  • 7. The furniture-mountable electrical charging station of claim 1, further comprising: a recharging connector in electrical communication with said self-contained electrical power source, wherein said recharging connector is accessible from an exterior of said main housing; anda detachable charging cord configured to be selectively coupled to said recharging connector and configured to recharge said self-contained electrical power source.
  • 8. The furniture-mountable electrical charging station of claim 1, wherein said receptacle housing comprises a cover portion configured to be positioned at the opening formed in the furniture article, and said charging station further comprises a spacer positioned in said interior region between a surface of said main housing and said proximal portion of said receptacle housing, wherein said spacer is configured to set a minimum distance between said cover portion and said main housing.
  • 9. The furniture-mountable electrical charging station of claim 1, further comprising a status indicator lamp at said receptacle housing, wherein said status indicator lamp is operable to provide at least one chosen from (i) a level-of-charge indicator for said self-contained electrical power source, (ii) an indication of whether or not said electrical output connector is electrically energized, and (iii) an indication of whether or not said electrical output connector is supplying electrical power to a portable electronic device that is electrically coupled to said electrical output connector.
  • 10. The furniture-mountable electrical charging station of claim 1, wherein said self-contained power source comprises one chosen from a rechargeable battery, a rechargeable capacitor, and a fuel cell.
  • 11. The furniture-mountable electrical charging station of claim 1, wherein said electrical output connector comprises a low voltage DC receptacle.
  • 12. The furniture-mountable electrical charging station of claim 11, wherein said low voltage DC receptacle comprises at least one chosen from a USB charging receptacle and a coaxial charging receptacle.
  • 13. A furniture-mountable electrical charging station comprising: a main housing defining an interior region and comprising a planar upper surface defining an opening, said main housing configured for mounting at a lower surface of a furniture article with said planar upper surface facing the lower surface in a parallel arrangement;a self-contained electrical power source mounted in said interior region;a receptacle housing comprising a lower region that is insertable by a variable distance into said interior region of said main housing at said opening in said planar upper surface, and an upper region that is simultaneously at least partially insertable into an opening formed in the furniture article, said upper region comprising a flange configured to rest along an upper surface of the furniture article; andan electrical output connector mounted in said receptacle housing and in at least selective electrical communication with said self-contained electrical power source;wherein said self-contained electrical power source is operable to supply DC electrical power to said electrical output connector.
  • 14. The furniture-mountable electrical charging station of claim 13, wherein said receptacle housing is repositionable relative to said main housing according to a thickness of the furniture article.
  • 15. The furniture-mountable electrical charging station of claim 14, further comprising a spacer positioned in said interior region of said main housing, between an interior surface of said main housing and said lower region of said receptacle housing, wherein said spacer is configured to set a distance between said upper region of said receptacle housing and said planar upper surface of said main housing.
  • 16. The furniture-mountable electrical charging station of claim 15, wherein said planar upper surface comprises a removable cover, wherein said opening defined in said planar upper surface is configured to be aligned with the opening formed in the furniture article.
  • 17. The furniture-mountable electrical charging station of claim 13, wherein said receptacle housing is configured to be spaced apart from said main housing and mounted remotely from said main housing along the furniture article.
  • 18. The furniture-mountable electrical charging station of claim 17, comprising an electrical wiring harness extending from said interior region of said main housing to said receptacle housing, for directing electrical power from said self-contained electrical power source to said electrical output connector.
  • 19. The furniture-mountable electrical charging station of claim 18, further comprising an electronic circuit board disposed in said interior region of said main housing, wherein said electronic circuit board is in electrical communication with said electrical wiring harness and said self-contained electrical power source, and wherein said electronic circuit board is operable to control recharging of said self-contained electrical power source.
  • 20. The furniture-mountable electrical charging station of claim 19, further comprising a cover configured to cooperate with the lower surface of the furniture article to enclose said main housing, wherein said cover defines a charging plug opening providing access to a recharging connector at said electronic circuit board.
