Gas abatement apparatus

Information

  • Patent Grant
  • 11110383
  • Patent Number
    11,110,383
  • Date Filed
    Tuesday, June 9, 2020
    4 years ago
  • Date Issued
    Tuesday, September 7, 2021
    3 years ago
Abstract
Embodiments of the present disclosure relate to gas abatement apparatus and effluent management. The apparatus described herein include a high pressure process chamber and a containment chamber surrounding the process chamber. A high pressure fluid delivery module is in fluid communication with the high pressure process chamber and is configured to deliver a high pressure fluid to the process chamber. An effluent management module includes a muffler assembly to effluent pressure reduction and a plurality of scrubbers provide for treatment of effluent.
Description
BACKGROUND
Field

Embodiments of the present disclosure generally relate to apparatus for semiconductor processing. More specifically, embodiments of the disclosure relate to gas abatement apparatus for high pressure processing systems.


Description of the Related Art

The field of semiconductor manufacturing utilizes various processes to fabricate devices which are incorporated into integrated circuits. As device complexity increases, integrated circuit manufacturers look for improved methodologies to fabricate advanced node devices. For example, advanced processing characteristics may include the utilization of more extreme process variables to enable advanced device fabrication.


One example of a process variable which is increasingly being investigated for utilization in semiconductor manufacturing is high pressure processing. High pressure processing at pressures elevated above atmospheric pressure has shown promising material modulation characteristics. However, apparatus suitable for safely and efficiently performing high pressure processing is often lacking when considering the requisite degree of control desired to perform advanced node device fabrication processes. More specifically, conventional processing apparatus often lack suitable exhaust modules for high pressure management of effluent, such as toxic gases and the like.


Accordingly, what is needed in the art are improved gas abatement apparatus and methods for managing high pressure effluent.


SUMMARY

In one embodiment, a muffler assembly apparatus is provided. The apparatus includes a first muffler defining a first volume therein, the first muffler having a first port formed in a first end and a second port formed in a second end opposite the first port. A second muffler defines a second volume therein. The second muffler has a third port formed in a third end and a fourth port formed in the second muffler substantially opposite the third port. A third muffler defines a third volume therein. The third muffler has a fifth port formed therein and a sixth port formed therein substantially opposite the fifth port. A fourth muffler defines a fourth volume therein. The fourth muffler has a seventh port formed therein and an eighth port formed through a fourth end substantially opposite the seventh port. A first conduit extends between the seventh port and the fifth port and a second conduit extends between the fourth port and the sixth port.


In another embodiment, an effluent management apparatus is provided. The apparatus includes a muffler assembly which includes a first muffler defining a first volume therein, the first muffler having a first port formed in a first end and a second port formed in a second end opposite the first port. A second muffler defines a second volume therein. The second muffler has a third port formed in a third end and a fourth port formed in the second muffler substantially opposite the third port. A third muffler defines a third volume therein. The third muffler has a fifth port formed therein and a sixth port formed therein substantially opposite the fifth port. A fourth muffler defines a fourth volume therein. The fourth muffler has a seventh port formed therein and an eighth port formed through a fourth end substantially opposite the seventh port. A first conduit extends between the seventh port and the fifth port and a second conduit extends between the fourth port and the sixth port. A third conduit extends from the third port to a valve, a first scrubber is in fluid communication with the valve and a second scrubber is in fluid communication with the valve via a fourth conduit.


In yet another embodiment, a high-pressure processing apparatus is provided. The apparatus includes a first chamber and a second chamber defining a process volume therein. The second chamber is disposed within the first chamber. A muffler assembly includes a first muffler defining a first volume therein, the first muffler having a first port formed in a first end and a second port formed in a second end opposite the first port. A second muffler defines a second volume therein. The second muffler has a third port formed in a third end and a fourth port formed in the second muffler substantially opposite the third port. A third muffler defines a third volume therein. The third muffler has a fifth port formed therein and a sixth port formed therein substantially opposite the fifth port. A fourth muffler defines a fourth volume therein. The fourth muffler has a seventh port formed therein and an eighth port formed through a fourth end substantially opposite the seventh port. A first conduit extends between the seventh port and the fifth port and a second conduit extends between the fourth port and the sixth port. A third conduit extends from the third port to a valve, a first scrubber is in fluid communication with the valve and a second scrubber is in fluid communication with the valve via a fourth conduit. A fifth conduit is disposed between the process volume and the first port of the first muffler.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope, may admit to other equally effective embodiments.



FIG. 1 is a schematic illustration of a high pressure processing apparatus according to an embodiment described herein.



FIG. 2 is a schematic illustration of an effluent management module according to an embodiment described herein.



FIG. 3 is a schematic, cross-sectional illustration of a muffler assembly according to an embodiment described herein.





To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.


DETAILED DESCRIPTION

Embodiments of the present disclosure relate to high pressure processing apparatus for semiconductor processing. The apparatus described herein include a high pressure process chamber and a containment chamber surrounding the process chamber. A high pressure fluid delivery module is in fluid communication with the high pressure process chamber and is configured to deliver a high pressure fluid to the process chamber.



FIG. 1 is a schematic illustration of a high pressure processing apparatus 100 according to an embodiment described herein. The apparatus 100 includes a first chamber 116 which defines a first volume 118 therein. In one embodiment, a volume of the first volume 118 is between about 80 liters and about 150 liters, for example, between about 100 liters and about 120 liters. The first chamber 116 is fabricated from a process compatible material, such as aluminum, stainless steel, alloys thereof, and combinations thereof. The material selected for fabrication of the first chamber 116 is suitable for operation at sub-atmospheric pressures, for example pressures less than about 700 Torr, such as 650 Torr or less.


An effluent management module 115 is coupled to and in fluid communication with the first chamber 116. The first chamber 116 has an exhaust port 128 formed therein. An exhaust conduit 103 is coupled to the first chamber 116 at the exhaust port 128 such that the exhaust conduit 103 is in fluid communication with the first volume 118. An isolation valve 105 and a throttle valve 107 are disposed on the exhaust conduit 103. The isolation valve 105 is disposed on the exhaust conduit 103 between the throttle valve 107 and the exhaust port 128. The isolation valve 105 is operable to initiate and extinguish fluid communication between the first volume 118 and an exhaust 113. The throttle valve 107 controls a flow rate of effluent flowing through the exhaust conduit 103 from the first volume 118.


A pump 109 is also coupled to the exhaust conduit 103 and the pump 109 operates to pull fluid from the first volume 118 to the exhaust 113. The pump 109 is disposed on exhaust conduit 103 between the throttle valve 107 and the exhaust 113. In one embodiment, the pump 109 generates a sub-atmospheric pressure in the first volume 118, such as a pressure less than about 700 Torr. A scrubber 111 is also disposed on the exhaust conduit 103 between the pump 109 and the exhaust 113. The scrubber 111 is in fluid communication with the first volume 118 via the exhaust conduit 103 and the scrubber 111 is configured to treat effluent from the first volume 118 prior to the effluent exiting the exhaust conduit 103 to the exhaust 113.


The first chamber 116 has an external surface 124 which is not exposed to the first volume 118. A first slit valve 120 is formed in the chamber 116 to enable ingress and egress of a substrate therethrough. A first slit valve door 122 is coupled to the external surface 124 adjacent to the first slit valve 120. In operation, the first slit valve door 122 is opened to enable passage of the substrate therethrough and closes prior to processing of the substrate.


