Embodiments of the present disclosure generally relate to apparatus for semiconductor processing. More specifically, embodiments of the disclosure relate to gas abatement apparatus for high pressure processing systems.
The field of semiconductor manufacturing utilizes various processes to fabricate devices which are incorporated into integrated circuits. As device complexity increases, integrated circuit manufacturers look for improved methodologies to fabricate advanced node devices. For example, advanced processing characteristics may include the utilization of more extreme process variables to enable advanced device fabrication.
One example of a process variable which is increasingly being investigated for utilization in semiconductor manufacturing is high pressure processing. High pressure processing at pressures elevated above atmospheric pressure has shown promising material modulation characteristics. However, apparatus suitable for safely and efficiently performing high pressure processing is often lacking when considering the requisite degree of control desired to perform advanced node device fabrication processes. More specifically, conventional processing apparatus often lack suitable exhaust modules for high pressure management of effluent, such as toxic gases and the like.
Accordingly, what is needed in the art are improved gas abatement apparatus and methods for managing high pressure effluent.
In one embodiment, a muffler assembly apparatus is provided. The apparatus includes a first muffler defining a first volume therein, the first muffler having a first port formed in a first end and a second port formed in a second end opposite the first port. A second muffler defines a second volume therein. The second muffler has a third port formed in a third end and a fourth port formed in the second muffler substantially opposite the third port. A third muffler defines a third volume therein. The third muffler has a fifth port formed therein and a sixth port formed therein substantially opposite the fifth port. A fourth muffler defines a fourth volume therein. The fourth muffler has a seventh port formed therein and an eighth port formed through a fourth end substantially opposite the seventh port. A first conduit extends between the seventh port and the fifth port and a second conduit extends between the fourth port and the sixth port.
In another embodiment, an effluent management apparatus is provided. The apparatus includes a muffler assembly which includes a first muffler defining a first volume therein, the first muffler having a first port formed in a first end and a second port formed in a second end opposite the first port. A second muffler defines a second volume therein. The second muffler has a third port formed in a third end and a fourth port formed in the second muffler substantially opposite the third port. A third muffler defines a third volume therein. The third muffler has a fifth port formed therein and a sixth port formed therein substantially opposite the fifth port. A fourth muffler defines a fourth volume therein. The fourth muffler has a seventh port formed therein and an eighth port formed through a fourth end substantially opposite the seventh port. A first conduit extends between the seventh port and the fifth port and a second conduit extends between the fourth port and the sixth port. A third conduit extends from the third port to a valve, a first scrubber is in fluid communication with the valve and a second scrubber is in fluid communication with the valve via a fourth conduit.
In yet another embodiment, a high-pressure processing apparatus is provided. The apparatus includes a first chamber and a second chamber defining a process volume therein. The second chamber is disposed within the first chamber. A muffler assembly includes a first muffler defining a first volume therein, the first muffler having a first port formed in a first end and a second port formed in a second end opposite the first port. A second muffler defines a second volume therein. The second muffler has a third port formed in a third end and a fourth port formed in the second muffler substantially opposite the third port. A third muffler defines a third volume therein. The third muffler has a fifth port formed therein and a sixth port formed therein substantially opposite the fifth port. A fourth muffler defines a fourth volume therein. The fourth muffler has a seventh port formed therein and an eighth port formed through a fourth end substantially opposite the seventh port. A first conduit extends between the seventh port and the fifth port and a second conduit extends between the fourth port and the sixth port. A third conduit extends from the third port to a valve, a first scrubber is in fluid communication with the valve and a second scrubber is in fluid communication with the valve via a fourth conduit. A fifth conduit is disposed between the process volume and the first port of the first muffler.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope, may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
Embodiments of the present disclosure relate to high pressure processing apparatus for semiconductor processing. The apparatus described herein include a high pressure process chamber and a containment chamber surrounding the process chamber. A high pressure fluid delivery module is in fluid communication with the high pressure process chamber and is configured to deliver a high pressure fluid to the process chamber.
An effluent management module 115 is coupled to and in fluid communication with the first chamber 116. The first chamber 116 has an exhaust port 128 formed therein. An exhaust conduit 103 is coupled to the first chamber 116 at the exhaust port 128 such that the exhaust conduit 103 is in fluid communication with the first volume 118. An isolation valve 105 and a throttle valve 107 are disposed on the exhaust conduit 103. The isolation valve 105 is disposed on the exhaust conduit 103 between the throttle valve 107 and the exhaust port 128. The isolation valve 105 is operable to initiate and extinguish fluid communication between the first volume 118 and an exhaust 113. The throttle valve 107 controls a flow rate of effluent flowing through the exhaust conduit 103 from the first volume 118.
A pump 109 is also coupled to the exhaust conduit 103 and the pump 109 operates to pull fluid from the first volume 118 to the exhaust 113. The pump 109 is disposed on exhaust conduit 103 between the throttle valve 107 and the exhaust 113. In one embodiment, the pump 109 generates a sub-atmospheric pressure in the first volume 118, such as a pressure less than about 700 Torr. A scrubber 111 is also disposed on the exhaust conduit 103 between the pump 109 and the exhaust 113. The scrubber 111 is in fluid communication with the first volume 118 via the exhaust conduit 103 and the scrubber 111 is configured to treat effluent from the first volume 118 prior to the effluent exiting the exhaust conduit 103 to the exhaust 113.
The first chamber 116 has an external surface 124 which is not exposed to the first volume 118. A first slit valve 120 is formed in the chamber 116 to enable ingress and egress of a substrate therethrough. A first slit valve door 122 is coupled to the external surface 124 adjacent to the first slit valve 120. In operation, the first slit valve door 122 is opened to enable passage of the substrate therethrough and closes prior to processing of the substrate.
A second chamber 102 is disposed within the first volume 118 defined by the first chamber 116. The second chamber 102 defines a second volume 104 therein. Similar to the first chamber 116, the second chamber 102 is fabricated from a process compatible material, such as aluminum, stainless steel, alloys thereof, and combinations thereof. In one embodiment, the second chamber 102 is fabricated from a nickel containing steel alloy, for example, a nickel molybdenum containing steel alloy or a nickel chromium molybdenum containing steel alloy. The material selected for fabrication of the second chamber 102 is suitable for operation of the second volume 104 at high pressures, such as greater than about 30 bar, for example, about 50 bar or greater.
