Gas treatment apparatus

Information

  • Patent Grant
  • 6660096
  • Patent Number
    6,660,096
  • Date Filed
    Thursday, December 14, 2000
    23 years ago
  • Date Issued
    Tuesday, December 9, 2003
    20 years ago
Abstract
A gas flow regulating surface portion 37a is the farthest from the front surface of a wafer W in the middle between a peripheral portion of the wafer W and a center portion of a sealing vessel. The gas flow regulating portion 37a protrudes to the front surface of the wafer W in the vicinity of a center portion that surrounds an exhausting opening 35a. In other words, a convex portion 37c is formed in a peripheral area of the gas flow regulating surface portion 37a that surrounds the exhausting opening 35a. Since treatment gas flows along the front surface of the gas flow regulating portion 37a, treatment gas equally contacts the wafer W in the radius direction of the wafer W. Thus, a film with equal thickness is formed.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a gas treatment apparatus for gelatinizing a coated film coated on the front surface of a substrate and forming an insulation film, the coated film being formed by dispersing particles or colloid of a start substance of a film component to solvent.




2. Description of the Related Art




As methods for forming an inter-layer insulation film of a semiconductor device, CVD method, heat oxidizing method, and so forth are known. In addition, sol-gel method is known. In the sol-gel method, a coating solution of which colloid of TEOS (tetraethoxysilane: Si(C


2


H


5


O)


4


) is dispersed in organic solvent such as ethanol solution is coated on the front surface of a semiconductor wafer (hereinafter simply referred to as wafer). The coated film is gelatinized and dried. Thus, a silicon oxide film is obtained. An example of such a method has been disclosed in Japanese Patent Laid-Open Publication Nos. 8-162450 and 8-59362.





FIGS. 9A

,


9


B, and


9


C show degeneration of a coated film in such a method.




When a coating solution is coated on a wafer, particles or colloid


100


of TEOS is dispersed to solvent


200


(refer to FIG.


9


A). Thereafter, the coated film is exposed to alkaline atmosphere or heated. Thus, since TEOS is polycondensated and hydrolyzed, the coated film is gelatinized and thereby a mesh structure of TEOS


300


is formed (refer to FIG.


9


B). The solvent of the coated film is substituted with another solvent


400


such as acetone so as to remove moisture from the coating solution (refer to FIG.


9


C). The solvent substituting treatment is a hydrophobic treatment for the film. In other words, since an OH radical tends to absorb moisture, when the film is reacted with for example HMDS, the OH radical bound to an edge portion of Si—O coupling is substituted with another organic substance.




After the coating solution is dried, a coated film of silicon oxide film is obtained. Moreover, in the solvent substituting treatment shown in

FIG. 9C

, solvent whose surface tension is smaller than that of ethanol is used. Thus, when the solvent vaporizes, since large stress is not applied to the mesh structure of TEOS, the film can be prevented from breaking.




The silicon oxide film formed by the sol-gel method has many air pores. Thus, the dielectric constant E of the oxide film is very close to that of vacuum. Consequently, the electric resistance of the oxide film having air pores is as high as that of vacuum. As a result, an ideal insulation film can be obtained.




When the sol-gel method is applied to a real production line, a coating unit that coats a coating solution to a wafer, an aging unit that contacts ammonium gas to the wafer or heats the wafer at a predetermined temperature (for example, around 100° C.) and gelatinizes the coated film, and a substituting unit that substitutes the solvent of the coated film with another solvent are required.




In the gelatinizing treatment performed by the inventor of the present invention, as shown in

FIG. 10

, a wafer W is placed on a plate


61


. A cylindrical lid


62


is placed on the plate


61


. Thus, a sealing vessel


6


is formed. Ammonium gas is supplied from a gas supplying path


63


on the periphery of the plate


61


. The ammonium gas is exhausted from an exhausting path


64


at the center of the lid


62


.




