The present application is related to and claims the benefit of Korean Patent Application No. 10-2014-0033687, filed on Mar. 21, 2014 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
Embodiments of this disclosure relate to a gas barrier film having an improved structure for increasing flexibility and a gas transmission preventing effect, a refrigerator having the same, and a method of manufacturing a gas barrier film.
An outer wall of a door or a main body uses an insulating material in order to insulate a refrigerator. An insulating material in the related art such as a polyurethane has a thermal conductivity of about 20 W/(mK) (Watts per meter Kelvin). When this insulating material is used, an outer wall of the refrigerator becomes thicker, and a storage capacity of the refrigerator decreases. Therefore, in view of the above-described problems, a vacuum insulation panel having a thermal conductivity that is to 1/10 or less that of polyurethane has recently been used. The vacuum insulation panel includes a core material made of a porous material and a sheath material made of a gas barrier film that surrounds the core material and maintains a vacuum state of an inside thereof. A characteristic of the gas barrier film forming the sheath material has a significant influence on performance of the vacuum insulation panel. In order to implement low power consumption and increase a storage capacity, the development of a gas barrier film having excellent flexibility and a gas barrier effect is necessary.
There are provided a gas barrier film having excellent flexibility and an excellent gas barrier characteristic at the same time, a refrigerator having the same, and a method of manufacturing a gas barrier film.
To address the above-discussed deficiencies, it is a primary object to provide a gas barrier film, including: an organic-inorganic mixed layer on which a first organic-inorganic hybrid layer including an organic part and an inorganic part and an aluminum oxide layer are laminated; a second organic-inorganic hybrid layer including an organic part and an inorganic part; and a substrate on which the organic-inorganic mixed layer and the second organic-inorganic hybrid layer are laminated.
The organic part included in the first organic-inorganic hybrid layer and the organic part included in the second organic-inorganic hybrid layer includes a hydrocarbon derivative having 5 carbon atoms. The first organic-inorganic hybrid layer and the second organic-inorganic hybrid layer includes a compound including a unit expressed as a chemical formula of [Al—O—(CH2)5—O]n. A thickness of the organic-inorganic mixed layer is selected from a range of 3 nm to 7 nm. A thickness of the first organic-inorganic hybrid layer is selected from a range of 3 nm to 7 nm. The substrate includes a polymer film having a thickness selected from a range of 10 μm to 100 μm. The substrate further includes an aluminum layer that is deposited on the polymer film. The substrate further includes a protection layer that is formed on the aluminum layer and includes at least one resin selected from the group including acryl and a polyethylene.
In a first embodiment, there is provided a method to manufacture a gas barrier film according to an atomic layer deposition process including a method to manufacture a first organic-inorganic hybrid layer. The method includes supplying a first precursor including trimethyl aluminum (TMA) to a substrate and depositing the precursor thereon. The method also includes supplying an inert gas to remove an undeposited first precursor or reaction byproducts. The method further includes supplying a second precursor including a hydrocarbon derivative having 5 carbon atoms to the substrate on which the first precursor is deposited and depositing the precursor thereon. The method includes supplying the inert gas to remove an undeposited second precursor or reaction byproducts. The second precursor includes 1,5-pentanediol. The first organic-inorganic hybrid layer includes a compound including a unit expressed as a chemical formula of [Al—O—(CH2)5—O]n.
The method to manufacture an organic-inorganic mixed layer, the method including a method to manufacture a second organic-inorganic hybrid layer in which a first sub-cycle is performed one or more times is provided. The first sub-cycle includes supplying the first precursor including trimethyl aluminum (TMA) onto the substrate and depositing the precursor thereon. The first sub-cycle also includes supplying the inert gas to remove the undeposited first precursor or reaction byproducts. The sub-cycle further includes supplying the second precursor including a hydrocarbon derivative having 5 carbon atoms onto the substrate on which the first precursor is deposited and depositing the precursor thereon. The sub-cycle includes supplying the inert gas to remove the undeposited second precursor or reaction byproducts.