A pedestal 106 is disposed in the second chamber 102 and the pedestal 106 has a substrate support surface 108 for supporting a substrate thereon during processing. In one embodiment, the pedestal 106 includes a resistive heater operable of maintaining a temperature of a substrate disposed on the substrate support surface 108 at a temperature of up to about 550° C. Although not illustrated, a stem of the pedestal 106 extends through the second chamber 102 and the first chamber 116. The stem of the pedestal 106 may be isolated from the first volume 118 by a bellows assembly which is operable isolate the pedestal 106 from the first volume 118.
A second slit valve 110 is formed through the second chamber 102 to enable ingress and egress of the substrate therethrough. The second slit valve 110 is substantially aligned in approximately the same plane as the first slit valve 120. A second slit valve door 112 is coupled to an internal surface 114 of the second chamber 102 adjacent to the second slit valve 110. The positioning of the second slit valve door 112 on the internal surface 114 enables more secure sealing of the second volume 104 during high pressure processing because the high pressure maintained within the second volume 104 urges the second slit valve door 112 against the internal surface 114 to create a substantially air tight seal. In operation, the second slit valve door 112 is opened to enable passage of the substrate from the first slit valve 120. After the substrate is positioned on the substrate support surface 108 of the pedestal 106, the second slit valve door 112 closes prior to processing of the substrate.
A fluid management apparatus 140 is configured to deliver one or more fluids to the second volume 104 of the second chamber 102. The fluid management apparatus 140 includes a first fluid delivery module 144, a second fluid delivery module 142, and a third fluid delivery module 146. The first fluid delivery module 144 is operable to generate steam and deliver steam to the second volume 104. The first fluid delivery module 144 is in fluid communication with a first fluid source 150. In one embodiment, the first fluid source 150 is a water source, and more specifically, a deionized water source. The second fluid delivery module 142 is in fluid communication with a second fluid source 152. In one embodiment, the second fluid source 152 is a hydrogen source, and more specifically, an H2 source. The third fluid delivery module 146 is in fluid communication with a third fluid source 148. In one embodiment, the third fluid source 148 is a nitrogen gas source, for example, an ammonia source.
The first fluid delivery module 144 is in fluid communication with the second volume 104 via a first conduit 156. A valve 164 is disposed between the first fluid delivery module 144 and the first conduit 156. The valve 164 is operable to enable fluid flow from the first fluid delivery module 144 through the first conduit 156. A containment enclosure 166 surrounds the valve 164 and the connections of the valve 164 between the first fluid delivery module 144 and the first conduit 156. The first conduit 156 extends from the first valve 164 through the first chamber 116, the first volume 118, and the second chamber 102 to a port 132 formed on the internal surface 114 of the second chamber 102. In one embodiment, a heater jacket 157 surrounds the first conduit 156 and extends along a length of the first conduit 156 between the valve 164 and the first chamber 116.
The second fluid delivery module 142 is in fluid communication with the second volume 104 via a second conduit 154. A valve 160 is disposed between the second fluid delivery module 142 and the second conduit 154. The valve 160 is operable to enable fluid flow from the second fluid delivery module 142 through the second conduit 154. A containment enclosure 162 surrounds the valve 160 and the connections of the valve 160 between the second fluid delivery module 142 and the second conduit 154. The second conduit 154 extends from the second valve 160 through the first chamber 116, the first volume 118, and the second chamber 102 to a port 130 formed on the internal surface 114 of the second chamber 102. In one embodiment, a heater jacket 155 surrounds the second conduit 154 and extends along a length of the second conduit 154 between the valve 160 and the first chamber 116.
The third fluid delivery module 146 is in fluid communication with the second volume 104 via a third conduit 158. A valve 168 is disposed between the third fluid delivery module 146 and the third conduit 158. The valve 168 is operable to enable fluid flow from the third fluid delivery module 146 through the third conduit 158. A containment enclosure 170 surrounds the valve 168 and the connections of the valve 168 between the third fluid delivery module 146 and the third conduit 158. The third conduit 158 extends from the third valve 168 through the first chamber 116, the first volume 118, and the second chamber 102 to a port 134 formed on the internal surface 114 of the second chamber 102. In one embodiment, a heater jacket 159 surrounds the third conduit 158 and extends along a length of the third conduit 158 between the valve 168 and the first chamber 116.
Each of the heater jackets 155, 157, 159 are operable to maintain a temperature of a respective conduit 154, 156, 158 at about 300° C. or greater, for example. 350° C. or greater. In one embodiment the heater jackets 155, 157, 159 comprise resistive heaters. In another embodiment, the heater jackets 155, 157, 159 comprise fluid channels though which a heated fluid is flowed. By maintaining the conduits 154, 156, 158 at elevated temperatures, steam and other high pressure fluids maintain desirable property characteristics during transfer from the respective fluid delivery modules 142, 144, 146 to the second volume 104. In one example, steam generated in the fluid delivery module 144 is maintained in the conduit 156 at elevated temperatures by the heater jacket 157 to prevent or substantially reduce the probability of condensation during steam transfer.
The apparatus 100 also includes a purge gas source 172. In one embodiment, the purge gas source 172 is an inert gas source, such as a nitrogen source or a noble gas source. The purge gas source 172 is in fluid communication with the first volume 118. A conduit 174 extends from the purge gas source 172 to a port 126 formed in the first chamber 116. The fluid communication between the purge gas source 172 and the first volume 118 enables the first volume 118 to be purged with an inert gas. It is contemplated that the first volume 118 is a containment volume that functions as a failsafe should the second volume 104 experience an unplanned depressurization event. By having a sufficiently large volume to function as an expansion volume and by having purge gas capability, the first volume 118 enables improved safety of operation of the second chamber 102 at elevated pressures.
The purge gas source 172 is also in fluid communication with each of the conduits 156, 154, 158. A conduit 176 extends from the purge gas source 172 to each of the valves 160, 164, 168. When the valves 160, 164, 168 are opened to receive purge gas from the purge gas source 172 flowing through the conduit 176, the conduits 154, 156, 158 are purged to eliminate fluids in the conduits 154, 156, 158 that were previously delivered from the fluid delivery modules 142, 144, 146. The fluid communication between the purge gas source 172 and the conduits 154, 156, 158 also enables purging of the second volume 104.
To remove fluids from the second volume 104, an exhaust port 136 is formed in the second chamber 102. A conduit 180 extends from the exhaust port 136 to a regulator valve 184 which is configured to enable a pressure drop across the regulator valve 184. In one embodiment, pressurized fluid exhausted from the second volume 104 travels through the exhaust port 136, through the conduit 180, and through a valve 182 to the regulator valve 184 where a pressure of the fluid is reduced from greater than about 30 bar, such as about 50 bar, to between about 0.5 bar to about 3 bar. The valve 182 is disposed inline with the regulator valve 184 and enables transfer of the reduced pressure fluid from the conduit 180 to a conduit 188.
