Etching is used in various micro fabrication processes, including semiconductor device fabrication, to chemically remove layers from the surface of a semiconductor wafer during manufacturing. Etching is an important process step, and wafers with associated semiconductor device layers undergo many etching steps before manufacturing is completed. Because of the significance of this step to fabrication of a usable end product, it is important that the etching processes and equipment are well maintained and controlled. For some processes, the etching step is carried out using gas plasmas. While the high reactivity of the gas plasmas makes them well suited to the etching process, the plasmas' propensity to reactivity also makes control and confinement of the plasmas challenging, as the ionizing reactants tend to react with and/or degrade any material with which they come in contact.
For example, to supply the reactants to the reaction chamber (where wafer etching takes place), one passes the reactant gases through a gas dispersion plate (“GDP”) or (as is commonly known, a showerhead), to inject the gas into the reaction chamber, while controlling the gas flow and distribution. In the gas dispersion plate there exists an array of holes that allow injection of the gas into the process chamber.
In has been recognized that, when such hole configurations are used for providing reactant gases for semiconductor etching, the reactant ions within the process chamber may backflow into the hole(s) and etch the inside wall of the hole(s), enlarging its/their size. Over time, this enlargement leads to a modification of the gas flows into and within the reaction chamber. Such gas flow changes result in non-uniform etching of the semiconductor wafer surface. These non-uniformities directly affect the realizable yield of integrated circuits obtainable from the wafer, decreasing the overall yield of the process and increasing production costs.
Another problem manifests itself when reactant ions reach a chamber that interfaces with the a cooling plate of the gas dispersion plate typically made of metal. The reactant ions are electrically charged and upon reaching the metal cooling plate, will electrically connect the plasma to the plate causing arcing. Such arcing results in an “electrical shorting” of the plasma to the metal plate and also affects the etching uniformity. Both the etching of the inside walls and the electrical shorting cause particles to be formed, with such particles dispersed onto the wafer surface. These particles will introduce electrical and physical defects on the integrated circuits being made from the wafer, also affecting yield.
There remains a need in the art to suppress the ability of the reactant ions of the plasmas to penetrate into the GDP hole(s) or, if an ion does penetrate, to reduce or eliminate the ions' ability to reach the metallic cooling plate of the gas dispersion plate.
The invention includes a gas dispersion plate to provide reactant gases to a reaction chamber comprising: a plate body having a first surface and a second surface, the plate body having at least one injection passage that spans the plate from the first surface to the second surface, the distance along the passage from the first surface to the second surface defining the length of the passage, wherein the injection passage includes an ion trap chamber, through which gas flows from the first surface of the plate to the second surface of the plate. In an embodiment, the passage includes an inlet portion interposed between the first surface and the chamber and an outlet portion that is interposed between the ion trap chamber and the second surface.
Also included are related methods.
The foregoing summary may be better understood when read in conjunction with the appended drawings. It should be understood that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:
a is a schematic representation of the GDP of the invention (transverse section) wherein an individual injection passage has two inlet portions and a single outlet portion having multiple holes for the gases to be injected into the reaction chamber.
The invention includes a gas dispersion plate (GDP) to provide reactant gases to a reaction chamber, methods of increasing lifetime of a GDP used to provide reactant gases to a reaction chamber, and methods of reducing the degradation of an injection passage in a GDP used to provide reactant gases to a reaction chamber, and of preventing reactive ions from reaching the metal cooling plate thereby reducing particulate generation or dispersion onto the wafer being processed.
In one embodiment, the invention is used to provide reactant gases to a reaction chamber in which semiconductor wafers are etched. However, the invention can be used in any circumstances where a reactant gas must be provided to a chamber (in semiconductor processing or other applications) including, without limitation, in semiconductor equipment that uses plasmas for other types of processing, such as stripping of photo resist, chemical vapor deposition or cleaning of semiconductor wafers, sterilization, cleaning of metallic or plastic
parts, and surface modification equipment applicable to metallic and plastic parts, such as equipment used for residual gas analysis.
In conventional GDPs, the injection passages are engineered to pass through the plate body 11 from the plate body's first surface to the plate body's second surface providing a substantially straight and direct pathway for the gases to flow.
This etching can generate particles that may become directly in contact with the wafer surface. These particles may result in defects on the wafer surface, greatly affecting the resultant yield of good integrated circuits. In some cases, the reactant gas ions backflow far enough to reach the entry of the inlet where may exist an interface to a metal cooling plate. As the plate's electrical potential is much lower than that of the plasma, there is an “electrical shorting” of the plasma to the cooling plate. The latter phenomenon affects the ion density present in the vicinity of the injection outlet and the plasma reaction on the wafer, leading to non-uniform etching at the surface of the wafer. As with the wall etching of the injection passages, this “shorting” will also generate particles, also brought down onto the wafer surface.