A method to manufacture an aluminum oxide layer in which a second sub-cycle is performed one or more times is provided. The second sub-cycle includes supplying the first precursor including trimethyl aluminum (TMA) onto the substrate and depositing the precursor thereon. The second sub-cycle includes supplying the inert gas to remove the undeposited first precursor or reaction byproducts. The second sub-cycle also includes supplying the second precursor including water vapor (H2O) onto the substrate on which the first precursor is deposited and depositing the precursor thereon. The second sub-cycle further includes supplying the inert gas to remove the undeposited second precursor or reaction byproducts. The second precursor used in the method of manufacturing an organic-inorganic mixed layer may include 1,5-pentanediol. The second organic-inorganic hybrid layer may include a compound including a unit expressed as a chemical formula of [Al—O—(CH2)5—O]n.
In the method to manufacture a first organic-inorganic hybrid layer and the method to manufacture an organic-inorganic mixed layer, a deposition temperature is selected from a range of about room temperature (such as about 22° C.) to about 120° C. In the method to manufacture a first organic-inorganic hybrid layer and the method to manufacture an organic-inorganic mixed layer, a deposition temperature is selected from a range of about room temperature (such as about 22° C.) to about 80° C. In the method to manufacture an organic-inorganic mixed layer, a super cycle is performed one or more times. The cycle includes a method to manufacture a second organic-inorganic hybrid layer in which the first sub-cycle is performed one or more times. A method to manufacture an aluminum oxide layer in which the second sub-cycle is performed one or more times. The X may be 1 and Y may be 3. The first organic-inorganic hybrid layer and the organic-inorganic mixed layer can be alternately laminated. The organic-inorganic mixed layer includes a thickness selected from a range of about 3 nm to about 7 nm. The first organic-inorganic hybrid layer includes a thickness selected from a range of about 3 nm to about 7 nm.
In a second embodiment, a refrigerator is provided. The refrigerator includes an outer case forming an appearance. The refrigerator also includes an inner case provided inside the outer case and fanning a storage container. The refrigerator further includes a vacuum insulation panel provided between the outer case and the inner case. The vacuum insulation panel includes a gas barrier film. The gas barrier film includes an organic-inorganic mixed layer on which a first organic-inorganic hybrid layer including an organic part and an inorganic part and an aluminum oxide layer are laminated. The gas barrier film also includes a second organic-inorganic hybrid layer including an organic part and an inorganic part. The gas barrier film further includes a substrate on which the organic-inorganic mixed layer and the second organic-inorganic hybrid layer are laminated.
The organic part included in the first organic-inorganic hybrid layer and the organic part included in the second organic-inorganic hybrid layer includes a hydrocarbon derivative having 5 carbon atoms. The first organic-inorganic hybrid layer and the second organic-inorganic hybrid layer includes a compound including a unit expressed as a chemical formula of [Al—O—(CH2)5—O]n.
Before undertaking the DETAILED DESCRIPTION below, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document: the terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation; the term “or,” is inclusive, meaning and/or; the phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like; and the term “controller” means any device, system or part thereof that controls at least one operation, such a device may be implemented in hardware, firmware or software, or some combination of at least two of the same. It should be noted that the functionality associated with any particular controller may be centralized or distributed, whether locally or remotely. Definitions for certain words and phrases are provided throughout this patent document, those of ordinary skill in the art should understand that in many, if not most instances, such definitions apply to prior, as well as future uses of such defined words and phrases.
For a more complete understanding of the present disclosure and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numerals represent like parts:
The refrigerator 1 further includes a door 30 configured to open and close the storage container 20. The refrigerator unit 21 and the freezer unit 22 are opened and closed by a refrigerator unit door 31 and a freezer unit door 33 that are pivotally combined with the main body 10, respectively. A plurality of door guards 35 is provided at the rear of the refrigerator unit door 31 and the freezer unit door 33 to accommodate food or the like. A plurality of shelves 24 are provided in the storage container 20 and divide the storage container 20 into a plurality of parts. Goods such as food are stacked on the shelf 24. In addition, a plurality of storage boxes 25 are provided to be inserted into and removed from the storage container 20 in a sliding manner. The refrigerator 1 further includes an upper hinge 41 and a lower hinge 43 that allow the door 30 to be rotatably combined with the main body 10.
A foam space 2 is provided between the inner case 11 forming the storage container 20 and the outer case 13 that is combined with the outside of the inner case 11 and forms an appearance. A foam insulating material 15 is filled in the foam space 2. A foam insulating material, a foam plastic-based insulating material, such as a polyurethane foam, and a polyethylene foam are used. In order to enhance an insulating property of the foam insulating material 15, a vacuum insulation panel (VIP) 100 is filled along with the foam insulating material 15.