A pressure relief port 138 is also formed in the second chamber 102. A conduit 186 extends from the pressure relief port 138 to the conduit 188 and the conduit 186 is coupled to the conduit 188 downstream of the regulator valve 184 and the valve 182. The pressure relief port 138 and conduit 186 are configured to bypass the regulator valve 184 and function as a secondary pressure reduction for the second volume 104. A valve 196 is disposed on the conduit 188 downstream from the conduit 186, the regulator valve 184, and the valve 182. The valve 196 functions to enable fluid flow from the second volume 104 via the pressure relief port 138 without passing through the regulator valve 184. Accordingly, the second volume 104 has a bifurcated pressure relief architecture, first through the exhaust port 136, the conduit 180, and the regulator valve 184, and second, through the pressure relief port 138 and the conduit 186. It is believed that the bifurcated pressure relief architecture enables improved control of the pressures generated in the second volume 104.
A conduit 190 is coupled to and extends from the conduit 188 between the valve 184 and the valve 196. More specifically, the conduit 190 is coupled to the conduit 188 downstream of a location where the conduit 186 is coupled to the conduit 188. A valve 192 is disposed on the conduit 190 and is operable to enable selective fluid communication between the second volume 104 and a steam trap 194. The steam trap 194 is configured to condense steam released from the second volume 104 when high pressure steam processes are performed in the second volume 104. In one embodiment, the steam trap 194 is in fluid communication with the second volume 104 via the conduits 190, 188, and 186 when the valve 192 is opened and the valve 182 is closed. The steam trap 194 may also function as a secondary pressure reduction apparatus for high pressure steam released from the second volume 104.
A containment enclosure 198 is coupled to the first chamber 116 and each of the regulator valve 184, the valve 182, the valve 196, and the valve 192 are disposed within the containment enclosure 198. The conduits 188, 190 are disposed within the containment enclosure 198 and at least a portion of each of the conduits 180, 186 is disposed within the containment enclosure 198. In one embodiment, the steam trap 194 is disposed within the containment enclosure 198. In another embodiment, the steam trap 194 is disposed outside of the containment enclosure 198.
A sensor 121 is coupled to the containment enclosure 198 and in fluid communication with the volume defined within the containment enclosure 198. The sensor 121 is configured to detect leakage of a gas within the containment enclosure volume. In one embodiment, the sensor 121 is an ammonia detector. In another embodiment, the sensor 121 is a hydrogen detector. In certain embodiments, the sensor 121 includes multiple sensors, for example, an ammonia detector and a hydrogen detector. The containment enclosure 198 is configured to isolate and contain any leakage of effluent exhausted from the second volume 104. If leakage of effluent, such as the gases described above, is detected, the volume defined by the containment enclosure 198 is purged by an inert gas from a gas source 131. In one embodiment, the gas source 131 is configured to deliver nitrogen to the volume defined by the containment enclosure 198. Effluent leaked into the volume is exhausted from the containment enclosure 198. In this embodiment, the containment enclosure 198 volume is in fluid communication with the scrubber 111 to enable treatment of effluent constrained within the containment enclosure 198 when the effluent is exhausted from the containment enclosure 198.
When the valve 196 is opened, fluid from the conduit 188 travels to a conduit 101 which is in fluid communication with the effluent management module 115. The effluent management module 115, which treats and manages exhaust from both of the first volume 118 and the second volume 104, is described in greater detail with regard to
The muffler assembly 202 includes a first muffler 204 which defines a volume 206, a second muffler 208 which defines a volume 210, a third muffler 212 which defined a volume 214, and a fourth muffler 216 which defines a volume 218. The conduit 101 is coupled to and extends between the valve 196 and the first muffler 204. A conduit 220 extends from the first muffler 204 opposite the conduit 101 to the exhaust conduit 103. The conduit 220 is coupled to the exhaust conduit 103 between the throttle valve 107 and the pump 109.
A conduit 222 extends from the pump 109 to the fourth muffler 216. A conduit 224 extends between the fourth muffler 216 and the third muffler 212. A conduit 226 extends between the third muffler 212 and the second muffler 208. In operation, effluent flowing through the conduit 101 enters the volume 206 of the first muffler 204 and flows through the volume 206 to the conduit 220. A pressure of the effluent within the conduit is between about 15 psi and about 30 psi. The pressure of the effluent exiting the volume 206 at the conduit 220 is between about 0 psi and about 5 psi. Thus, the first muffler 204 functions as a pressure reduction apparatus which allows the effluent to experience volumetric expansion to reduce the pressure of the effluent.
The effluent continues from the conduit 220 through the exhaust conduit 103 to the pump 109. In some embodiments, effluent from the first volume 118 is also present in the exhaust conduit should effluent escape from the second volume 104 into the first volume 118. The pump 109 increases a pressure of the effluent to less than about 16.5 psi, such as between about 5 psi and about 15 psi, to move the effluent through the remainder of the muffler assembly 202. The pump pressurized effluent travels through the conduit 222 to the fourth muffler 216 and expands in the volume 218. The effluent then flows from the volume 218 through the conduit 224 to the volume 214 of the third muffler 212. The volume 214 further reduces the pressure of the effluent and the effluent travels from the volume 214 through the conduit 226 to the volume 210 of the second muffler 208. The volume 210 further reduces the pressure of the effluent such that when the effluent leaves the volume 210 the effluent has a pressure of less than about 14.5 psi, such as less than about 10 psi, for example, between about 0 psi and about 5 psi.
The effluent exits the volume 210 through a conduit 228 which is coupled to and in fluid communication with the volume 210. The conduit 228 extends from the second muffler 208 to a bypass valve 230. During normal operation, the bypass valve 230 enables fluid flow from the conduit 228 to the scrubber 111 and exhaust 113. However, should an apparatus failure occur which results in an unplanned or uncontained release of effluent, pressurized or not, the bypass valve 230 is opened which enables fluid flowing through the module 115 to enter the conduit 232 rather than flowing to the scrubber 111. The bypass valve 230 is also opened when the scrubber 111 fails to prevent release of untreated effluent to the exhaust 113.
The conduit 232 has a flow restrictor 234 disposed thereon which reduces a flow of effluent traveling through the conduit 232. In one embodiment, an amount of NH3 flowing through the conduit 232 is modulate by the flow restrictor 234 such that the concentration of NH3 is less than about 5% by volume, such as less than about 2% by volume. To further facilitate concentration reduction of the NH3, the purge gas source 172 is also in fluid communication with the conduit 232 via a conduit 242. A mass flow controller 244 controls the amount of purge gas, such as nitrogen, flowing from the purge gas source 172 through the conduit 242 such that the effluent in the conduit 232 is mixed with an appropriate amount of purge gas before the effluent travels through a conduit 236 to a second scrubber 238.