A second chamber 102 is disposed within the first volume 118 defined by the first chamber 116. The second chamber 102 defines a second volume 104 therein. Similar to the first chamber 116, the second chamber 102 is fabricated from a process compatible material, such as aluminum, stainless steel, alloys thereof, and combinations thereof. In one embodiment, the second chamber 102 is fabricated from a nickel containing steel alloy, for example, a nickel molybdenum containing steel alloy or a nickel chromium molybdenum containing steel alloy. The material selected for fabrication of the second chamber 102 is suitable for operation of the second volume 104 at high pressures, such as greater than about 30 bar, for example, about 50 bar or greater.


A pedestal 106 is disposed in the second chamber 102 and the pedestal 106 has a substrate support surface 108 for supporting a substrate thereon during processing. In one embodiment, the pedestal 106 includes a resistive heater operable of maintaining a temperature of a substrate disposed on the substrate support surface 108 at a temperature of up to about 550° C. Although not illustrated, a stem of the pedestal 106 extends through the second chamber 102 and the first chamber 116. The stem of the pedestal 106 may be isolated from the first volume 118 by a bellows assembly which is operable isolate the pedestal 106 from the first volume 118.


A second slit valve 110 is formed through the second chamber 102 to enable ingress and egress of the substrate therethrough. The second slit valve 110 is substantially aligned in approximately the same plane as the first slit valve 120. A second slit valve door 112 is coupled to an internal surface 114 of the second chamber 102 adjacent to the second slit valve 110. The positioning of the second slit valve door 112 on the internal surface 114 enables more secure sealing of the second volume 104 during high pressure processing because the high pressure maintained within the second volume 104 urges the second slit valve door 112 against the internal surface 114 to create a substantially air tight seal. In operation, the second slit valve door 112 is opened to enable passage of the substrate from the first slit valve 120. After the substrate is positioned on the substrate support surface 108 of the pedestal 106, the second slit valve door 112 closes prior to processing of the substrate.


A fluid management apparatus 140 is configured to deliver one or more fluids to the second volume 104 of the second chamber 102. The fluid management apparatus 140 includes a first fluid delivery module 144, a second fluid delivery module 142, and a third fluid delivery module 146. The first fluid delivery module 144 is operable to generate steam and deliver steam to the second volume 104. The first fluid delivery module 144 is in fluid communication with a first fluid source 150. In one embodiment, the first fluid source 150 is a water source, and more specifically, a deionized water source. The second fluid delivery module 142 is in fluid communication with a second fluid source 152. In one embodiment, the second fluid source 152 is a hydrogen source, and more specifically, an H2 source. The third fluid delivery module 146 is in fluid communication with a third fluid source 148. In one embodiment, the third fluid source 148 is a nitrogen gas source, for example, an ammonia source.


The first fluid delivery module 144 is in fluid communication with the second volume 104 via a first conduit 156. A valve 164 is disposed between the first fluid delivery module 144 and the first conduit 156. The valve 164 is operable to enable fluid flow from the first fluid delivery module 144 through the first conduit 156. A containment enclosure 166 surrounds the valve 164 and the connections of the valve 164 between the first fluid delivery module 144 and the first conduit 156. The first conduit 156 extends from the first valve 164 through the first chamber 116, the first volume 118, and the second chamber 102 to a port 132 formed on the internal surface 114 of the second chamber 102. In one embodiment, a heater jacket 157 surrounds the first conduit 156 and extends along a length of the first conduit 156 between the valve 164 and the first chamber 116.


The second fluid delivery module 142 is in fluid communication with the second volume 104 via a second conduit 154. A valve 160 is disposed between the second fluid delivery module 142 and the second conduit 154. The valve 160 is operable to enable fluid flow from the second fluid delivery module 142 through the second conduit 154. A containment enclosure 162 surrounds the valve 160 and the connections of the valve 160 between the second fluid delivery module 142 and the second conduit 154. The second conduit 154 extends from the second valve 160 through the first chamber 116, the first volume 118, and the second chamber 102 to a port 130 formed on the internal surface 114 of the second chamber 102. In one embodiment, a heater jacket 155 surrounds the second conduit 154 and extends along a length of the second conduit 154 between the valve 160 and the first chamber 116.


The third fluid delivery module 146 is in fluid communication with the second volume 104 via a third conduit 158. A valve 168 is disposed between the third fluid delivery module 146 and the third conduit 158. The valve 168 is operable to enable fluid flow from the third fluid delivery module 146 through the third conduit 158. A containment enclosure 170 surrounds the valve 168 and the connections of the valve 168 between the third fluid delivery module 146 and the third conduit 158. The third conduit 158 extends from the third valve 168 through the first chamber 116, the first volume 118, and the second chamber 102 to a port 134 formed on the internal surface 114 of the second chamber 102. In one embodiment, a heater jacket 159 surrounds the third conduit 158 and extends along a length of the third conduit 158 between the valve 168 and the first chamber 116.


Each of the heater jackets 155, 157, 159 are operable to maintain a temperature of a respective conduit 154, 156, 158 at about 300° C. or greater, for example. 350° C. or greater. In one embodiment the heater jackets 155, 157, 159 comprise resistive heaters. In another embodiment, the heater jackets 155, 157, 159 comprise fluid channels though which a heated fluid is flowed. By maintaining the conduits 154, 156, 158 at elevated temperatures, steam and other high pressure fluids maintain desirable property characteristics during transfer from the respective fluid delivery modules 142, 144, 146 to the second volume 104. In one example, steam generated in the fluid delivery module 144 is maintained in the conduit 156 at elevated temperatures by the heater jacket 157 to prevent or substantially reduce the probability of condensation during steam transfer.


The apparatus 100 also includes a purge gas source 172. In one embodiment, the purge gas source 172 is an inert gas source, such as a nitrogen source or a noble gas source. The purge gas source 172 is in fluid communication with the first volume 118. A conduit 174 extends from the purge gas source 172 to a port 126 formed in the first chamber 116. The fluid communication between the purge gas source 172 and the first volume 118 enables the first volume 118 to be purged with an inert gas. It is contemplated that the first volume 118 is a containment volume that functions as a failsafe should the second volume 104 experience an unplanned depressurization event. By having a sufficiently large volume to function as an expansion volume and by having purge gas capability, the first volume 118 enables improved safety of operation of the second chamber 102 at elevated pressures.


The purge gas source 172 is also in fluid communication with each of the conduits 156, 154, 158. A conduit 176 extends from the purge gas source 172 to each of the valves 160, 164, 168. When the valves 160, 164, 168 are opened to receive purge gas from the purge gas source 172 flowing through the conduit 176, the conduits 154, 156, 158 are purged to eliminate fluids in the conduits 154, 156, 158 that were previously delivered from the fluid delivery modules 142, 144, 146. The fluid communication between the purge gas source 172 and the conduits 154, 156, 158 also enables purging of the second volume 104.