The core material 120 includes a glass fiber having excellent insulation performance. When the core material 120 has a structure in which panels woven by a slender glass fiber are laminated, it is possible to obtain a high insulation effect. Specifically, as a pore size between glass fibers decreases, since an influence of radiation is minimized, a high insulation effect is expected.
Meanwhile, the core material 120 includes silica. Even when silica is used for a longer time than the glass fiber, it has less change in performance and therefore has an excellent characteristic in terms of long-term reliability. The vacuum insulation panel 100 further includes a getter 130. The getter 130 is provided inside the core material 120, and absorbs at least one of a gas and water that are introduced into the core material 120 to maintain a vacuum state of the core material 120. The getter 130 is in a powder form, and is formed to have a predetermined block or rectangular parallelepiped shape. In addition, the getter 130 is applied to an inner surface of the sheath material 110 or to a surface of the core material 120, or is inserted into the core material 120. The getter 130 is made of a material such as CaO, BaO, or MgO, and includes a catalyst. Meanwhile, as described above, the sheath material 110 is made of a gas barrier film since fine gases and water penetrating into the core material 120 in a vacuum state should be blocked. Hereinafter, in the following embodiment, the sheath material 110 made of a gas barrier film will be described.
As a sheath material in the related art, an aluminum foil sheath material or an aluminum deposited sheath material is generally used. The aluminum foil sheath material has excellent durability since external fine gases and water are effectively blocked by a thick aluminum layer, but there is a problem of a heat bridge in which heat flows through edges. In addition, the aluminum deposited sheath material has a thinner aluminum layer than the aluminum foil sheath material, has no heat bridge, but has a problem in that a blocking property of external fine gases and water decreases, a fine pin hole is generated when the sheath material is folded or bent and durability decreases. A gas barrier film 110 according to an embodiment is formed by an atomic layer deposition (ALD) process in order to ensure an excellent gas barrier effect, durability, and flexibility.
As illustrated in
In step 3, a second precursor is supplied to the chamber and the substrate is exposed to the second precursor. Here, the second precursor refers to a reaction gas. The supplied second precursor reacts with the first precursor adsorbed onto the surface of the substrate and performs chemisorption. When adsorption areas of the surface of the substrate are saturated by the second precursor, no reaction occurs any longer. In step 4, the inert gas is supplied to the chamber again to remove the extra second precursor and reaction byproducts. One cycle includes the processes of steps 1 to 4. When the cycle is repeated, an atomic layer thin film of a desired thickness grows. According to self-limiting chemisorption in step 1 and step 3, it is possible to perform excellent thickness control and uniform growth across a large area and form a conformal film on a 3D structure. Meanwhile, in the atomic layer deposition process applied to the method of manufacturing the gas barrier film 110, a deposition temperature is selected from a range of room temperature (such as about 22° C.) to about 120° C., and more specifically, from a range of room temperature (such as about 22° C.) to about 80° C.
Then, purge is performed such that the inert gas is supplied to remove extra TMA and reaction byproducts (213). When extra TMA and reaction byproducts are completely removed, pentanediol (PD) is supplied as the second precursor and adsorbed onto the surface of the substrate (214). Names of pentanediols are classified according to a position in the pentane of a carbon atom with which a hydroxyl group is combined among carbon atoms and characteristics thereof are different. In this embodiment, 1,5-pentanediol in which the hydroxyl group is combined with first and fifth carbon atoms is used. The supplied pentanediol reacts with TMA adsorbed onto the surface of the substrate and performs chemisorption. Here, a compound including a unit expressed as a chemical formula of [Al—O—(CH2)5—O]n is generated. Also, when adsorption areas of the surface of the substrate are saturated, no reaction occurs any longer.
Purge is performed such that the inert gas is supplied to remove extra pentanediol and reaction byproducts (215). Operations 212 to 215 correspond to steps 1 to 4 of one cycle of the above atomic layer deposition process, respectively. According to a desired thickness of the gas barrier film 110, the cycle is performed one or more times. For this purpose, operations 212 to 215 are repeated one or more times (216 and 217). A compound layer including a unit of [Al—O—(CH2)5—O]n formed in the substrate according to the above process in
Therefore, the gas barrier film 110 includes the organic-inorganic hybrid layer. The organic material used to form the organic-inorganic hybrid layer is a hydrocarbon derivative having 5 carbon atoms, and as a specific example, 1,5-pentanediol is used. Meanwhile, the gas barrier film 110 further includes an organic-inorganic mixed layer. The organic-inorganic mixed layer includes an aluminum oxide layer serving as an inorganic layer and the organic-inorganic hybrid layer. Hereinafter, a method of manufacturing an organic-inorganic mixed layer will be described in detail.