The conduit 236 tees from the intersection of the conduits 232, 242 and extends to the second scrubber 238. The second scrubber 238 treats the effluent when the bypass valve 230 is opened and the effluent NH3 concentration is modulated to an acceptable amount for treatment. After treatment in the second scrubber 238, the treated effluent travels through a conduit 240 which is in fluid communication between the second scrubber 238 and the exhaust 113.
In one embodiment, the muffler 204, 208, 212, 216 are cylindrical. A diameter 342 of each of the mufflers 204, 208, 212, 216 is between about 20 inches and about 40 inches, for example, about 30 inches. A length 344 of each of the mufflers 204, 208, 212, 216 is between about 60 inches and about 100 inches, such as about 80 inches. In one embodiment, the mufflers 204, 208, 212, 216 are stacked in a substantially vertical arrangement. In one embodiment, the mufflers 204, 208, 212, 216 are structured by a frame assembly (not shown) to facilitate disposition in the substantially vertical arrangement. It is also contemplated that the mufflers 204, 208, 212, 216 may be disposed in a horizontal arrangement or other arrangements.
The first muffler 204 has a port 302 formed through a first end 346. In one embodiment, the port 302 is formed through a center region of the first end 346. The conduit 101 couples to the port 302 to enable fluid communication between the conduit 101 and the volume 206. A port 304 is formed through a second end 348 of the first muffler 204 opposite the port 302. In one embodiment, the port 304 is formed through a center region of the second end 348. In operation, effluent enters the volume 206 through the port 302 and exits the volume 206 through the port 304. The conduit 220 is coupled to the port 304 to enable fluid communication between the volume 206 and the exhaust conduit 103.
As described above, effluent from the second volume 104 flows sequentially through the first muffler 204, the fourth muffler 216, the third muffler 212, and the second muffler 208. A port 316 is formed in a second end 360 of the fourth muffler 216. The conduit 222 is coupled to the port 316 to enable fluid communication between the pump 109 and the volume 218. A port 314 is formed through the fourth muffler 216 adjacent to a first end 358 of the fourth muffler 216 opposite the port 316. In operation, effluent enters the volume 218 through the port 316 and exits the volume 218 through the port 314.
In the aforementioned embodiment, the sequential flow of effluent proceeds from the first muffler 204 to the fourth muffler 216, the third muffler 212, and the second muffler 208. In this embodiment, the volume 218 of the fourth muffler 216 is in direct fluid communication with the volume 214 of the third muffler 212. Similarly, the volume 214 of the third muffler 212 is in direct fluid communication with the volume 210 of the second muffler 208. The volume 206 of the first muffler 204 is in indirect fluid communication with the volume 218 of the fourth muffler 216 via the exhaust conduit 103. In alternative embodiments, the direct and indirect fluid communication between the various volumes 206, 210, 214, 218 may be varied depending upon the desired effluent pressure reduction and/or physical space requirements.
A port 312 is formed in the third muffler 212 adjacent to a first end 354 of the third muffler 212. A conduit 224 extends between the port 312 and the port 314 to enable fluid communication between the volume 218 and the volume 214. A port 310 is formed in the third muffler 212 adjacent to a second end 356 of the third muffler 212 opposite the port 312. In operation, effluent enters the volume 214 through the port 312 and exits the volume 214 through the port 310.
A port 308 is formed in the second muffler 208 adjacent to a second end 352 of the second muffler 208. A conduit 226 extends between the port 308 and the port 310 to enable fluid communication between the volume 214 and the volume 210. A port 306 is formed in the second muffler 208 through a first end 350 of the second muffler opposite the port 308. In one embodiment, the port 306 is formed through a center region of the first end 350. In operation, effluent enters the volume 210 through the port 308 and exits the volume 210 through the port 306. The conduit 228 is coupled to the port 306 to remove effluent from the volume 210 and transfer the effluent to other apparatus of the module 115.
Each of the mufflers 204, 208, 212, 216 and the respective fluid inlet and outlet ports are disposed opposite one another along the length 344 of the mufflers 204, 208, 212, 216 to enable volumetric expansion of the effluent as the effluent traverses through the volumes 206, 210, 214, 218. By enabling the effluent to “see” substantially the entire volume of each of the mufflers 204, 208, 212, 216 pressure reduction is accomplished in a more efficient manner.
When the effluent travels through the mufflers 204, 208, 212, 216, condensate or other liquids may accumulate within the volumes 206, 210, 214, 218. A port 318 is formed through the second end 348 of the first muffler 204 adjacent to the port 304. In one embodiment, the port 318 is formed through the second end 348 radially outward of the port 304. A conduit 320 is coupled to and extends from the port 318 to a cap 334. When condensate or other fluid accumulates within the volume 206, the cap 334 is removed and the fluid is evacuated from the volume 206 via the port 318 and conduit 320.
A port 322 is formed through the second end 352 of the second muffler 208. In one embodiment, the port 322 is formed through the second end 352 radially outward of the port 306. A conduit 324 is coupled to and extends from the port 322 to a cap 336. When condensate or other fluid accumulates within the volume 210, the cap 336 is removed and the fluid is evacuated from the volume 210 via the port 322 and conduit 324.
A port 326 is formed through the second end 356 of the third muffler 212. A conduit 328 is coupled to and extends from the port 326 to a cap 338. When condensate or other fluid accumulates within the volume 214, the cap 338 is removed and the fluid is evacuated from the volume 214 via the port 326 and conduit 328.
A port 330 is formed through the second end 360 of the fourth muffler 216 adjacent to the port 316. In one embodiment, the port 330 is formed through the second end 360 radially outward of the port 316. A conduit 332 is coupled to and extends from the port 330 to a cap 340. When condensate or other fluid accumulates within the volume 218, the cap 340 is removed and the fluid is evacuated from the volume 218 via the port 330 and conduit 332.