To remove fluids from the second volume 104, an exhaust port 136 is formed in the second chamber 102. A conduit 180 extends from the exhaust port 136 to a regulator valve 184 which is configured to enable a pressure drop across the regulator valve 184. In one embodiment, pressurized fluid exhausted from the second volume 104 travels through the exhaust port 136, through the conduit 180, and through a valve 182 to the regulator valve 184 where a pressure of the fluid is reduced from greater than about 30 bar, such as about 50 bar, to between about 0.5 bar to about 3 bar. The valve 182 is disposed inline with the regulator valve 184 and enables transfer of the reduced pressure fluid from the conduit 180 to a conduit 188.


A pressure relief port 138 is also formed in the second chamber 102. A conduit 186 extends from the pressure relief port 138 to the conduit 188 and the conduit 186 is coupled to the conduit 188 downstream of the regulator valve 184 and the valve 182. The pressure relief port 138 and conduit 186 are configured to bypass the regulator valve 184 and function as a secondary pressure reduction for the second volume 104. A valve 196 is disposed on the conduit 188 downstream from the conduit 186, the regulator valve 184, and the valve 182. The valve 196 functions to enable fluid flow from the second volume 104 via the pressure relief port 138 without passing through the regulator valve 184. Accordingly, the second volume 104 has a bifurcated pressure relief architecture, first through the exhaust port 136, the conduit 180, and the regulator valve 184, and second, through the pressure relief port 138 and the conduit 186. It is believed that the bifurcated pressure relief architecture enables improved control of the pressures generated in the second volume 104.


A conduit 190 is coupled to and extends from the conduit 188 between the valve 184 and the valve 196. More specifically, the conduit 190 is coupled to the conduit 188 downstream of a location where the conduit 186 is coupled to the conduit 188. A valve 192 is disposed on the conduit 190 and is operable to enable selective fluid communication between the second volume 104 and a steam trap 194. The steam trap 194 is configured to condense steam released from the second volume 104 when high pressure steam processes are performed in the second volume 104. In one embodiment, the steam trap 194 is in fluid communication with the second volume 104 via the conduits 190, 188, and 186 when the valve 192 is opened and the valve 182 is closed. The steam trap 194 may also function as a secondary pressure reduction apparatus for high pressure steam released from the second volume 104.


A containment enclosure 198 is coupled to the first chamber 116 and each of the regulator valve 184, the valve 182, the valve 196, and the valve 192 are disposed within the containment enclosure 198. The conduits 188, 190 are disposed within the containment enclosure 198 and at least a portion of each of the conduits 180, 186 is disposed within the containment enclosure 198. In one embodiment, the steam trap 194 is disposed within the containment enclosure 198. In another embodiment, the steam trap 194 is disposed outside of the containment enclosure 198.


A sensor 121 is coupled to the containment enclosure 198 and in fluid communication with the volume defined within the containment enclosure 198. The sensor 121 is configured to detect leakage of a gas within the containment enclosure volume. In one embodiment, the sensor 121 is an ammonia detector. In another embodiment, the sensor 121 is a hydrogen detector. In certain embodiments, the sensor 121 includes multiple sensors, for example, an ammonia detector and a hydrogen detector. The containment enclosure 198 is configured to isolate and contain any leakage of effluent exhausted from the second volume 104. If leakage of effluent, such as the gases described above, is detected, the volume defined by the containment enclosure 198 is purged by an inert gas from a gas source 131. In one embodiment, the gas source 131 is configured to deliver nitrogen to the volume defined by the containment enclosure 198. Effluent leaked into the volume is exhausted from the containment enclosure 198. In this embodiment, the containment enclosure 198 volume is in fluid communication with the scrubber 111 to enable treatment of effluent constrained within the containment enclosure 198 when the effluent is exhausted from the containment enclosure 198.


When the valve 196 is opened, fluid from the conduit 188 travels to a conduit 101 which is in fluid communication with the effluent management module 115. The effluent management module 115, which treats and manages exhaust from both of the first volume 118 and the second volume 104, is described in greater detail with regard to FIG. 2.



FIG. 2 is a schematic illustration of the effluent management module 115 according to an embodiment described herein. The module 115 includes the exhaust conduit 103, the isolation valve 105, the throttle valve 107, the pump 109, the scrubber 111, and the exhaust 113 as described above with regard to FIG. 1. The module 115 also includes a muffler assembly 202. The muffler assembly 202 is in fluid communication with the second volume 104 via the conduit 101. The muffler assembly 202 includes a plurality of mufflers 204, 208, 212, 216 which are operable to reduce a pressure of effluent flowing through the muffler stack 202.


The muffler assembly 202 includes a first muffler 204 which defines a volume 206, a second muffler 208 which defines a volume 210, a third muffler 212 which defined a volume 214, and a fourth muffler 216 which defines a volume 218. The conduit 101 is coupled to and extends between the valve 196 and the first muffler 204. A conduit 220 extends from the first muffler 204 opposite the conduit 101 to the exhaust conduit 103. The conduit 220 is coupled to the exhaust conduit 103 between the throttle valve 107 and the pump 109.


A conduit 222 extends from the pump 109 to the fourth muffler 216. A conduit 224 extends between the fourth muffler 216 and the third muffler 212. A conduit 226 extends between the third muffler 212 and the second muffler 208. In operation, effluent flowing through the conduit 101 enters the volume 206 of the first muffler 204 and flows through the volume 206 to the conduit 220. A pressure of the effluent within the conduit is between about 15 psi and about 30 psi. The pressure of the effluent exiting the volume 206 at the conduit 220 is between about 0 psi and about 5 psi. Thus, the first muffler 204 functions as a pressure reduction apparatus which allows the effluent to experience volumetric expansion to reduce the pressure of the effluent.


The effluent continues from the conduit 220 through the exhaust conduit 103 to the pump 109. In some embodiments, effluent from the first volume 118 is also present in the exhaust conduit should effluent escape from the second volume 104 into the first volume 118. The pump 109 increases a pressure of the effluent to less than about 16.5 psi, such as between about 5 psi and about 15 psi, to move the effluent through the remainder of the muffler assembly 202. The pump pressurized effluent travels through the conduit 222 to the fourth muffler 216 and expands in the volume 218. The effluent then flows from the volume 218 through the conduit 224 to the volume 214 of the third muffler 212. The volume 214 further reduces the pressure of the effluent and the effluent travels from the volume 214 through the conduit 226 to the volume 210 of the second muffler 208. The volume 210 further reduces the pressure of the effluent such that when the effluent leaves the volume 210 the effluent has a pressure of less than about 14.5 psi, such as less than about 10 psi, for example, between about 0 psi and about 5 psi.


The effluent exits the volume 210 through a conduit 228 which is coupled to and in fluid communication with the volume 210. The conduit 228 extends from the second muffler 208 to a bypass valve 230. During normal operation, the bypass valve 230 enables fluid flow from the conduit 228 to the scrubber 111 and exhaust 113. However, should an apparatus failure occur which results in an unplanned or uncontained release of effluent, pressurized or not, the bypass valve 230 is opened which enables fluid flowing through the module 115 to enter the conduit 232 rather than flowing to the scrubber 111. The bypass valve 230 is also opened when the scrubber 111 fails to prevent release of untreated effluent to the exhaust 113.