Then, purge is performed such that the inert gas is supplied to remove extra TMA and reaction byproducts (223). When extra TMA and reaction byproducts are completely removed, water vapor (H2O) is supplied as the second precursor and adsorbed onto the surface of the substrate (224). The water vapor reacts with TMA adsorbed onto the surface of the substrate and performs chemisorption. Here, Al2O3 is generated. Also, when adsorption areas of the surface of the substrate are saturated, no reaction occurs any longer.
Purge is performed such that the inert gas is supplied to remove extra water vapor and reaction byproducts (225). Operations 222 to 225 correspond to steps 1 to 4 of one cycle of the above atomic layer deposition process, respectively. According to a desired thickness of the gas barrier film 110, the cycle is performed one or more times (Y). For this purpose, operations 222 to 225 are repeated one or more times (Y) (226 and 227).
The organic-inorganic mixed layer includes the organic-inorganic hybrid layer that is generated by repeating the cycle of growing a thin film using TMA and pentanediol one or more times (X) and the aluminum oxide layer that is generated by repeating the cycle of growing a thin film using TMA and water vapor one or more times (Y). Therefore, the organic-inorganic mixed layer is generated by repeating a super cycle including one or more times (X) of a sub-cycle for generating the organic-inorganic hybrid layer and one or more times (X) of a sub-cycle for generating the aluminum oxide layer. Hereinafter, description will be made in detail with reference to
As illustrated in
Then, purge is performed such that the inert gas is supplied to remove extra TMA and reaction byproducts (243). When extra TMA and reaction byproducts are completely removed, 1,5-pentanediol (PD) is supplied as the second precursor and adsorbed onto the surface of the substrate (244). The supplied 1,5-pentanediol reacts with TMA adsorbed onto the surface of the substrate and performs chemisorption. Here, a compound including a unit expressed as a chemical formula of [Al—O—(CH2)5—O]n is generated. Also, when adsorption areas of the surface of the substrate are saturated, no reaction occurs any longer.
Purge is performed such that the inert gas is supplied to remove extra pentanediol and reaction byproducts (245). Then, operations 242 to 245 are repeated one or more times (X) (246 and 247). When operations 242 to 245 are repeatedly performed one or more times (X), a second sub-cycle for generating the aluminum oxide layer starts (251). Trimethyl aluminum (TMA) is supplied as the first precursor and adsorbed onto the surface of the substrate (252). The supplied TMA reacts with the surface of the substrate and performs chemisorption. Accordingly, a TMA layer is deposited onto the surface of the substrate. When adsorption areas of the surface of the substrate are saturated, no reaction occurs any longer even when extra TMA is supplied.
Then, purge is performed such that the inert gas is supplied to remove extra TMA and reaction byproducts (253). When extra TMA and reaction byproducts are completely removed, water vapor (H2O) is supplied as the second precursor and adsorbed onto the surface of the substrate (254). The water vapor reacts with TMA adsorbed onto the surface of the substrate and performs chemisorption. Here, Al2O3 is generated. Also, when adsorption areas of the surface of the substrate are saturated, no reaction occurs any longer. Purge is performed such that the inert gas is supplied to remove extra water vapor and reaction byproducts (255). Then, operations 252 to 255 are repeated one or more times (Y) (256 and 257).
When operations 252 to 255 are repeated one or more times (Y), one super cycle for generating the organic-inorganic mixed layer is completed. Therefore, in the organic-inorganic mixed layer, a small amount of [Al—O—(CH2)5-O] is included in Al2O3 in units of an atomic layer. When the super cycle including one or more times (X) of a sub-cycle and one or more times (Y) of a sub-cycle is repeated one or more times (N) (260 and 270), the organic-inorganic mixed layer is generated. The organic-inorganic mixed layer generated in this manner is referred to as an X:Y ratio mixed layer. A thickness and a composition of the X:Y ratio mixed layer is freely controlled by adjusting how many times a super cycle or a sub-cycle is repeated. Meanwhile, the gas barrier film 110 according to the embodiment includes the organic-inorganic mixed layer and the organic-inorganic hybrid layer, and improves flexibility and a gas barrier effect at the same time. Hereinafter, a structure thereof will be described in detail.