In summation, effluent management apparatus for improving pressure reduction of effluent and for treating effluent are described herein. The muffler assembly enables pressure reduction of effluent utilized during high pressure processing operation by sequentially flowing the effluent through a series of mufflers to enable volumetric expansion (and associated pressure reduction) of the effluent. Apparatus described herein also include effluent treatment apparatus for standard operation and high pressure processing apparatus and for emergency effluent control in the case of an unplanned or uncontained effluent release.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation of and claims benefit to U.S. patent application Ser. No. 16/055,929, filed Aug. 6, 2018, the entirety of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3749383 | Voigt et al. | Jul 1973 | A |
3758316 | Sowards et al. | Sep 1973 | A |
4524587 | Kantor | Jun 1985 | A |
4576652 | Hovel et al. | Mar 1986 | A |
4879259 | Reynolds et al. | Nov 1989 | A |
5050540 | Lindberg | Sep 1991 | A |
5114513 | Hosokawa et al. | May 1992 | A |
5126117 | Schumacher et al. | Jun 1992 | A |
5149378 | Ohmi et al. | Sep 1992 | A |
5167717 | Boitnott | Dec 1992 | A |
5175123 | Vasquez et al. | Dec 1992 | A |
5314541 | Saito et al. | May 1994 | A |
5319212 | Tokoro | Jun 1994 | A |
5366905 | Mukai | Nov 1994 | A |
5472812 | Sekine | Dec 1995 | A |
5578132 | Yamaga et al. | Nov 1996 | A |
5590695 | Siegele et al. | Jan 1997 | A |
5597439 | Salzman | Jan 1997 | A |
5620524 | Fan et al. | Apr 1997 | A |
5677230 | Weitzel et al. | Oct 1997 | A |
5808245 | Wiese | Sep 1998 | A |
5857368 | Grunes et al. | Jan 1999 | A |
5858051 | Komiyama et al. | Jan 1999 | A |
5879756 | Fathi et al. | Mar 1999 | A |
5880041 | Ong | Mar 1999 | A |
5886864 | Dvorsky | Mar 1999 | A |
5940985 | Kamikawa et al. | Aug 1999 | A |
6082950 | Altwood et al. | Jul 2000 | A |
6136664 | Economikos et al. | Oct 2000 | A |
6150286 | Sun et al. | Nov 2000 | A |
6164412 | Allman | Dec 2000 | A |
6242368 | Holmer et al. | Jun 2001 | B1 |
6251751 | Chu et al. | Jun 2001 | B1 |
6299753 | Chao et al. | Oct 2001 | B1 |
6319766 | Bakli et al. | Nov 2001 | B1 |
6334266 | Moritz et al. | Jan 2002 | B1 |
6368412 | Gomi | Apr 2002 | B1 |
6442980 | Preston et al. | Sep 2002 | B2 |
6468490 | Shamouilian et al. | Oct 2002 | B1 |
6500603 | Shioda | Dec 2002 | B1 |
6583497 | Xia et al. | Jun 2003 | B2 |
6619304 | Worm | Sep 2003 | B2 |
6797336 | Garvey et al. | Sep 2004 | B2 |
6841432 | Takemura et al. | Jan 2005 | B1 |
7055333 | Leitch et al. | Jun 2006 | B2 |
7084079 | Conti et al. | Aug 2006 | B2 |
7105061 | Shrinivasan et al. | Sep 2006 | B1 |
7111630 | Mizobata et al. | Sep 2006 | B2 |
7114517 | Sund et al. | Oct 2006 | B2 |
7211525 | Shanker et al. | May 2007 | B1 |
7282458 | Gates et al. | Oct 2007 | B2 |
7361231 | Fury et al. | Apr 2008 | B2 |
7460760 | Cho et al. | Dec 2008 | B2 |
7491658 | Nguyen et al. | Feb 2009 | B2 |
7503334 | Shrinivasan et al. | Mar 2009 | B1 |
7521089 | Hillman et al. | Apr 2009 | B2 |
7521378 | Fucsko et al. | Apr 2009 | B2 |
7541297 | Mallick et al. | Jun 2009 | B2 |
7576441 | Yin et al. | Aug 2009 | B2 |
7650965 | Thayer et al. | Jan 2010 | B2 |
7651959 | Fukazawa et al. | Jan 2010 | B2 |
7655532 | Chen et al. | Feb 2010 | B1 |
7825038 | Ingle et al. | Nov 2010 | B2 |
7825042 | Mandal | Nov 2010 | B2 |
7867923 | Mallick et al. | Jan 2011 | B2 |
7891228 | Ding et al. | Feb 2011 | B2 |
8027089 | Hayashi | Sep 2011 | B2 |
8318584 | Li et al. | Nov 2012 | B2 |
8349085 | Tahara et al. | Jan 2013 | B2 |
8449942 | Li et al. | May 2013 | B2 |
8455368 | Chandler et al. | Jun 2013 | B2 |
8466073 | Wang et al. | Jun 2013 | B2 |
8481123 | Kim et al. | Jul 2013 | B2 |
8536065 | Seamons et al. | Sep 2013 | B2 |
8557712 | Antonelli et al. | Oct 2013 | B1 |
8563445 | Liang et al. | Oct 2013 | B2 |
8647992 | Liang et al. | Feb 2014 | B2 |
8668868 | Chiu | Mar 2014 | B2 |
8741788 | Liang et al. | Jun 2014 | B2 |
8871656 | Mallick et al. | Oct 2014 | B2 |
8906761 | Kim et al. | Dec 2014 | B2 |
8936834 | Kim et al. | Jan 2015 | B2 |
9121515 | Yamamoto et al. | Sep 2015 | B2 |
9153442 | Wang et al. | Oct 2015 | B2 |
9157730 | Rajagopalan et al. | Oct 2015 | B2 |
9257314 | Rivera et al. | Feb 2016 | B1 |
9306026 | Toriumi et al. | Apr 2016 | B2 |
9362107 | Thadani et al. | Jun 2016 | B2 |
9382621 | Choi et al. | Jul 2016 | B2 |
9484406 | Sun et al. | Nov 2016 | B1 |
9570551 | Balakrishnan et al. | Feb 2017 | B1 |
10083834 | Thompson et al. | Sep 2018 | B2 |
10096516 | Leschkies et al. | Oct 2018 | B1 |
10179941 | Khan et al. | Jan 2019 | B1 |
10276411 | Delmas et al. | Apr 2019 | B2 |
10529603 | Liang et al. | Jan 2020 | B2 |
10675581 | Khan et al. | Jun 2020 | B2 |
10720341 | Liang et al. | Jul 2020 | B2 |
