The disclosure relates to a power transistor, and in particular to a high electron mobility transistor (HEMT).
When a high electron mobility transistor is used, through a heterostructure between aluminum gallium nitride (AlGaN) and gallium nitride (GaN), a two dimensional electron gas (2DEG) with a high surface charge density and a high electron mobility is generated at a junction. Therefore, the high electron mobility transistor is suitable for an operation of high power, high frequency and high temperature. However, in a process of the high electron mobility transistor being instantaneously switched off, due to a surface defect, electrons tend to accumulate on a surface of an AlGaN barrier layer, and the 2DEG which serves as channel electrons is thus repelled. Therefore, a concentration of 2DEG decreases and a maximum drain electrode current decreases, resulting in a decrease in reliability because a switching performance of the transistor drops or the transistor fails.
The disclosure provides a high electron mobility transistor, which increases reliability of switching of the transistor.
A high electron mobility transistor of the disclosure includes: a substrate, a nucleation layer, a buffer layer, a channel layer, a barrier layer, a gate electrode, a source electrode, at least one first p-type gallium nitride island, a drain electrode, and a dielectric layer. The nucleation layer is disposed on the substrate. The buffer layer is disposed on the nucleation layer. The channel layer is disposed on the buffer layer. The barrier layer is disposed on the channel layer. The gate electrode is disposed on the barrier layer. The source electrode is disposed on the barrier layer on a first side of the gate electrode. The at least one first p-type gallium nitride island is disposed on the barrier layer on a second side of the gate electrode, and the second side of the gate electrode is opposite to the first side of the gate electrode. The drain electrode is disposed on the barrier layer on the second side of the gate electrode and covers the first p-type gallium nitride island. The dielectric layer is disposed between the drain electrode and the first p-type gallium nitride island, so that the first p-type gallium nitride island is electrically floating.
In an embodiment of the disclosure, the at least one first p-type gallium nitride island is multiple first p-type gallium nitride islands, and the first p-type gallium nitride islands are arranged along an extension direction of the drain electrode.
In an embodiment of the disclosure, the dielectric layer extends to be disposed between the drain electrode and the barrier layer, and the dielectric layer has multiple contact openings, so that the drain electrode contacts the barrier layer through the contact openings.
In an embodiment of the disclosure, the gate electrode includes a gate electrode metal layer and a p-type gallium nitride layer disposed between the barrier layer and the gate electrode metal layer.
Based on the above, in the disclosure, disposing at least one first p-type gallium nitride island generates an effect like a floating ring, and the first p-type gallium nitride island forms one or more electron holes to recombine redundant electrons on the barrier layer, so as to avoid the concentration of the two dimensional electron gas (2DEG) from being affected, thereby providing a high electron mobility transistor with good reliability.
To further describe the features and advantages of the disclosure, embodiments accompanied with drawings are described below in details.
First, referring to
Each of the first p-type gallium nitride islands 170 and the gate electrode 140 have a spacing D1. Each of the first p-type gallium nitride islands 170 and the drain electrode 160 have a spacing D2. The first p-type gallium nitride islands 170 have a spacing D3 between each other in the extension direction of the drain electrode 160. A location of the first p-type gallium nitride islands 170 are not limited and may be close to the drain electrode 160, that is, the spacing D1 between each of the first p-type gallium nitride islands 170 and the gate electrode 140 is greater than the spacing D2 between each of the first p-type gallium nitride islands 170 and drain electrode 160. The spacing D3 between the first p-type gallium nitride islands 170 arranged in a same row along the extension direction of the drain electrode 160 is not limited.
A second side 160b of the drain electrode 160 is opposite to the first side 160a of the drain electrode 160. On the second side 160b of the drain electrode 160, a plurality of second p-type gallium nitride islands 180 may be disposed, and the second p-type gallium nitride islands 180 are electrically floating, just like how the first p-type gallium nitride islands 170 are disposed.
Referring to
A material of the source electrode 150 and the drain electrode 160 may be a suitable metal material, such as gold, titanium, titanium nitride, aluminum, or an alloy of the metals as described above. The gate electrode 140 may include a gate electrode metal layer 142 and a p-type gallium nitride layer 144 between the barrier layer 130 and the gate electrode metal layer 142. A material of the gate electrode metal layer 142 is, for example, nickel, platinum, tantalum nitride, titanium nitride, tungsten, or an alloy of the metals as described above, and the gate electrode metal layer 142 may be other suitable conductive materials, too. A material of the p-type gallium nitride layer 144 and the first p-type gallium nitride islands 170 are, for example, GaN doped with a dopant, and may be GaN doped with magnesium, but the disclosure is not limited thereto. The first p-type gallium nitride islands 170 are not electrically connected to the gate electrode 140 or the drain electrode 160, but are electrically independent of the gate electrode 140 or the drain electrode 160. Therefore, an effect such as a floating ring may be formed, and a potential of the first p-type gallium nitride islands 170 is between a potential of the gate electrode 140 and a potential of the drain electrode 160. When the elements as described above are turned on, the first p-type gallium nitride islands 170 inject one or more electron holes into the barrier layer 130.