SUMMARY OF THE INVENTION




In the unit shown in

FIG. 10

, the ammonium gas tends to upwardly flow from the gas supplying opening of the plate


61


along the inner periphery of the lid


62


upwardly. In addition, the ammonium gas is attracted by attracting force of the exhausting path


64


at the center of the lid


61


. Thus, a gas flow takes place in an upper diagonal direction. Since gas that upwardly flows along the inner periphery of the lid


62


becomes a vortex flow at upper corners of the lid


62


, the gas does not smoothly lower. Thus, the gas flow rate and gas concentration at the center portion of the wafer W are smaller than those at the peripheral portion thereof. Consequently, the coated film is unevenly gelatinized and thereby an unsmooth film is formed.




A first aspect of the present invention is made from the above-described point of view.




An object of the first aspect of the present invention is to provide a coated film treatment apparatus that allows a substrate (for example, a wafer) to be treated with an equal gas flow in a sealing vessel so as to obtain a high-quality thin film (for example, an inter-layer insulation film).




A first aspect of the present invention is a gas treatment apparatus, comprising a sealing vessel for treating a substrate with gas, a substrate holding portion, disposed in the sealing vessel, for holding the substrate, a gas flow regulating surface portion, disposed opposite to a treatment surface of the substrate held on the substrate holding portion, the gas flow regulating surface portion protruding to the substrate holding portion and having at least an outer peripheral portion for forming a narrowed gas path with the substrate holding portion, a gas supplying opening disposed along a peripheral portion of the gas flow regulating surface portion, and an exhausting opening facing the treatment surface of the substrate held on the substrate holding portion and disposed at a center portion of the sealing vessel.




The gas treatment apparatus may further comprises a buffer chamber disposed outside the outer peripheral portion and at an upper portion of the gas supplying opening.




An inner periphery of the gas flow regulating surface portion may be composed of a first concave portion formed in almost a spherical surface shape, a convex portion formed inside the first concave portion and protruding in an almost doughnut shape, and a second concave portion formed in an almost circular cone shape inside the convex portion and connected to the exhausting opening wherein the first concave portion, the convex portion, and the second concave portion are inwardly and continuously formed on concentric circles.




The outer peripheral portion may be a partition plate that partitions an inner space of the sealing vessel into a cylindrical space facing the treatment surface of the substrate held on the substrate holding portion and a buffer chamber formed outside the cylindrical space. In addition, an inner periphery of the gas flow regulating surface portion may be composed of an outer portion formed in an almost plane shape, an inclined portion formed inside the outer portion, the inclined portion forming a side surface of an almost circularly cone shaped protrusion portion, a convex portion formed in an almost doughnut shape inside the inclined portion, and a concave portion formed in an almost circularly cone shape inside the convex portion and connected to the exhausting opening wherein the outer portion, the inclined portion, and the convex portion, and the concave portion are inwardly and continuously formed on concentric circles.




An almost spherical surface shaped concave portion may be formed on an inner periphery of the gas flow regulating surface portion.




A circularly cone shaped concave portion with a vertex of the exhausting opening may be formed on an inner periphery of the gas flow regulating surface portion.




The outer peripheral portion may form a partitioning portion with a cylindrical section wherein an inner periphery of the gas flow regulating surface portion is a plane with almost the same height as a vertex portion of the buffer chamber.




An inner periphery of the gas flow regulating surface portion may be composed of a first concave portion formed in almost a spherical surface shape, a convex portion formed inside the first concave portion and protruding in an almost doughnut shape, and a second concave portion formed in an almost circular cone shape inside the convex portion and connected to the exhausting opening wherein the first concave portion, the convex portion, and the second concave portion are inwardly and continuously formed on concentric circles.




The gas supplying opening may be formed in a slit shape along a peripheral direction of the sealing vessel.




The sealing vessel may be composed of a first member on which the substrate holding portion is disposed, and a second member on which the gas flow regulating surface portion is disposed, the second member being approachable to the first member.




The gas supplying path may be formed through the first member.




A coating solution of which particles or colloid of a start substance of a film component is dispersed to solvent may be coated as a coated film on the substrate wherein gas for accelerating gelatinizing the particles or colloid of the coated film is supplied to the sealing vessel.