20010029108 | Tometsuka | Oct 2001 | A1 |
20010041122 | Kroeker | Nov 2001 | A1 |
20010050096 | Costantini et al. | Dec 2001 | A1 |
20020066535 | Brown et al. | Jun 2002 | A1 |
20020073922 | Frankel et al. | Jun 2002 | A1 |
20020122885 | Ahn | Sep 2002 | A1 |
20020134439 | Kawasaki et al. | Sep 2002 | A1 |
20020148492 | Yamagata et al. | Oct 2002 | A1 |
20020151128 | Lane et al. | Oct 2002 | A1 |
20020155714 | Suzuki | Oct 2002 | A1 |
20020192056 | Reimer et al. | Dec 2002 | A1 |
20030022487 | Yoon et al. | Jan 2003 | A1 |
20030030945 | Heinonen et al. | Feb 2003 | A1 |
20030037730 | Yamasaki | Feb 2003 | A1 |
20030049372 | Cook et al. | Mar 2003 | A1 |
20030053893 | Matsunaga et al. | Mar 2003 | A1 |
20030101938 | Ronsse et al. | Jun 2003 | A1 |
20030121887 | Garvey et al. | Jul 2003 | A1 |
20030148035 | Lingampalli | Aug 2003 | A1 |
20030148631 | Kuo et al. | Aug 2003 | A1 |
20030194615 | Krauth | Oct 2003 | A1 |
20030207593 | Derderian et al. | Nov 2003 | A1 |
20030232512 | Dickinson et al. | Dec 2003 | A1 |
20040007176 | Janakiraman | Jan 2004 | A1 |
20040025908 | Douglas et al. | Feb 2004 | A1 |
20040060519 | Beauchaine et al. | Apr 2004 | A1 |
20040074869 | Wang et al. | Apr 2004 | A1 |
20040112409 | Schilling | Jun 2004 | A1 |
20040184792 | Hamelin et al. | Sep 2004 | A1 |
20040219800 | Tognetti | Nov 2004 | A1 |
20040248392 | Narwankar et al. | Dec 2004 | A1 |
20040255979 | Fury et al. | Dec 2004 | A1 |
20050003655 | Cathey et al. | Jan 2005 | A1 |
20050051194 | Sakashita et al. | Mar 2005 | A1 |
20050082281 | Uemori et al. | Apr 2005 | A1 |
20050136684 | Mukai et al. | Jun 2005 | A1 |
20050161158 | Schumacher | Jul 2005 | A1 |
20050191828 | Al-Bayati et al. | Sep 2005 | A1 |
20050198971 | Leitch et al. | Sep 2005 | A1 |
20050250347 | Bailey et al. | Nov 2005 | A1 |
20050269291 | Kent | Dec 2005 | A1 |
20060003596 | Fucsko et al. | Jan 2006 | A1 |
20060105107 | Lindeboom et al. | May 2006 | A1 |
20060124613 | Kumar et al. | Jun 2006 | A1 |
20060175012 | Lee | Aug 2006 | A1 |
20060176928 | Nakamura | Aug 2006 | A1 |
20060207633 | Kim et al. | Sep 2006 | A1 |
20060226117 | Bertram et al. | Oct 2006 | A1 |
20060279025 | Heidari et al. | Dec 2006 | A1 |
20060290017 | Yanagisawa | Dec 2006 | A1 |
20070012402 | Sneh | Jan 2007 | A1 |
20070045753 | Pae et al. | Mar 2007 | A1 |
20070087533 | Nishikawa et al. | Apr 2007 | A1 |
20070187386 | Kim et al. | Aug 2007 | A1 |
20070204797 | Fischer | Sep 2007 | A1 |
20070212850 | Ingle et al. | Sep 2007 | A1 |
20070243317 | Du Bois et al. | Oct 2007 | A1 |
20070256559 | Chen et al. | Nov 2007 | A1 |
20080074658 | Davis et al. | Mar 2008 | A1 |
20080083109 | Shibata et al. | Apr 2008 | A1 |
20080115726 | Ingle et al. | May 2008 | A1 |
20080121882 | Hwang et al. | May 2008 | A1 |
20080210273 | Joe | Sep 2008 | A1 |
20080241384 | Jeong et al. | Oct 2008 | A1 |
20080251904 | Theuss et al. | Oct 2008 | A1 |
20080268635 | Yu et al. | Oct 2008 | A1 |
20080315762 | Hamada et al. | Dec 2008 | A1 |
20090018688 | Chandler | Jan 2009 | A1 |
20090060702 | Kobayashi | Mar 2009 | A1 |
20090081884 | Yokota et al. | Mar 2009 | A1 |
20090110622 | Chiu et al. | Apr 2009 | A1 |
20090148965 | Kim et al. | Jun 2009 | A1 |
20090180847 | Guo et al. | Jul 2009 | A1 |
20090186481 | Suzuki et al. | Jul 2009 | A1 |
20090233449 | Lebouitz et al. | Sep 2009 | A1 |
20090243126 | Washiya et al. | Oct 2009 | A1 |
20100006211 | Wolk et al. | Jan 2010 | A1 |
20100012292 | Yamazaki | Jan 2010 | A1 |
20100022068 | Chen et al. | Jan 2010 | A1 |
20100072569 | Han et al. | Mar 2010 | A1 |
20100173470 | Lee et al. | Jul 2010 | A1 |
20100173495 | Thakur et al. | Jul 2010 | A1 |
20100196626 | Choi et al. | Aug 2010 | A1 |
20100304027 | Lee et al. | Dec 2010 | A1 |
20100320459 | Umeda et al. | Dec 2010 | A1 |
20100327422 | Lee et al. | Dec 2010 | A1 |
20110151677 | Wang et al. | Jun 2011 | A1 |
20110165781 | Liang et al. | Jul 2011 | A1 |
20110198736 | Shero et al. | Aug 2011 | A1 |
20110303147 | Tachibana et al. | Dec 2011 | A1 |
20110305836 | Murata et al. | Dec 2011 | A1 |
20120048304 | Kitajima et al. | Mar 2012 | A1 |
20120056173 | Pieralisi | Mar 2012 | A1 |
20120060868 | Gray | Mar 2012 | A1 |
20120112224 | Le Bellac et al. | May 2012 | A1 |
20120142192 | Li et al. | Jun 2012 | A1 |
20120142198 | Wang et al. | Jun 2012 | A1 |
20120175822 | Inamiya et al. | Jul 2012 | A1 |
20120252210 | Tohnoe | Oct 2012 | A1 |
20120285492 | Lee et al. | Nov 2012 | A1 |
20120304485 | Hayashi et al. | Dec 2012 | A1 |
20130194350 | Watanabe et al. | Aug 2013 | A1 |
20130233170 | Spiegelman et al. | Sep 2013 | A1 |
20130288485 | Liang et al. | Oct 2013 | A1 |
20130302916 | Kim et al. | Nov 2013 | A1 |
20130330042 | Nara et al. | Dec 2013 | A1 |
20130337171 | Sasagawa | Dec 2013 | A1 |
20140003892 | Yamamoto et al. | Jan 2014 | A1 |