The conduit 232 has a flow restrictor 234 disposed thereon which reduces a flow of effluent traveling through the conduit 232. In one embodiment, an amount of NH3 flowing through the conduit 232 is modulate by the flow restrictor 234 such that the concentration of NH3 is less than about 5% by volume, such as less than about 2% by volume. To further facilitate concentration reduction of the NH3, the purge gas source 172 is also in fluid communication with the conduit 232 via a conduit 242. A mass flow controller 244 controls the amount of purge gas, such as nitrogen, flowing from the purge gas source 172 through the conduit 242 such that the effluent in the conduit 232 is mixed with an appropriate amount of purge gas before the effluent travels through a conduit 236 to a second scrubber 238.


The conduit 236 tees from the intersection of the conduits 232, 242 and extends to the second scrubber 238. The second scrubber 238 treats the effluent when the bypass valve 230 is opened and the effluent NH3 concentration is modulated to an acceptable amount for treatment. After treatment in the second scrubber 238, the treated effluent travels through a conduit 240 which is in fluid communication between the second scrubber 238 and the exhaust 113.



FIG. 3 is a schematic, cross-sectional illustration of the muffler assembly 202 according to an embodiment described herein. As described above, the muffler assembly 202 includes the plurality of mufflers 204, 208, 212, 216. In one embodiment, the mufflers 204, 208, 212, 216 are fabricated from a stainless steel material or alloys thereof. In another embodiment, the mufflers 204, 208, 212, 216 are fabricated from an aluminum material or alloys thereof. Each of the mufflers 204, 208, 212, 216 defines a respective volume 206, 210, 124, 218 therein. In one embodiment, each of the mufflers 204, 208, 212, 216 have substantially similar dimensions.


In one embodiment, the muffler 204, 208, 212, 216 are cylindrical. A diameter 342 of each of the mufflers 204, 208, 212, 216 is between about 20 inches and about 40 inches, for example, about 30 inches. A length 344 of each of the mufflers 204, 208, 212, 216 is between about 60 inches and about 100 inches, such as about 80 inches. In one embodiment, the mufflers 204, 208, 212, 216 are stacked in a substantially vertical arrangement. In one embodiment, the mufflers 204, 208, 212, 216 are structured by a frame assembly (not shown) to facilitate disposition in the substantially vertical arrangement. It is also contemplated that the mufflers 204, 208, 212, 216 may be disposed in a horizontal arrangement or other arrangements.


The first muffler 204 has a port 302 formed through a first end 346. In one embodiment, the port 302 is formed through a center region of the first end 346. The conduit 101 couples to the port 302 to enable fluid communication between the conduit 101 and the volume 206. A port 304 is formed through a second end 348 of the first muffler 204 opposite the port 302. In one embodiment, the port 304 is formed through a center region of the second end 348. In operation, effluent enters the volume 206 through the port 302 and exits the volume 206 through the port 304. The conduit 220 is coupled to the port 304 to enable fluid communication between the volume 206 and the exhaust conduit 103.


As described above, effluent from the second volume 104 flows sequentially through the first muffler 204, the fourth muffler 216, the third muffler 212, and the second muffler 208. A port 316 is formed in a second end 360 of the fourth muffler 216. The conduit 222 is coupled to the port 316 to enable fluid communication between the pump 109 and the volume 218. A port 314 is formed through the fourth muffler 216 adjacent to a first end 358 of the fourth muffler 216 opposite the port 316. In operation, effluent enters the volume 218 through the port 316 and exits the volume 218 through the port 314.


In the aforementioned embodiment, the sequential flow of effluent proceeds from the first muffler 204 to the fourth muffler 216, the third muffler 212, and the second muffler 208. In this embodiment, the volume 218 of the fourth muffler 216 is in direct fluid communication with the volume 214 of the third muffler 212. Similarly, the volume 214 of the third muffler 212 is in direct fluid communication with the volume 210 of the second muffler 208. The volume 206 of the first muffler 204 is in indirect fluid communication with the volume 218 of the fourth muffler 216 via the exhaust conduit 103. In alternative embodiments, the direct and indirect fluid communication between the various volumes 206, 210, 214, 218 may be varied depending upon the desired effluent pressure reduction and/or physical space requirements.


A port 312 is formed in the third muffler 212 adjacent to a first end 354 of the third muffler 212. A conduit 224 extends between the port 312 and the port 314 to enable fluid communication between the volume 218 and the volume 214. A port 310 is formed in the third muffler 212 adjacent to a second end 356 of the third muffler 212 opposite the port 312. In operation, effluent enters the volume 214 through the port 312 and exits the volume 214 through the port 310.


A port 308 is formed in the second muffler 208 adjacent to a second end 352 of the second muffler 208. A conduit 226 extends between the port 308 and the port 310 to enable fluid communication between the volume 214 and the volume 210. A port 306 is formed in the second muffler 208 through a first end 350 of the second muffler opposite the port 308. In one embodiment, the port 306 is formed through a center region of the first end 350. In operation, effluent enters the volume 210 through the port 308 and exits the volume 210 through the port 306. The conduit 228 is coupled to the port 306 to remove effluent from the volume 210 and transfer the effluent to other apparatus of the module 115.


Each of the mufflers 204, 208, 212, 216 and the respective fluid inlet and outlet ports are disposed opposite one another along the length 344 of the mufflers 204, 208, 212, 216 to enable volumetric expansion of the effluent as the effluent traverses through the volumes 206, 210, 214, 218. By enabling the effluent to “see” substantially the entire volume of each of the mufflers 204, 208, 212, 216 pressure reduction is accomplished in a more efficient manner.


When the effluent travels through the mufflers 204, 208, 212, 216, condensate or other liquids may accumulate within the volumes 206, 210, 214, 218. A port 318 is formed through the second end 348 of the first muffler 204 adjacent to the port 304. In one embodiment, the port 318 is formed through the second end 348 radially outward of the port 304. A conduit 320 is coupled to and extends from the port 318 to a cap 334. When condensate or other fluid accumulates within the volume 206, the cap 334 is removed and the fluid is evacuated from the volume 206 via the port 318 and conduit 320.


A port 322 is formed through the second end 352 of the second muffler 208. In one embodiment, the port 322 is formed through the second end 352 radially outward of the port 306. A conduit 324 is coupled to and extends from the port 322 to a cap 336. When condensate or other fluid accumulates within the volume 210, the cap 336 is removed and the fluid is evacuated from the volume 210 via the port 322 and conduit 324.


A port 326 is formed through the second end 356 of the third muffler 212. A conduit 328 is coupled to and extends from the port 326 to a cap 338. When condensate or other fluid accumulates within the volume 214, the cap 338 is removed and the fluid is evacuated from the volume 214 via the port 326 and conduit 328.


A port 330 is formed through the second end 360 of the fourth muffler 216 adjacent to the port 316. In one embodiment, the port 330 is formed through the second end 360 radially outward of the port 316. A conduit 332 is coupled to and extends from the port 330 to a cap 340. When condensate or other fluid accumulates within the volume 218, the cap 340 is removed and the fluid is evacuated from the volume 218 via the port 330 and conduit 332.


In summation, effluent management apparatus for improving pressure reduction of effluent and for treating effluent are described herein. The muffler assembly enables pressure reduction of effluent utilized during high pressure processing operation by sequentially flowing the effluent through a series of mufflers to enable volumetric expansion (and associated pressure reduction) of the effluent. Apparatus described herein also include effluent treatment apparatus for standard operation and high pressure processing apparatus and for emergency effluent control in the case of an unplanned or uncontained effluent release.