It has been discovered by the inventors that the design of an injection passage may be engineered to allow the space charge of the reactive ions to expand the size of the ion beam coming into the outlet. A gas traveling toward the outlet portion of the injection passage (and toward the reaction chamber), will randomly inject traveling reactive ions back up into the passage as depicted in
By engineering the passage to include at least one ion trap chamber as depicted in, for example,
Additionally, the inclusion of at least one ion trap chamber serves to reduce and/or eliminate arcing by preventing the reactant ions from reaching the inlet portion of the passage and reaching the metallic cooling plate, which, if made of a material like aluminum, would have resulted in an arcing phenomena and generation of particles.
The plate body of the invention may be made of one piece or may comprise several plates or pieces layered or otherwise arranged together. In some embodiments, it may be preferred that the plate body comprises a cell plate and a cooling plate. The cell plate of the plate body (as well as and/or any other components of the GDP) may be made of any materials that are resistant to etchant gases and/or corrosive or reactive chemicals, depending on the end use(s) of the GDP. However, in certain applications it may be preferred that the cell plate of the plate body is made of silicon. If it is to be used to provide etching gases to a reactant chamber for semiconductor processing, it may be desired that the selected materials are resistant to etching gases and/or able to provide the upper electrode for the radio frequency power that ignites the plasma within the reactor and sustains it during the etching cycle.
The plate body (as well as and/or any other components of the GDP, including the cell plate or the cooling plate) may be made of one selected material, or may be made of a first material upon which one or more layers or films of alternative materials may be placed, for example, to increase etch resistance. Suitable materials for either may include, without limitation, silicon, silicon carbide, yttria, YAG, aluminum oxide nitride, aluminum nitride, sapphire, and other etch resistant materials. In one embodiment, the plate body may be made of silicon. In another, it may be made of silicon coated with yttria.
In most embodiments, it may be preferred that the cooling plate is metallic, either formed of a metal and/or a substrate coated with a metallic layer(s).
In some embodiments, it may be preferred that the GDP is a dual, triple, or more than three-piece gas dispersion plate, which may include, for example, a cell plate (containing the at least one injection passage(s)), a gas entry plate, a cooling plate, a face plate, and/or other plates as desired. Moreover, in some embodiments, the plate body itself as described below is formed from two or more plates or components integrated together.
The plate body may be any thickness, including for example, plate thicknesses of about 5 to about 10 mm or up to about 25 mm.
Referencing
In an embodiment, the sidewall of the injection passage 115a, 115b has a substantially circular cross section, although injection passages having other cross-sectional shapes may be used as well.
The injection passage 115a, 115b includes at least one ion trap chamber 117a, 117b. When viewed in cross section, the shape formed by the sidewalls of ion trap chamber (“Sc”) has a perimeter that is greater than the perimeter of the shape formed by the sidewalls of the injection passage when viewed in cross section that is substantially adjacent to the ion trap chamber (“Sp”). The magnitude of difference between the perimeters of Sc and of Sp may vary, depending on the end use application of the GDP. However, in some embodiments, it may be preferred that the perimeter of Sp is about 0.1%, about 0.5%, about 1%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, and about 50% or less of the perimeter of Sc.
In some embodiments, Sc is in the shape of a polygon, such a square, rectangle, or hexagon although any shape may be selected. For example, Sc may have the shape of a uniform polygon, a non-uniform polygon, a triangle, a circle and ellipse, an ovate, a diamond, an ovate, a parallelogram, a rhombus, pentagon, octagon, heptagon, and hexagon. In some embodiments, the space defined by the ion trap chamber is in the form of a complex geometric solid, such as, for example, a 4-faced, 8-faced, 12-faced or 20-faced geometric solid, so that any set of Scs taken from the chamber may be in the form of varying shapes.
The relative length along the transverse axis of the injection passage, Lc, as compared to that of the ion trap chamber may be any dimension, and will necessarily vary depending on, for example, the end application for the GDP, the number of ion trap chambers included, the operating RF and Bias powers for the plasma, the plasma density being used and/or the reactant gases selected for the application. In some embodiments, the transverse distance of the chamber, as measured from the chamber inlet to the chamber outlet, may be, without limitation, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, and about 50% of the length of the injection passage.
In an embodiment, the ion trap chamber is interposed between the first surface of the plate body and the outlet portion of the injection passage or is interposed between the second surface and the inlet portion of the plate body. It may be preferred that the ion trap chamber is interposed between both the inlet portion of the passage and the outlet portion of the passage. It may be preferred that the chamber(s) is coaxial with the injection passage. However, in some embodiments the chamber may be offset from the passage, that is, its axis may be parallel to but not coaxial with the axis of the passage. This eliminates a direct path for the ions coming from the reaction chamber to penetrate to the metallic cooling plate
Referencing
Referencing
In an additional embodiment, exemplified in
Whereas the Figures illustrate passages and ion trap chamber, having circular cross-sections.
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.
This application claims the benefit under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 61/594,200, filed Feb. 2, 2012; and to U.S. Provisional Patent Application No. 61/598,525, filed Feb. 14, 2012; the entire disclosures of each of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61594200 | Feb 2012 | US | |
61598525 | Feb 2012 | US |