20140023320 | Lee et al. | Jan 2014 | A1 |
20140045300 | Chen et al. | Feb 2014 | A1 |
20140051264 | Mallick et al. | Feb 2014 | A1 |
20140076494 | Miyashita et al. | Mar 2014 | A1 |
20140134827 | Swaminathan et al. | May 2014 | A1 |
20140138802 | Starostine et al. | May 2014 | A1 |
20140159135 | Fujimoto et al. | Jun 2014 | A1 |
20140183743 | Matsumoto et al. | Jul 2014 | A1 |
20140231384 | Underwood et al. | Aug 2014 | A1 |
20140234583 | Ryu et al. | Aug 2014 | A1 |
20140235068 | Ashihara et al. | Aug 2014 | A1 |
20140239291 | Son et al. | Aug 2014 | A1 |
20140264237 | Chen et al. | Sep 2014 | A1 |
20140268080 | Beasley et al. | Sep 2014 | A1 |
20140284821 | Hubbard | Sep 2014 | A1 |
20140322921 | Ahmed et al. | Oct 2014 | A1 |
20150000870 | Hosotani | Jan 2015 | A1 |
20150047565 | Komori | Feb 2015 | A1 |
20150050807 | Wu et al. | Feb 2015 | A1 |
20150056819 | Wong et al. | Feb 2015 | A1 |
20150091009 | Yamazaki et al. | Apr 2015 | A1 |
20150099342 | Tsai et al. | Apr 2015 | A1 |
20150159272 | Yoon et al. | Jun 2015 | A1 |
20150179501 | Jhaveri et al. | Jun 2015 | A1 |
20150197455 | Pranov | Jul 2015 | A1 |
20150255581 | Lin et al. | Sep 2015 | A1 |
20150292736 | Hirson et al. | Oct 2015 | A1 |
20150309073 | Mirkin et al. | Oct 2015 | A1 |
20150322286 | Cabrini et al. | Nov 2015 | A1 |
20150364348 | Park et al. | Dec 2015 | A1 |
20160027887 | Yuan et al. | Jan 2016 | A1 |
20160035600 | Rivera et al. | Feb 2016 | A1 |
20160064209 | Lee et al. | Mar 2016 | A1 |
20160064482 | Hashemi et al. | Mar 2016 | A1 |
20160076149 | Yamazaki et al. | Mar 2016 | A1 |
20160086831 | Rivera et al. | Mar 2016 | A1 |
20160111272 | Girard et al. | Apr 2016 | A1 |
20160118391 | Zhao et al. | Apr 2016 | A1 |
20160163540 | Liao et al. | Jun 2016 | A1 |
20160208414 | Odawara et al. | Jul 2016 | A1 |
20160260526 | Otto | Sep 2016 | A1 |
20160273758 | Fujimura | Sep 2016 | A1 |
20160274454 | Beasley et al. | Sep 2016 | A1 |
20160314964 | Tang et al. | Oct 2016 | A1 |
20160329190 | Evans et al. | Nov 2016 | A1 |
20160329458 | Evans et al. | Nov 2016 | A1 |
20160334162 | Kim et al. | Nov 2016 | A1 |
20160336405 | Sun et al. | Nov 2016 | A1 |
20160353522 | Rathi et al. | Dec 2016 | A1 |
20160355927 | Weaver et al. | Dec 2016 | A1 |
20160358809 | Brown et al. | Dec 2016 | A1 |
20160379853 | Schaller et al. | Dec 2016 | A1 |
20160379854 | Vopat et al. | Dec 2016 | A1 |
20170005188 | Cheng et al. | Jan 2017 | A1 |
20170005204 | Hosoba et al. | Jan 2017 | A1 |
20170011932 | Pethe et al. | Jan 2017 | A1 |
20170084487 | Chebiam et al. | Mar 2017 | A1 |
20170104062 | Bi et al. | Apr 2017 | A1 |
20170140996 | Lin et al. | May 2017 | A1 |
20170160012 | Kobayashi et al. | Jun 2017 | A1 |
20170162413 | Rebstock | Jun 2017 | A1 |
20170194430 | Wood et al. | Jul 2017 | A1 |
20170253968 | Yahata | Sep 2017 | A1 |
20170263702 | Chan et al. | Sep 2017 | A1 |
20170314125 | Fenwick et al. | Nov 2017 | A1 |
20170358483 | Roy et al. | Dec 2017 | A1 |
20180003567 | Petry et al. | Jan 2018 | A1 |
20180019249 | Zhang et al. | Jan 2018 | A1 |
20180023192 | Chandra et al. | Jan 2018 | A1 |
20180087418 | Cadigan et al. | Mar 2018 | A1 |
20180096874 | Schaller et al. | Apr 2018 | A1 |
20180261480 | Liang et al. | Sep 2018 | A1 |
20180286674 | Manna et al. | Oct 2018 | A1 |
20180308669 | Bokka et al. | Oct 2018 | A1 |
20180315626 | Franklin | Nov 2018 | A1 |
20180323093 | Zhang et al. | Nov 2018 | A1 |
20180337027 | L'Heureux et al. | Nov 2018 | A1 |
20180342384 | Wong et al. | Nov 2018 | A1 |
20180350563 | Manna et al. | Dec 2018 | A1 |
20190019708 | Weaver et al. | Jan 2019 | A1 |
20190057879 | Delmas et al. | Feb 2019 | A1 |
20190119769 | Khan et al. | Apr 2019 | A1 |
20190139793 | Delmas et al. | May 2019 | A1 |
20190148178 | Liang et al. | May 2019 | A1 |
20190148186 | Schaller et al. | May 2019 | A1 |
20190157074 | Delmas | May 2019 | A1 |
20190170591 | Petry et al. | Jun 2019 | A1 |
20190198367 | Liang et al. | Jun 2019 | A1 |
20190198368 | Weaver et al. | Jun 2019 | A1 |
20190228982 | Chen et al. | Jul 2019 | A1 |
20190229004 | Schaller et al. | Jul 2019 | A1 |
20190237345 | Delmas et al. | Aug 2019 | A1 |
20190258153 | Nemani et al. | Aug 2019 | A1 |
20190259625 | Nemani et al. | Aug 2019 | A1 |
20190259638 | Schaller et al. | Aug 2019 | A1 |
20190279879 | Singh et al. | Sep 2019 | A1 |
20190311896 | Balseanu et al. | Oct 2019 | A1 |
20190326138 | Forderhase et al. | Oct 2019 | A1 |
20190360100 | Nguyen et al. | Nov 2019 | A1 |
20190360633 | Schaller et al. | Nov 2019 | A1 |
20190368035 | Malik et al. | Dec 2019 | A1 |
20190371650 | Sun et al. | Dec 2019 | A1 |
20190375105 | Weaver et al. | Dec 2019 | A1 |
20200035509 | Khan et al. | Jan 2020 | A1 |
20200035513 | Khan et al. | Jan 2020 | A1 |
20200075392 | Brown et al. | Mar 2020 | A1 |
20200098574 | Wong et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