The gas is preferably alkaline gas.




Next, a second aspect of the present invention will be described.




When a wafer on which coating solution has been coated as shown in

FIGS. 9A

,


9


B, and


9


C is left in a natural condition, the coating solution is gelatinized and a silicon oxide film is formed.




However, to do that, it takes a long time (for example, one night). Thus, such a method is not suitable from a view point of mass-production. As the second aspect of the present invention, a coated film is heated so as to acceleratingly gelatinize it.




When a wafer on which a coated film has been formed is heated at for example around 100° C. and the coated film is gelatinized, since organic solvent vaporizes from the coated film, a predetermined film thickness and film quality cannot be obtained. To solve such a problem, a wafer is placed in a sealing vessel. Saturated vapor of a solvent component (for example, ethylene glycol) of the coated film is supplied to the sealing vessel. Thus, ethylene glycol can be suppressed from vaporizing from the coated film.




In this case, saturated vapor of ethylene glycol at 100° C. is generated and supplied to the sealing vessel that is heated at 100° C. Thus, ethylene glycol can be suppressed from vaporizing. However, when the temperature of gas in a pipe to the sealing vessel drops, condensation takes place. Thus, the saturated vapor cannot be obtained in the sealing vessel. As a result, the solvent component (in this case, ethylene glycol) of the wafer vaporizes. On the other hand, when the temperature of the saturated vapor of ethylene glycol is higher than that in the sealing vessel, the temperature of the saturated vapor drops in the sealing vessel. Thus, concentration may take place and thereby liquid drops may adhere to the wafer. When liquid drops adhere to the wafer, the film thickness at the liquid adhered position varies. Thus, the equality of the film thickness deteriorates. Consequently, in addition to the temperature control of the generation source of the saturated vapor of the solvent component, saturated vapor should be generated in the treatment vessel.




The second aspect of the present invention is made from the above-described point of view.




In other words, an object of the second aspect of the present invention is to provide a gas treatment apparatus that allows a solvent component to be suppressed from vaporizing from a coated film in gelatinizing particles or colloid of the coated film so as to obtain a film (for example, an inter-layer insulation film) with a predetermined film thickness.




A second aspect of the present invention is a gas treatment apparatus, comprising a sealing vessel for holding a substrate coated with a coating solution of which particles or colloid of a start substance of a film component is dispersed to solvent, a heating means for heating the inside of the sealing vessel so as to gelatinize the particles or colloid of a coated film as the coating solution, a gas supplying path for supplying vapor of a solvent component to the sealing vessel, an exhausting path for exhausting gas out of the sealing vessel, a gas dispersing chamber disposed in the middle of the gas supplying path in a wall of the sealing vessel, the gas dispersing member, having a plurality of gas supplying openings, connected to the sealing vessel, for dispersing gas in the gas supplying path to the sealing vessel, the inner temperature of the gas dispersing chamber being kept at almost the same as the inner temperature of the sealing vessel, and a solvent vapor generating portion, heated at a slightly higher temperature than the inner temperature of the gas dispersing chamber, for generating vapor of the solvent component that becomes saturated vapor at the inner temperature of the sealing vessel.




According to the second aspect of the present invention, saturated vapor of a solvent component (for example, ethylene glycol) generated by the solvent vapor generating portion is slightly cooled in the gas dispersing chamber to the almost the same temperature in the sealing vessel. Thus, saturated vapor is securely supplied to the sealing vessel. Consequently, the solvent is suppressed from vaporizing from the coated film. In addition, liquid drops of the vapor are prevented from adhering to the substrate. In this case, the sealing vessel may have a heating plate for holding and heating the substrate. The gas dispersing chamber may be formed in the heating plate.