While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A muffler assembly apparatus, comprising: a first muffler defining a first volume therein, the first muffler having a first port formed in a first end and a second port formed in a second end opposite the first port;a second muffler defining a second volume therein, the second muffler having a third port formed in a third end and a fourth port formed in the second muffler opposite the third port;a third muffler defining a third volume therein, the third muffler having a fifth port formed therein and a sixth port formed therein opposite the fifth port;a fourth muffler defining a fourth volume therein, the fourth muffler having a seventh port formed therein and an eighth port formed through a fourth end opposite the seventh port;a first conduit extending between the seventh port and the fifth port;a second conduit extending between the fourth port and the sixth port;an exhaust conduit;a pump coupled to the exhaust conduit;a third conduit extending from the first muffler to the exhaust conduit; anda fourth conduit extending from the pump to the fourth muffler.
  • 2. The apparatus of claim 1, wherein the each of the first muffler, the second muffler, the third muffler, and the fourth muffler have similar dimensions.
  • 3. The apparatus of claim 2, wherein a length of each of the first muffler, the second muffler, the third muffler, and the fourth muffler is between 60 inches and 100 inches.
  • 4. The apparatus of claim 2, wherein each of the first muffler, the second muffler, the third muffler, and the fourth muffler are cylindrical.
  • 5. The apparatus of claim 4, wherein a diameter of each of the first muffler, the second muffler, the third muffler, and the fourth muffler is between 20 inches and 40 inches.
  • 6. The apparatus of claim 1, further comprising: a ninth port formed in the first muffler adjacent to the second port;a tenth port formed in the second muffler adjacent to the fourth port;an eleventh port formed in the third muffler adjacent to the sixth port; anda twelfth port formed in the fourth muffler adjacent to the eighth port.
  • 7. An effluent management apparatus, comprising: a muffler assembly, comprising: a first muffler defining a first volume therein;a second muffler defining a second volume therein;a third muffler defining a third volume therein;a fourth muffler defining a fourth volume therein;a first conduit extending between the fourth muffler and the third muffler; anda second conduit extending between the second muffler and the third muffler;a valve;a third conduit extending between the second muffler and the valve;a first scrubber in fluid communication with the valve; anda second scrubber in fluid communication with the valve via a fourth conduit, wherein a flow restrictor is disposed on the fourth conduit between the valve and the second scrubber.
  • 8. The apparatus of claim 7, wherein each of the first muffler, the second muffler, the third muffler, and the fourth muffler is cylindrical.
  • 9. The apparatus of claim 8, wherein a length of each of the first muffler, the second muffler, the third muffler, and the fourth muffler is between 60 inches and 100 inches.
  • 10. The apparatus of claim 8, wherein a diameter of each of the first muffler, the second muffler, the third muffler, and the fourth muffler is between 20 inches and 40 inches.
  • 11. A high-pressure processing apparatus, comprising: a first chamber;a second chamber defining a process volume therein, the second chamber disposed within the first chamber;a muffler assembly, comprising: a first muffler defining a first volume therein;a second muffler defining a second volume therein;a third muffler defining a third volume therein;a fourth muffler defining a fourth volume therein;a first conduit extending between the fourth muffler and the third muffler; anda second conduit extending between the second muffler and the third muffler;a valve;a third conduit extending between the second muffler and the valve;a first scrubber in fluid communication with the valve;an exhaust conduit extending from the first chamber;a pump coupled to the exhaust conduit;a fourth conduit extending from the first muffler to the exhaust conduit; anda fifth conduit extending from the pump to the fourth muffler.
  • 12. The apparatus of claim 11, further comprising: a second scrubber in fluid communication with the valve via a sixth conduit; anda seventh conduit disposed between the process volume and the first muffler.
  • 13. The apparatus of claim 11, wherein each of the first muffler, the second muffler, the third muffler, and the fourth muffler is cylindrical.
  • 14. The apparatus of claim 13, wherein a length of each of the first muffler, the second muffler, the third muffler, and the fourth muffler is between 60 inches and 100 inches.
  • 15. The apparatus of claim 13, wherein a diameter of each of the first muffler, the second muffler, the third muffler, and the fourth muffler is between 20 inches and 40 inches.
  • 16. The apparatus of claim 11, further comprising: a first slit valve formed in the second chamber; anda first slit valve door coupled to an internal surface of the second chamber.
  • 17. The apparatus of claim 16, further comprising: a second slit valve formed in the first chamber; anda second slit valve door coupled to an external surface of the first chamber.
  • 18. An effluent management apparatus, comprising: a muffler assembly, comprising: a first muffler defining a first volume therein;a second muffler defining a second volume therein;a third muffler defining a third volume therein;a fourth muffler defining a fourth volume therein;a first conduit extending between the fourth muffler and the third muffler; anda second conduit extending between the second muffler and the third muffler;a valve;a third conduit extending between the second muffler and the valve;a first scrubber in fluid communication with the valve;an exhaust conduit;a pump coupled to the exhaust conduit;a fourth conduit extending from the first muffler to the exhaust conduit; anda fifth conduit extending from the pump to the fourth muffler.
  • 19. The apparatus of claim 18, wherein each of the first muffler, the second muffler, the third muffler, and the fourth muffler is cylindrical.
  • 20. The apparatus of claim 19, wherein a length of each of the first muffler, the second muffler, the third muffler, and the fourth muffler is between 60 inches and 100 inches.
  • 21. The apparatus of claim 19, wherein a diameter of each of the first muffler, the second muffler, the third muffler, and the fourth muffler is between 20 inches and 40 inches.
  • 22. A high-pressure processing apparatus, comprising: a first chamber;a second chamber defining a process volume therein, the second chamber disposed within the first chamber;a muffler assembly, comprising: a first muffler defining a first volume therein;a second muffler defining a second volume therein;a third muffler defining a third volume therein;a fourth muffler defining a fourth volume therein;a first conduit extending between the fourth muffler and the third muffler; anda second conduit extending between the second muffler and the third muffler;a valve;a third conduit extending between the second muffler and the valve;a first scrubber in fluid communication with the valve;a first slit valve formed in the second chamber; anda first slit valve door coupled to an internal surface of the second chamber.
  • 23. A high-pressure processing apparatus, comprising: a first chamber;a second chamber defining a process volume therein, the second chamber disposed within the first chamber;a muffler assembly, comprising: a first muffler defining a first volume therein;a second muffler defining a second volume therein;a third muffler defining a third volume therein;a fourth muffler defining a fourth volume therein;a first conduit extending between the fourth muffler and the third muffler; anda second conduit extending between the second muffler and the third muffler;a valve;a third conduit extending between the second muffler and the valve;a first scrubber in fluid communication with the valve;a first slit valve formed in the first chamber; anda first slit valve door coupled to an external surface of the first chamber.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims benefit to U.S. patent application Ser. No. 16/055,929, filed Aug. 6, 2018, the entirety of which is hereby incorporated by reference.