An example of manufacturing the high electron mobility transistor 10 of the first embodiment is as follows. After the buffer layer 110, the channel layer 120, and the barrier layer 130 are sequentially formed on the substrate 100, the p-type gallium nitride layer 144 and the first p-type gallium nitride islands 170 are formed on the barrier layer 130 at the same time, and then the source electrode 150, the gate electrode metal layer 142, and the drain electrode 160 are formed. The layers as described above are formed by, for example, a chemical vapor deposition method, a physical vapor deposition method, or other appropriate formation methods, and the method is combined with a photolithographic etching process to manufacture each electrode and pattern.
In the high electron mobility transistor 10 of this embodiment, since disposing the first p-type gallium nitride islands 170 between the drain electrode 160 and the gate electrode 140 generates an effect like a floating ring, the first p-type gallium nitride islands 170 may form one or more electron holes to recombine redundant electrons on the barrier layer 130 so as to avoid the concentration of the two dimensional electron gas from being affected, thereby providing a high electron mobility transistor with good reliability.
The second p-type gallium nitride islands 180 have the same function as the first p-type gallium nitride islands 170. When the second side 160b of the drain electrode 160 of this embodiment is disposed with a gate electrode (not shown), too, the second p-type gallium nitride islands 180 may recombine the redundant electrons that appear on the surface of the barrier layer 130 during switching of the high electron mobility transistor 10, too, thereby providing a high electron mobility transistor with good reliability.
Referring to
Referring to
Referring to
The dielectric layer 280 is between the drain electrode 260 and the first p-type gallium nitride islands 270, so that the first p-type gallium nitride islands 270 are electrically floating. The dielectric layer 280 may extend to be disposed between the drain electrode 260 and the barrier layer 230, and the dielectric layer 280 has a plurality of contact openings 280a, so that the drain electrode 260 contacts the barrier layer 230 through the contact openings 280a. A material of the dielectric layer 280 is not limited, and may be a commonly used dielectric material. The first p-type gallium nitride islands 270 are not electrically connected to the gate electrode 240 or the drain electrode 260, but are electrically independent of the gate electrode 240 or the drain electrode 260. Therefore, disposing the floating first p-type gallium nitride islands 270 may generate an effect like a floating ring, and may form one or more electron holes to recombine redundant electrons on the barrier layer 230 so as to avoid the concentration of the two dimensional electron gas (2DEG) from being affected, thereby providing a high electron mobility transistor with good reliability.
An example of manufacturing the high electron mobility transistor 40 of the fourth embodiment is as follows. After the nucleation layer 205, the buffer layer 210, the channel layer 220, and the barrier layer 230 are sequentially formed on the substrate 200, a p-type gallium nitride layer 244 and the first p-type gallium nitride islands 270 are formed on the barrier layer 230, and then one dielectric layer 280 is deposited to cover the structure and film layers as described above. Next, a process, for example, photolithographic etching, is used to form the contact windows 280a in the dielectric layer 280 where a gate electrode, a source electrode, and a drain electrode are determined to be formed, and then the contact windows 280a are filled with a metal or an alloy to form the source electrode 250, the gate electrode metal layer 242, the drain electrode 260, and the first p-type gallium nitride islands 270. Materials and formation methods of the substrate 200, the buffer layer 210, the channel layer 220, the barrier layer 230, the gate electrode 240, the source electrode 250, the first p-type gallium nitride islands 270, and the drain electrode 260 are similar to those in the first embodiment, and will not be repeated herein. A formation method of the dielectric layer 280 is, for example, a chemical vapor deposition method or a spin coating technology.
Referring to
In summary, in the disclosure, the p-type gallium nitride islands disposed between the gate electrode and the drain electrode, or the p-type gallium nitride islands disposed below the drain electrode recombine the redundant electrons on the surface of the high electron mobility transistor so as to avoid the concentration of the two dimensional electron gas (2DEG) from being affected, thereby providing a high electron mobility transistor with good reliability.
Although the disclosure has been disclosed in the above by way of embodiments, the embodiments are not intended to limit the disclosure. Those with ordinary knowledge in the technical field can make various changes and modifications without departing from the spirit and scope of the disclosure. Therefore, the scope of protection of the disclosure is defined by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
110112790 | Apr 2021 | TW | national |
This application is a divisional application of and claims the priority benefit of U.S. patent application Ser. No. 17/338,720, filed on Jun. 4, 2021. The prior application Ser. No. 17/338,720 claims the priority benefit of Taiwan application serial no. 110112790, filed on Apr. 8, 2021. The entirety of each of the above-mentioned patent applications is hereby incorporated by reference herein and made a part of this specification.
Number | Date | Country | |
---|---|---|---|
Parent | 17338720 | Jun 2021 | US |
Child | 18459452 | US |