While
First, four types of substrates used for examples of the gas barrier film 110 were prepared according to the following [Table 1].
As shown in [Table 1], a substrate A is a PET film having a thickness of about 12 μm. In a substrate B, an aluminum layer having a thickness of about 100 nm is deposited on the PET film. In a substrate 3, an aluminum layer having a thickness of about 200 nm is deposited on the PET film and acryl is laminated thereon. In a substrate D, an aluminum layer having a thickness of about 100 nm and PET are alternately laminated on a linear low-density polyethylene (LLDPE). As shown in the following [Table 2], the organic-inorganic mixed layer was deposited on the substrate A at slightly different thicknesses around 20 nm at a temperature of about 80° C. or about 120° C.
As shown in the following [Table 3], the organic-inorganic mixed layer was deposited on the substrate B at slightly different thicknesses of about 20 nm at a temperature of about 80° C.
As shown in the following [Table 4], the organic-inorganic mixed layer or the organic-inorganic hybrid layer was deposited on the substrate 3 at slightly different thicknesses of about 20 nm.
As shown in the following [Table 5], a gas barrier film of 3 layers was manufactured by sequentially laminating the organic-inorganic mixed layer, the aluminum layer, and the organic-inorganic mixed layer on the substrate 3 at different thicknesses.
As shown in the following [Table 6], the organic-inorganic mixed layer and the organic-inorganic hybrid layer were laminated on the substrate 3 at different thicknesses.
As shown in the following [Table 7], the organic-inorganic hybrid layer and the aluminum oxide layer were laminated on the substrate 3 at different thicknesses.
As shown in the following [Table 8], by changing the number of deposition layers, the organic-inorganic hybrid layer and the aluminum layer were laminated on the substrate D.
As shown in the following [Table 9], Al2O3 was deposited on the substrate 3 at slightly different thicknesses of about 20 nm.
First, in order to check a self-limiting thin film growth behavior according to the atomic layer deposition process, the atomic layer deposition process using TMA and pentanediol as a precursor was performed 50 cycles (X=50) at a temperature of about 120° C. and the organic-inorganic hybrid layer was formed.
A water vapor transmission rate and an oxygen transmission rate of the substrates shown in [Table 1] were measured. The water vapor transmission rate (WVTR) was measured at about 38° C. and a 100% moisture condition using MOCON Acuatran Model 1. The oxygen transmission rate (OTR) was measured at room temperature (such as about 22° C.) and a 0% (oxygen 100%) moisture condition using MOCON Ox-tran Model 2/21. The measurement results are shown in [Table 10].
For reference, as the WVTR and the OTR decrease, it represents that oxygen blocking performance and water blocking performance of the substrate are excellent. As shown in [Table 10], it is understood that the substrate A made of PET is vulnerable to transmission of water and oxygen, and the substrate B and the substrate 3 including PET in which aluminum is deposited have significantly improved blocking performance of water and oxygen. However, it is understood that the substrate 3 showed almost no change in the oxygen transmission rate even when the thickness at which the aluminum was deposited was increased to twice that of the substrate B, and thus oxygen blocking performance did not improve. This shows that oxygen is generally transmitted through a pin hole and the pin hole may not be decreased when a thickness of the aluminum layer is simply increased. On the other hand, it is understood that the substrate D in which aluminum and PET are laminated has a significantly decreased water vapor transmission rate and thus water blocking performance is significantly improved.
The results obtained by measuring a water vapor transmission rate and an oxygen transmission rate of the gas barrier film 110 according to Examples 1 to 8 shown in [Table 2] are shown in [Table 11] and
Referring to [Table 11] and
A smaller X value and a greater Y value in an X:Y organic-inorganic ratio mixed layer represent that a greater inorganic part is included in the mixed layer. As shown in
The results obtained by measuring a water vapor transmission rate and an oxygen transmission rate of the gas barrier film 110 according to Examples 9 to 12 shown in [Table 3] are shown in [Table 12].