US Referenced Citations (313)
Number Name Date Kind
3749383 Voigt et al. Jul 1973 A
3758316 Sowards et al. Sep 1973 A
4524587 Kantor Jun 1985 A
4576652 Hovel et al. Mar 1986 A
4879259 Reynolds et al. Nov 1989 A
5050540 Lindberg Sep 1991 A
5114513 Hosokawa et al. May 1992 A
5126117 Schumacher et al. Jun 1992 A
5149378 Ohmi et al. Sep 1992 A
5167717 Boitnott Dec 1992 A
5175123 Vasquez et al. Dec 1992 A
5314541 Saito et al. May 1994 A
5319212 Tokoro Jun 1994 A
5366905 Mukai Nov 1994 A
5472812 Sekine Dec 1995 A
5578132 Yamaga et al. Nov 1996 A
5590695 Siegele et al. Jan 1997 A
5597439 Salzman Jan 1997 A
5620524 Fan et al. Apr 1997 A
5677230 Weitzel et al. Oct 1997 A
5808245 Wiese Sep 1998 A
5857368 Grunes et al. Jan 1999 A
5858051 Komiyama et al. Jan 1999 A
5879756 Fathi et al. Mar 1999 A
5880041 Ong Mar 1999 A
5886864 Dvorsky Mar 1999 A
5940985 Kamikawa et al. Aug 1999 A
6082950 Altwood et al. Jul 2000 A
6136664 Economikos et al. Oct 2000 A
6150286 Sun et al. Nov 2000 A
6164412 Allman Dec 2000 A
6242368 Holmer et al. Jun 2001 B1
6251751 Chu et al. Jun 2001 B1
6299753 Chao et al. Oct 2001 B1
6319766 Bakli et al. Nov 2001 B1
6334266 Moritz et al. Jan 2002 B1
6368412 Gomi Apr 2002 B1
6442980 Preston et al. Sep 2002 B2
6468490 Shamouilian et al. Oct 2002 B1
6500603 Shioda Dec 2002 B1
6583497 Xia et al. Jun 2003 B2
6619304 Worm Sep 2003 B2
6797336 Garvey et al. Sep 2004 B2
6841432 Takemura et al. Jan 2005 B1
7055333 Leitch et al. Jun 2006 B2
7084079 Conti et al. Aug 2006 B2
7105061 Shrinivasan et al. Sep 2006 B1
7111630 Mizobata et al. Sep 2006 B2
7114517 Sund et al. Oct 2006 B2
7211525 Shanker et al. May 2007 B1
7282458 Gates et al. Oct 2007 B2
7361231 Fury et al. Apr 2008 B2
7460760 Cho et al. Dec 2008 B2
7491658 Nguyen et al. Feb 2009 B2
7503334 Shrinivasan et al. Mar 2009 B1
7521089 Hillman et al. Apr 2009 B2
7521378 Fucsko et al. Apr 2009 B2
7541297 Mallick et al. Jun 2009 B2
7576441 Yin et al. Aug 2009 B2
7650965 Thayer et al. Jan 2010 B2
7651959 Fukazawa et al. Jan 2010 B2
7655532 Chen et al. Feb 2010 B1
7825038 Ingle et al. Nov 2010 B2
7825042 Mandal Nov 2010 B2
7867923 Mallick et al. Jan 2011 B2
7891228 Ding et al. Feb 2011 B2
8027089 Hayashi Sep 2011 B2
8318584 Li et al. Nov 2012 B2
8349085 Tahara et al. Jan 2013 B2
8449942 Li et al. May 2013 B2
8455368 Chandler et al. Jun 2013 B2
8466073 Wang et al. Jun 2013 B2
8481123 Kim et al. Jul 2013 B2
8536065 Seamons et al. Sep 2013 B2
8557712 Antonelli et al. Oct 2013 B1
8563445 Liang et al. Oct 2013 B2
8647992 Liang et al. Feb 2014 B2
8668868 Chiu Mar 2014 B2
8741788 Liang et al. Jun 2014 B2
8871656 Mallick et al. Oct 2014 B2
8906761 Kim et al. Dec 2014 B2
8936834 Kim et al. Jan 2015 B2
9121515 Yamamoto et al. Sep 2015 B2
9153442 Wang et al. Oct 2015 B2
9157730 Rajagopalan et al. Oct 2015 B2
9257314 Rivera et al. Feb 2016 B1
9306026 Toriumi et al. Apr 2016 B2
9362107 Thadani et al. Jun 2016 B2
9382621 Choi et al. Jul 2016 B2
9484406 Sun et al. Nov 2016 B1
9570551 Balakrishnan et al. Feb 2017 B1
10083834 Thompson et al. Sep 2018 B2
10096516 Leschkies et al. Oct 2018 B1
10179941 Khan et al. Jan 2019 B1
10276411 Delmas et al. Apr 2019 B2
10529603 Liang et al. Jan 2020 B2
10675581 Khan et al. Jun 2020 B2
10720341 Liang et al. Jul 2020 B2
20010029108 Tometsuka Oct 2001 A1
20010041122 Kroeker Nov 2001 A1
20010050096 Costantini et al. Dec 2001 A1
20020066535 Brown et al. Jun 2002 A1
20020073922 Frankel et al. Jun 2002 A1
20020122885 Ahn Sep 2002 A1
20020134439 Kawasaki et al. Sep 2002 A1
20020148492 Yamagata et al. Oct 2002 A1
20020151128 Lane et al. Oct 2002 A1
20020155714 Suzuki Oct 2002 A1
20020192056 Reimer et al. Dec 2002 A1
20030022487 Yoon et al. Jan 2003 A1
20030030945 Heinonen et al. Feb 2003 A1
20030037730 Yamasaki Feb 2003 A1
20030049372 Cook et al. Mar 2003 A1
20030053893 Matsunaga et al. Mar 2003 A1
20030101938 Ronsse et al. Jun 2003 A1
20030121887 Garvey et al. Jul 2003 A1
20030148035 Lingampalli Aug 2003 A1
20030148631 Kuo et al. Aug 2003 A1
20030194615 Krauth Oct 2003 A1
20030207593 Derderian et al. Nov 2003 A1
20030232512 Dickinson et al. Dec 2003 A1
20040007176 Janakiraman Jan 2004 A1
20040025908 Douglas et al. Feb 2004 A1
20040060519 Beauchaine et al. Apr 2004 A1
20040074869 Wang et al. Apr 2004 A1
20040112409 Schilling Jun 2004 A1
20040184792 Hamelin et al. Sep 2004 A1
20040219800 Tognetti Nov 2004 A1
20040248392 Narwankar et al. Dec 2004 A1
20040255979 Fury et al. Dec 2004 A1
20050003655 Cathey et al. Jan 2005 A1
20050051194 Sakashita et al. Mar 2005 A1
20050082281 Uemori et al. Apr 2005 A1
20050136684 Mukai et al. Jun 2005 A1
20050161158 Schumacher Jul 2005 A1
20050191828 Al-Bayati et al. Sep 2005 A1
20050198971 Leitch et al. Sep 2005 A1
20050250347 Bailey et al. Nov 2005 A1
20050269291 Kent Dec 2005 A1
20060003596 Fucsko et al. Jan 2006 A1
20060105107 Lindeboom et al. May 2006 A1
20060124613 Kumar et al. Jun 2006 A1
20060175012 Lee Aug 2006 A1
20060176928 Nakamura Aug 2006 A1
20060207633 Kim et al. Sep 2006 A1
20060226117 Bertram et al. Oct 2006 A1
20060279025 Heidari et al. Dec 2006 A1
20060290017 Yanagisawa Dec 2006 A1
20070012402 Sneh Jan 2007 A1
20070045753 Pae et al. Mar 2007 A1
20070087533 Nishikawa et al. Apr 2007 A1
20070187386 Kim et al. Aug 2007 A1
20070204797 Fischer Sep 2007 A1