Parent Case Info

The present application claims the filing benefits of U.S. provisional application Ser. No. 62/536,433, filed Jul. 24, 2017, which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (203)
Number Name Date Kind
3006589 Drysdale Oct 1961 A
3049688 Sinopoli Aug 1962 A
4266266 Sanner May 1981 A
4300087 Meisner Nov 1981 A
4323723 Fork et al. Apr 1982 A
4453059 Fukushima Jun 1984 A
4641077 Pascaloff Feb 1987 A
D291300 Chaney Aug 1987 S
4747788 Byrne May 1988 A
4828513 Morrison et al. May 1989 A
5057039 Persing et al. Oct 1991 A
5130494 Simonton Jul 1992 A
5171159 Byrne Dec 1992 A
5195288 Penczak May 1993 A
5230552 Schipper et al. Jul 1993 A
5351173 Byrne Sep 1994 A
D355890 Lentz Feb 1995 S
5404279 Wood Mar 1995 A
5472157 Lehrman Dec 1995 A
5501614 Tsuchiya Mar 1996 A
5575668 Timmerman Nov 1996 A
5709156 Gevaert et al. Jan 1998 A
5715761 Frattini Feb 1998 A
5765932 Domina et al. Jun 1998 A
5814968 Lovegreen et al. Sep 1998 A
D408352 Tashiro Apr 1999 S
D413571 Glass Sep 1999 S
5954525 Siegal et al. Sep 1999 A
5959433 Rohde Sep 1999 A
5964618 McCarthy Oct 1999 A
6004157 Glass Dec 1999 A
6028267 Byrne Feb 2000 A
6028413 Brockmann Feb 2000 A
6036516 Byrne Mar 2000 A
6081356 Branc et al. Jun 2000 A
6254427 Stathis Jul 2001 B1
6290518 Byrne Sep 2001 B1
6379182 Byrne Apr 2002 B1
6436299 Baarman et al. Aug 2002 B1
6492591 Metcalf Dec 2002 B1
6540554 McCarthy Apr 2003 B2
6589073 Lee Jul 2003 B2
6595144 Doyle Jul 2003 B1
6619980 Hsiao Sep 2003 B1
D486793 Gershfeld Feb 2004 S
6689954 Vaughan et al. Feb 2004 B2
6717053 Rupert Apr 2004 B2
6756697 Mizutani et al. Jun 2004 B2
6803744 Sabo Oct 2004 B1
6875051 Pizak Apr 2005 B2
6885796 Lubkert et al. Apr 2005 B2
6967462 Landis Nov 2005 B1
6971911 Ramsey et al. Dec 2005 B2
7083421 Mori Aug 2006 B1
7149099 Asbery Dec 2006 B2
D535257 Byrne Jan 2007 S
7183504 Byrne Feb 2007 B2
7212414 Baarman May 2007 B2
7222031 Heatley May 2007 B2
7223122 Mori May 2007 B2
7233222 Baarman et al. Jun 2007 B2
7236087 Vasquez et al. Jun 2007 B2
7262700 Hsu Aug 2007 B2
7355150 Baarman et al. Apr 2008 B2
7392068 Dayan et al. Jun 2008 B2
7399202 Dayan et al. Jul 2008 B2
7407392 Cooke et al. Aug 2008 B2
7443057 Nunally Oct 2008 B2
7465178 Byrne Dec 2008 B2
7488203 Leddusire Feb 2009 B2
7633263 Toya Dec 2009 B2
7736178 Byrne Jun 2010 B2
7817405 Neumann et al. Oct 2010 B2
7863861 Cheng et al. Jan 2011 B2
7878845 Byrne Feb 2011 B2
7887113 Lambarth et al. Feb 2011 B2
D636728 Terleski et al. Apr 2011 S
7938679 Wadsworth et al. May 2011 B2
8061864 Metcalf et al. Nov 2011 B2
8076900 Brown Dec 2011 B1
8106539 Schatz et al. Jan 2012 B2
8203307 Zick et al. Jun 2012 B2
8262244 Metcalf et al. Sep 2012 B2
8283812 Azancot et al. Oct 2012 B2
8295036 Byrne Oct 2012 B2
8395353 Wang et al. Mar 2013 B2
8398408 Hansen et al. Mar 2013 B1
8421407 Johnson Apr 2013 B2
8444432 Byrne et al. May 2013 B2
8456038 Azancot et al. Jun 2013 B2
8480429 Byrne Jul 2013 B2
8482160 Johnson et al. Jul 2013 B2
8487478 Kirby et al. Jul 2013 B2
8497601 Hall et al. Jul 2013 B2
8558661 Zeine Oct 2013 B2
8559172 Byrne Oct 2013 B2
8581444 Urano Nov 2013 B2
8596588 Sikkema et al. Dec 2013 B1
8618695 Azancot et al. Dec 2013 B2
8624750 Azancot Jan 2014 B2
D701830 Edwards Apr 2014 S
8721124 Byrne May 2014 B2
8901419 Galasso Dec 2014 B2
8937407 Byrne et al. Jan 2015 B2
8951054 Byrne et al. Feb 2015 B2
9000298 Byrne Apr 2015 B2
9084475 Hjelm Jul 2015 B2
9148006 Byrne et al. Sep 2015 B2
9362764 Farkas et al. Jun 2016 B2
9385549 Miller et al. Jul 2016 B2
9438070 Byrne et al. Sep 2016 B2