1280875 | Oct 2006 | CN |
101871043 | Oct 2010 | CN |
104047676 | Sep 2014 | CN |
104047676 | Sep 2014 | CN |
104089491 | Oct 2014 | CN |
1107288 | Jun 2001 | EP |
H1218018 | Aug 1989 | JP |
H07048489 | May 1995 | JP |
H08195493 | Jul 1996 | JP |
H9296267 | Nov 1997 | JP |
H10214880 | Aug 1998 | JP |
2001110729 | Apr 2001 | JP |
2003-51474 | Feb 2003 | JP |
2003166065 | Jun 2003 | JP |
2003188387 | Jul 2003 | JP |
2004-127958 | Apr 2004 | JP |
2005-064269 | Mar 2005 | JP |
2005-333015 | Dec 2005 | JP |
2006526125 | Nov 2006 | JP |
2007242791 | Sep 2007 | JP |
2008-73611 | Apr 2008 | JP |
2008153635 | Jul 2008 | JP |
2009-539231 | Nov 2009 | JP |
2010-205854 | Sep 2010 | JP |
2012-503883 | Feb 2012 | JP |
2012-204656 | Oct 2012 | JP |
2013-105777 | May 2013 | JP |
2013516788 | May 2013 | JP |
2013-179244 | Sep 2013 | JP |
2014019912 | Feb 2014 | JP |
19980063671 | Oct 1998 | KR |
100422433 | Jul 2004 | KR |
20050121750 | Dec 2005 | KR |
20070075383 | Jul 2007 | KR |
20090011463 | Feb 2009 | KR |
1020090040867 | Apr 2009 | KR |
101305904 | Sep 2013 | KR |
20140003776 | Jan 2014 | KR |
20140135744 | Nov 2014 | KR |
20150006587 | Jan 2015 | KR |
20150122432 | Nov 2015 | KR |
200529284 | Sep 2005 | TW |
200721316 | Jun 2007 | TW |
201507174 | Feb 2015 | TW |
201608672 | Mar 2016 | TW |
201708597 | Mar 2017 | TW |
2004102055 | Nov 2004 | WO |
2008047886 | Apr 2008 | WO |
2008089178 | Jul 2008 | WO |
2012133583 | Oct 2012 | WO |
2016065219 | Apr 2016 | WO |
Entry |
---|
CN-104047676-A English Translation of Specification (Year: 2020). |
Notice of Allowance for U.S. Appl. No. 16/055,929 dated Mar. 30, 2020. |
Office Action for U.S. Appl. No. 16/055,929 dated Jan. 22, 2020. |
JP-2001110729-A English Translation of Specification (Year: 1999). |
International Search Report and Written Opinion for PCT/US2018/043160 dated Jan. 31, 2019. |
Shimoyama, Takehiro et al., “Porous Aluminum for Heat Exchanger”, Hitachi Chemical, pp. 19-20. |
Office Action for Japanese Application No. 2018-517285 dated Oct. 23, 2019. |
International Search Report and Written Opinion for PCT/US2019/014759 dated May 14, 2019. |
Taiwan Office Action dated Jul. 3, 2019 for Application No. 107136181. |
International Search Report and Written Opinion from PCT/US2018/034036 dated Aug. 24, 2018. |
International Search Report and Written Opinion dated Aug. 24, 2018 for Application No. PCT/US2018/034284. |
International Search Report, Application No. PCT/US2018/028258 dated Aug. 9, 2018. |
International Search Report and Written Opinion for PCT/US2018/035210 dated Aug. 24, 2018. |
International Search Report and Written Opinion for PCT/US2018/037539 dated Oct. 5, 2018. |
International Search Report and Written Opinion for PCT/US2018/038822 dated Oct. 26, 2018. |
Chen, Yang et al., “Analysisof Supercritical Carbon Dioxide Heat Exchangers in Cooling Process”, International Refrigeration and Air Conditioning Conference at Purdue, Jul. 17-20, 2006, pp. 1-8. |
Kato, T. et al., “Heat Transfer Characteristics of a Plate-Fin Type Supercritical/Liquid Helium Heat Exchanger”, ICEC 14 Proceedings Supplement, 1992, pp. 260-263. |
Lee, Ho-Saeng et al., “The cooling heat transfer characteristics of the supercritical CO2 in mico-fin tube”, Springer, Oct. 2, 2012, pp. 173-184. |
International Search Report and Written Opinion dated Nov. 30, 2018 for Application No. PCT/US2018/041688. |
International Search Report and Written Opinion for PCT/US2018/059643 dated Feb. 26, 2019. |
International Search Report and Written Opinion from PCT/US2019/012161 dated Apr. 30, 2019. |
International Search Report and Written Opinion for PCT/US2019/015339 dated May 15, 2019. |
International Search Report and Written Opinion for PCT/US2019/015332 dated May 15, 2019. |
Taiwan Office Action dated Jun. 11, 2019 for Application No. 107138905. |
Haskel Pressure on Demand, Pneumatic and Hydraulic Driven Gas Boosters, Apr. 30, 2016, 36 pp. |
International Search Report and Written Opinion for PCT/US2018/059676 dated May 23, 2019. |
International Search Report and Written Opinion for PCT/US2019/023431 dated Jul. 5, 2019. |
Taiwan Office Action dated Jul. 3, 2019 for Application No. 107136151. |
International Search Report and Written Opinion for International Application No. PCT/US2019/029602 dated Aug. 14, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/040195 dated Oct. 25, 2019. |
Taiwan Office Action dated Nov. 19, 2019 for Application No. 108103415. |
Office Action for Taiwan Patent Application No. 108111501 dated Nov. 14, 2019. |
International Search Report and Written Opinion dated Jan. 31, 2019 for Application No. PCT/US2018/043160. |
Number | Date | Country | |
---|---|---|---|
20200368666 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16055929 | Aug 2018 | US |
Child | 16897045 | US |