20070212850 Ingle et al. Sep 2007 A1
20070243317 Du Bois et al. Oct 2007 A1
20070256559 Chen et al. Nov 2007 A1
20080074658 Davis et al. Mar 2008 A1
20080083109 Shibata et al. Apr 2008 A1
20080115726 Ingle et al. May 2008 A1
20080121882 Hwang et al. May 2008 A1
20080210273 Joe Sep 2008 A1
20080241384 Jeong et al. Oct 2008 A1
20080251904 Theuss et al. Oct 2008 A1
20080268635 Yu et al. Oct 2008 A1
20080315762 Hamada et al. Dec 2008 A1
20090018688 Chandler Jan 2009 A1
20090060702 Kobayashi Mar 2009 A1
20090081884 Yokota et al. Mar 2009 A1
20090110622 Chiu et al. Apr 2009 A1
20090148965 Kim et al. Jun 2009 A1
20090180847 Guo et al. Jul 2009 A1
20090186481 Suzuki et al. Jul 2009 A1
20090233449 Lebouitz et al. Sep 2009 A1
20090243126 Washiya et al. Oct 2009 A1
20100006211 Wolk et al. Jan 2010 A1
20100012292 Yamazaki Jan 2010 A1
20100022068 Chen et al. Jan 2010 A1
20100072569 Han et al. Mar 2010 A1
20100173470 Lee et al. Jul 2010 A1
20100173495 Thakur et al. Jul 2010 A1
20100196626 Choi et al. Aug 2010 A1
20100304027 Lee et al. Dec 2010 A1
20100320459 Umeda et al. Dec 2010 A1
20100327422 Lee et al. Dec 2010 A1
20110151677 Wang et al. Jun 2011 A1
20110165781 Liang et al. Jul 2011 A1
20110198736 Shero et al. Aug 2011 A1
20110303147 Tachibana et al. Dec 2011 A1
20110305836 Murata et al. Dec 2011 A1
20120048304 Kitajima et al. Mar 2012 A1
20120056173 Pieralisi Mar 2012 A1
20120060868 Gray Mar 2012 A1
20120112224 Le Bellac et al. May 2012 A1
20120142192 Li et al. Jun 2012 A1
20120142198 Wang et al. Jun 2012 A1
20120175822 Inamiya et al. Jul 2012 A1
20120252210 Tohnoe Oct 2012 A1
20120285492 Lee et al. Nov 2012 A1
20120304485 Hayashi et al. Dec 2012 A1
20130194350 Watanabe et al. Aug 2013 A1
20130233170 Spiegelman et al. Sep 2013 A1
20130288485 Liang et al. Oct 2013 A1
20130302916 Kim et al. Nov 2013 A1
20130330042 Nara et al. Dec 2013 A1
20130337171 Sasagawa Dec 2013 A1
20140003892 Yamamoto et al. Jan 2014 A1
20140023320 Lee et al. Jan 2014 A1
20140045300 Chen et al. Feb 2014 A1
20140051264 Mallick et al. Feb 2014 A1
20140076494 Miyashita et al. Mar 2014 A1
20140134827 Swaminathan et al. May 2014 A1
20140138802 Starostine et al. May 2014 A1
20140159135 Fujimoto et al. Jun 2014 A1
20140183743 Matsumoto et al. Jul 2014 A1
20140231384 Underwood et al. Aug 2014 A1
20140234583 Ryu et al. Aug 2014 A1
20140235068 Ashihara et al. Aug 2014 A1
20140239291 Son et al. Aug 2014 A1
20140264237 Chen et al. Sep 2014 A1
20140268080 Beasley et al. Sep 2014 A1
20140284821 Hubbard Sep 2014 A1
20140322921 Ahmed et al. Oct 2014 A1
20150000870 Hosotani Jan 2015 A1
20150047565 Komori Feb 2015 A1
20150050807 Wu et al. Feb 2015 A1
20150056819 Wong et al. Feb 2015 A1
20150091009 Yamazaki et al. Apr 2015 A1
20150099342 Tsai et al. Apr 2015 A1
20150159272 Yoon et al. Jun 2015 A1
20150179501 Jhaveri et al. Jun 2015 A1
20150197455 Pranov Jul 2015 A1
20150255581 Lin et al. Sep 2015 A1
20150292736 Hirson et al. Oct 2015 A1
20150309073 Mirkin et al. Oct 2015 A1
20150322286 Cabrini et al. Nov 2015 A1
20150364348 Park et al. Dec 2015 A1
20160027887 Yuan et al. Jan 2016 A1
20160035600 Rivera et al. Feb 2016 A1
20160064209 Lee et al. Mar 2016 A1
20160064482 Hashemi et al. Mar 2016 A1
20160076149 Yamazaki et al. Mar 2016 A1
20160086831 Rivera et al. Mar 2016 A1
20160111272 Girard et al. Apr 2016 A1
20160118391 Zhao et al. Apr 2016 A1
20160163540 Liao et al. Jun 2016 A1
20160208414 Odawara et al. Jul 2016 A1
20160260526 Otto Sep 2016 A1
20160273758 Fujimura Sep 2016 A1
20160274454 Beasley et al. Sep 2016 A1
20160314964 Tang et al. Oct 2016 A1
20160329190 Evans et al. Nov 2016 A1
20160329458 Evans et al. Nov 2016 A1
20160334162 Kim et al. Nov 2016 A1
20160336405 Sun et al. Nov 2016 A1
20160353522 Rathi et al. Dec 2016 A1
20160355927 Weaver et al. Dec 2016 A1
20160358809 Brown et al. Dec 2016 A1
20160379853 Schaller et al. Dec 2016 A1
20160379854 Vopat et al. Dec 2016 A1
20170005188 Cheng et al. Jan 2017 A1
20170005204 Hosoba et al. Jan 2017 A1
20170011932 Pethe et al. Jan 2017 A1
20170084487 Chebiam et al. Mar 2017 A1
20170104062 Bi et al. Apr 2017 A1
20170140996 Lin et al. May 2017 A1
20170160012 Kobayashi et al. Jun 2017 A1
20170162413 Rebstock Jun 2017 A1
20170194430 Wood et al. Jul 2017 A1
20170253968 Yahata Sep 2017 A1
20170263702 Chan et al. Sep 2017 A1
20170314125 Fenwick et al. Nov 2017 A1
20170358483 Roy et al. Dec 2017 A1
20180003567 Petry et al. Jan 2018 A1
20180019249 Zhang et al. Jan 2018 A1
20180023192 Chandra et al. Jan 2018 A1
20180087418 Cadigan et al. Mar 2018 A1
20180096874 Schaller et al. Apr 2018 A1
20180261480 Liang et al. Sep 2018 A1
20180286674 Manna et al. Oct 2018 A1
20180308669 Bokka et al. Oct 2018 A1
20180315626 Franklin Nov 2018 A1
20180323093 Zhang et al. Nov 2018 A1
20180337027 L'Heureux et al. Nov 2018 A1
20180342384 Wong et al. Nov 2018 A1
20180350563 Manna et al. Dec 2018 A1
20190019708 Weaver et al. Jan 2019 A1
20190057879 Delmas et al. Feb 2019 A1
20190119769 Khan et al. Apr 2019 A1
20190139793 Delmas et al. May 2019 A1
20190148178 Liang et al. May 2019 A1
20190148186 Schaller et al. May 2019 A1
20190157074 Delmas May 2019 A1
20190170591 Petry et al. Jun 2019 A1
20190198367 Liang et al. Jun 2019 A1
20190198368 Weaver et al. Jun 2019 A1