9484751 Byrne et al. Nov 2016 B2
9513682 Fleisig Dec 2016 B2
9543692 Shomali Jan 2017 B2
9608455 Byrne et al. Mar 2017 B2
10003204 Clark Jun 2018 B2
10181735 Byrne et al. Jan 2019 B2
20020119698 McCarthy Aug 2002 A1
20020171335 Held Nov 2002 A1
20030048254 Huang Mar 2003 A1
20030185515 Lubkert et al. Oct 2003 A1
20030186582 Laukhuf et al. Oct 2003 A1
20030202317 Jans Oct 2003 A1
20040026998 Henriott et al. Feb 2004 A1
20040150934 Baarman Aug 2004 A1
20040189246 Bulai et al. Sep 2004 A1
20050209933 Thompson Sep 2005 A1
20050225292 Damlamian et al. Oct 2005 A1
20060159064 Harnois Jul 2006 A1
20060258195 Schwartz et al. Nov 2006 A1
20070182367 Partovi Aug 2007 A1
20070247037 Schenker Oct 2007 A1
20070279002 Partovi Dec 2007 A1
20080001572 Baarman et al. Jan 2008 A9
20080079392 Baarman et al. Apr 2008 A1
20080166965 Greene et al. Jul 2008 A1
20080169910 Greene et al. Jul 2008 A1
20080200050 Byrne Aug 2008 A1
20080262932 Wareham Oct 2008 A1
20090012634 Koch Jan 2009 A1
20090032660 Wadsworth et al. Feb 2009 A1
20090045772 Cook et al. Feb 2009 A1
20090156061 Bernstein Jun 2009 A1
20090212636 Cook et al. Aug 2009 A1
20090212638 Johnson Aug 2009 A1
20090230777 Baarman et al. Sep 2009 A1
20090271048 Wakamatsu Oct 2009 A1
20090278494 Randall Nov 2009 A1
20100007307 Baarman et al. Jan 2010 A1
20100038970 Cook et al. Feb 2010 A1
20100052431 Mita Mar 2010 A1
20100127660 Cook et al. May 2010 A1
20100187913 Smith et al. Jul 2010 A1
20100201201 Mobarhan et al. Aug 2010 A1
20100244584 Azancot et al. Sep 2010 A1
20100259401 Azancot et al. Oct 2010 A1
20100290215 Metcalf et al. Nov 2010 A1
20100308665 Itkonen Dec 2010 A1
20100321939 Patel Dec 2010 A1
20110006611 Baarman et al. Jan 2011 A1
20110062789 Johnson et al. Mar 2011 A1
20110109211 Kirkeby et al. May 2011 A1
20110121660 Azancot et al. May 2011 A1
20110175544 Jong Jul 2011 A1
20110193417 Hirasaka et al. Aug 2011 A1
20110241607 Wiegers Oct 2011 A1
20110241614 Yeh Oct 2011 A1
20110248575 Kim et al. Oct 2011 A1
20110260548 Urano Oct 2011 A1
20110305056 Chien Dec 2011 A1
20120113576 Cooper et al. May 2012 A1
20120113645 Liao et al. May 2012 A1
20120117730 Lemire et al. May 2012 A1
20120153731 Kirby et al. Jun 2012 A9
20120206097 Soar Aug 2012 A1
20120228953 Kesler et al. Sep 2012 A1
20120235474 Mannino et al. Sep 2012 A1
20120261998 Sato Oct 2012 A1
20120299539 Jones et al. Nov 2012 A1
20120312196 Newkirk Dec 2012 A1
20130049482 Rofe et al. Feb 2013 A1
20130057203 Jones et al. Mar 2013 A1
20130141038 Papa Jun 2013 A1
20130175986 Senatori Jul 2013 A1
20130200717 Bourilkov et al. Aug 2013 A1
20130207478 Metcalf et al. Aug 2013 A1
20130234481 Johnson Sep 2013 A1
20130285606 Ben-Shalom et al. Oct 2013 A1
20140098525 Bennett Apr 2014 A1
20140191568 Partovi Jul 2014 A1
20140195336 Dublin et al. Jul 2014 A1
20140203757 Ibragimova Jul 2014 A1
20140333263 Stewart Nov 2014 A1
20140335919 Stewart et al. Nov 2014 A1
20140361633 Abe Dec 2014 A1
20150007756 Kollreider et al. Jan 2015 A1
20150008879 Schneider et al. Jan 2015 A1
20150015182 Brandtman et al. Jan 2015 A1
20150096473 Leukel et al. Apr 2015 A1
20150295447 Nitz Oct 2015 A1
20160050375 Softer Feb 2016 A1
20160197504 Hsia Jul 2016 A1
20170264120 Byrne Sep 2017 A1
Foreign Referenced Citations (5)
Number Date Country
202552802 Nov 2012 CN
2528022 Jan 2016 GB
2531313 Apr 2016 GB
2013258886 Dec 2013 JP
2013112185 Aug 2013 WO
Related Publications (1)
Number Date Country
20190027874 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
62536433 Jul 2017 US