As shown in [Table 12], it is understood that Examples 11 and 12 in which the 1:5 organic-inorganic ratio mixed layer is included have a larger deviation of data according to the thickness than Examples 9 and 10 in which the 1:3 organic-inorganic ratio mixed layer is included. In particular, the oxygen transmission rate has a very large deviation. Meanwhile, since a substrate B has no additional protection layer on the aluminum layer, it was observed that the gas barrier film is damaged after a transmission rate experiment (in particular, a water vapor transmission rate experiment) is performed. This is because there is a big difference between thermal expansion coefficients of aluminum and PET, and thus defects such as cracks are generated in the aluminum layer or an interface thereof is partially detached during a process of depositing the organic-inorganic mixed layer on the substrate B at about 80° C. Therefore, when the substrate including the aluminum layer is used as the substrate of the atomic layer deposition process, it is preferable that a protection layer be formed on the aluminum layer. As the organic-inorganic mixed layer to be deposited, a 1:3 organic-inorganic ratio mixed layer, for example in which the content of the organic part is great, is more advantageous than a 1:5 organic-inorganic ratio mixed layer.
The results obtained by measuring a water vapor transmission rate of the gas barrier film according to Examples 13 to 17 shown in [Table 4] and a water vapor transmission rate of the gas barrier film according to Comparative Examples 1 to 3 shown in [Table 9] were shown in [Table 13] and
As shown in [Table 13] and the graph of
The results obtained by measuring a water vapor transmission rate and an oxygen transmission rate of the gas barrier film according to Examples 18 to 22 shown in [Table 5] were shown in [Table 14] and the graph of
As shown in [Table 14] and the graph of
The results obtained by measuring a water vapor transmission rate of the gas barrier films according to Examples 23 to 26 shown in [Table 6], the gas barrier films according to Examples 27 to 29 shown in [Table 7], and the gas barrier films according to Examples 20 to 22 were shown in the graph of
On the other hand, it is understood that the gas barrier film (Examples 20 to 22) in which a 1:3 organic-inorganic ratio mixed layer, an Al2O3 layer, and a 1:3 organic-inorganic ratio mixed layer are sequentially laminated and the gas barrier film (Examples 23 to 26) in which a 1:3 organic-inorganic ratio mixed layer, an organic-inorganic hybrid layer, and a 1:3 organic-inorganic ratio mixed layer are sequentially laminated have relatively excellent water blocking performance. In particular, the gas barrier film (Examples 23 to 26) in which a 1:3 organic-inorganic ratio mixed layer, an organic-inorganic hybrid layer, and a 1:3 organic-inorganic ratio mixed layer are sequentially laminated shows a stable characteristic across a large area to an area having an entire thickness of about 13 nm to about 62 nm. This is because, even if the entire thickness is relatively increased, occurrence of cracks and like in a handling process is suppressed due to a structure in which the organic-inorganic hybrid layer ensuring flexibility and the organic-inorganic mixed layer having excellent water blocking performance are laminated.
The results obtained by measuring a water vapor transmission rate of the gas barrier film according to Examples 30 and 31 shown in [Table 8] were shown in [Table 15].
As shown in [Table 10] showing the results of Experimental Example 2, the water vapor transmission rate of the substrate D in which the organic-inorganic mixed layer or the organic-inorganic hybrid layer is not formed is about 0.020 g/m2 per day. On the other hand, the gas barrier films (Examples 30 and 31) in which the organic-inorganic mixed layer and the organic-inorganic hybrid layer are laminated on the substrate D as 5 layers and 9 layers as shown in [Table 15] have a water vapor transmission rate of about 0.00621 g/m2 per day and about 0.00151 g/m2 per day. That is, it is understood that, when the organic-inorganic mixed layer and the organic-inorganic hybrid layer are laminated as multiple layers, water blocking performance is significantly improved. In particular, it is understood that an entire thickness of the gas barrier film of 9 layers (Example 31) is only about 45 nm but the water vapor transmission rate decreases and approaches a measurement threshold value of a measurement device. According to the gas barrier film, the refrigerator having the same, and the method of manufacturing a gas barrier film according to the embodiment, it is possible to obtain excellent flexibility and an excellent gas barrier characteristic at the same time.
Although the present disclosure has been described with an exemplary embodiment, various changes and to one skilled in the art. It is intended that the present disclosure encompass such changes and modifications as fall within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0033687 | Mar 2014 | KR | national |