20190228982 Chen et al. Jul 2019 A1
20190229004 Schaller et al. Jul 2019 A1
20190237345 Delmas et al. Aug 2019 A1
20190258153 Nemani et al. Aug 2019 A1
20190259625 Nemani et al. Aug 2019 A1
20190259638 Schaller et al. Aug 2019 A1
20190279879 Singh et al. Sep 2019 A1
20190311896 Balseanu et al. Oct 2019 A1
20190326138 Forderhase et al. Oct 2019 A1
20190360100 Nguyen et al. Nov 2019 A1
20190360633 Schaller et al. Nov 2019 A1
20190368035 Malik et al. Dec 2019 A1
20190371650 Sun et al. Dec 2019 A1
20190375105 Weaver et al. Dec 2019 A1
20200035509 Khan et al. Jan 2020 A1
20200035513 Khan et al. Jan 2020 A1
20200075392 Brown et al. Mar 2020 A1
20200098574 Wong et al. Mar 2020 A1
Foreign Referenced Citations (51)
Number Date Country
1280875 Oct 2006 CN
101871043 Oct 2010 CN
104047676 Sep 2014 CN
104047676 Sep 2014 CN
104089491 Oct 2014 CN
1107288 Jun 2001 EP
H1218018 Aug 1989 JP
H07048489 May 1995 JP
H08195493 Jul 1996 JP
H9296267 Nov 1997 JP
H10214880 Aug 1998 JP
2001110729 Apr 2001 JP
2003-51474 Feb 2003 JP
2003166065 Jun 2003 JP
2003188387 Jul 2003 JP
2004-127958 Apr 2004 JP
2005-064269 Mar 2005 JP
2005-333015 Dec 2005 JP
2006526125 Nov 2006 JP
2007242791 Sep 2007 JP
2008-73611 Apr 2008 JP
2008153635 Jul 2008 JP
2009-539231 Nov 2009 JP
2010-205854 Sep 2010 JP
2012-503883 Feb 2012 JP
2012-204656 Oct 2012 JP
2013-105777 May 2013 JP
2013516788 May 2013 JP
2013-179244 Sep 2013 JP
2014019912 Feb 2014 JP
19980063671 Oct 1998 KR
100422433 Jul 2004 KR
20050121750 Dec 2005 KR
20070075383 Jul 2007 KR
20090011463 Feb 2009 KR
1020090040867 Apr 2009 KR
101305904 Sep 2013 KR
20140003776 Jan 2014 KR
20140135744 Nov 2014 KR
20150006587 Jan 2015 KR
20150122432 Nov 2015 KR
200529284 Sep 2005 TW
200721316 Jun 2007 TW
201507174 Feb 2015 TW
201608672 Mar 2016 TW
201708597 Mar 2017 TW
2004102055 Nov 2004 WO
2008047886 Apr 2008 WO
2008089178 Jul 2008 WO
2012133583 Oct 2012 WO
2016065219 Apr 2016 WO
Non-Patent Literature Citations (33)
Entry
CN-104047676-A English Translation of Specification (Year: 2020).
Notice of Allowance for U.S. Appl. No. 16/055,929 dated Mar. 30, 2020.
Office Action for U.S. Appl. No. 16/055,929 dated Jan. 22, 2020.
JP-2001110729-A English Translation of Specification (Year: 1999).
International Search Report and Written Opinion for PCT/US2018/043160 dated Jan. 31, 2019.
Shimoyama, Takehiro et al., “Porous Aluminum for Heat Exchanger”, Hitachi Chemical, pp. 19-20.
Office Action for Japanese Application No. 2018-517285 dated Oct. 23, 2019.
International Search Report and Written Opinion for PCT/US2019/014759 dated May 14, 2019.
Taiwan Office Action dated Jul. 3, 2019 for Application No. 107136181.
International Search Report and Written Opinion from PCT/US2018/034036 dated Aug. 24, 2018.
International Search Report and Written Opinion dated Aug. 24, 2018 for Application No. PCT/US2018/034284.
International Search Report, Application No. PCT/US2018/028258 dated Aug. 9, 2018.
International Search Report and Written Opinion for PCT/US2018/035210 dated Aug. 24, 2018.
International Search Report and Written Opinion for PCT/US2018/037539 dated Oct. 5, 2018.
International Search Report and Written Opinion for PCT/US2018/038822 dated Oct. 26, 2018.
Chen, Yang et al., “Analysisof Supercritical Carbon Dioxide Heat Exchangers in Cooling Process”, International Refrigeration and Air Conditioning Conference at Purdue, Jul. 17-20, 2006, pp. 1-8.
Kato, T. et al., “Heat Transfer Characteristics of a Plate-Fin Type Supercritical/Liquid Helium Heat Exchanger”, ICEC 14 Proceedings Supplement, 1992, pp. 260-263.
Lee, Ho-Saeng et al., “The cooling heat transfer characteristics of the supercritical CO2 in mico-fin tube”, Springer, Oct. 2, 2012, pp. 173-184.
International Search Report and Written Opinion dated Nov. 30, 2018 for Application No. PCT/US2018/041688.
International Search Report and Written Opinion for PCT/US2018/059643 dated Feb. 26, 2019.
International Search Report and Written Opinion from PCT/US2019/012161 dated Apr. 30, 2019.
International Search Report and Written Opinion for PCT/US2019/015339 dated May 15, 2019.
International Search Report and Written Opinion for PCT/US2019/015332 dated May 15, 2019.
Taiwan Office Action dated Jun. 11, 2019 for Application No. 107138905.
Haskel Pressure on Demand, Pneumatic and Hydraulic Driven Gas Boosters, Apr. 30, 2016, 36 pp.
International Search Report and Written Opinion for PCT/US2018/059676 dated May 23, 2019.
International Search Report and Written Opinion for PCT/US2019/023431 dated Jul. 5, 2019.
Taiwan Office Action dated Jul. 3, 2019 for Application No. 107136151.
International Search Report and Written Opinion for International Application No. PCT/US2019/029602 dated Aug. 14, 2019.
International Search Report and Written Opinion for International Application No. PCT/US2019/040195 dated Oct. 25, 2019.
Taiwan Office Action dated Nov. 19, 2019 for Application No. 108103415.
Office Action for Taiwan Patent Application No. 108111501 dated Nov. 14, 2019.
International Search Report and Written Opinion dated Jan. 31, 2019 for Application No. PCT/US2018/043160.
Related Publications (1)
Number Date Country
20200368666 A1 Nov 2020 US
Continuations (1)
Number Date Country
Parent 16055929 Aug 2018 US
Child 16897045 US