A modification of the second aspect of the present invention is a gas treatment apparatus, comprising a sealing vessel for holding a-substrate coated with a coating solution of which particles or colloid of a start substance of a film component is dispersed to solvent, a heating means for heating the inside of the sealing vessel so as to gelatinize the particles or colloid of a coated film as the coating solution, a gas supplying path for supplying vapor of a solvent component to the sealing vessel, an exhausting path for exhausting gas out of the sealing vessel, a first reservoir tank for reserving solution of the solvent component, bubbling the solution with carrier gas, and supplying vapor of the solvent component to the sealing vessel trough the gas supplying path, a first temperature adjusting means for adjusting the temperature of the solution in the first reservoir tank to a predetermined temperature, a second reservoir tank for replenishing the solution to the first reservoir tank when the amount of the solution in the first reservoir tank decreases, and a second temperature adjusting means for adjusting the temperature of the solution in the second reservoir tank to a predetermined temperature.




According to the present invention, the temperature of the solution of the solvent component can be accurately controlled. Thus, the vapor of the solvent component at a predetermined temperature can be supplied to the sealing vessel. In the present invention, alkaline gas for accelerating gelatinizing the coated film may be supplied to the sealing vessel.











These and other objects, features and advantages of the present invention will become more apparent in light of the following detailed description of a best mode embodiment thereof, as illustrated in the accompanying drawings.




BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a plan view showing an overall structure of a gas treatment apparatus according to a first embodiment of the present invention;





FIGS. 2A

,


2


B,


2


C, and


2


D are schematic diagrams for explaining a flow of treatments of the gas treatment apparatus according to the first embodiment;





FIGS. 3A and 3B

are vertical sectional views showing an example of the structure of an aging unit and a gas flow of the gas treatment apparatus according to the first embodiment of the present invention;





FIG. 4

is a vertical sectional view showing another example of the structure of the aging unit of the gas treatment apparatus according to the first embodiment of the present invention;





FIG. 5

is a vertical sectional view showing another example of the structure of the aging unit of the gas treatment apparatus according to the first embodiment of the present invention;





FIG. 6

is a vertical sectional view showing another example of the structure of the aging unit of the gas treatment apparatus according to the first embodiment of the present invention;





FIG. 7

is a vertical sectional view showing another example of the structure of the aging unit of the gas treatment apparatus according to the first embodiment of the present invention;





FIG. 8

is a vertical sectional view showing another example of the structure of the aging unit of the gas treatment apparatus according to the first embodiment of the present invention;





FIGS. 9A

,


9


B, and


9


C are sectional views showing degeneration of a coated film in sol-gel method;





FIG. 10

is a vertical sectional view showing the structure of an aging unit according to a compared example of the first embodiment of the present invention;





FIG. 11

is a vertical sectional view showing an example of the structure of a gas treatment apparatus according to a second embodiment of the present invention;





FIG. 12

is a plan view showing the interior of a sealing vessel of the gas treatment apparatus according to the second embodiment of the present invention;





FIGS. 13A and 13B

are schematic diagrams for explaining the case that solvent is replenished to a reservoir tank of the gas treatment apparatus according to the second embodiment of the present invention; and





FIG. 14

is a vertical sectional view showing another example of the gas treatment apparatus according to the second embodiment of the present invention.











DESCRIPTION OF PREFERRED EMBODIMENTS




Next, with reference to the accompanying drawings, embodiments of the present invention will be described.




First Embodiment





FIG. 1

is a plan view showing an overall structure of a gas treatment apparatus according to a first embodiment of the present invention.




Referring to

FIG. 1

, reference numeral


11


is an input/output port for a wafer W that is a substrate. A transferring arm


12


extracts a wafer W from a cassette C disposed on a cassette stage CS and transfers the wafer W to a main arm


13


.




A coating unit


2


that is a major portion of the gas treatment apparatus according to the embodiment of the present invention is disposed on one side of a transferring path (guide rail)


14


of the main arm


13


along with an aging unit


3


that is a gelatinization treating portion and a solvent substituting unit


4


that is a solvent substituting portion. Treatment units U


1


to U


4


are disposed on the other side of the transferring path


14


. The treatment units U


1


to U


4


are assigned a hydrophobic treatment, a cooling treatment, a heat treatment (baking treatment), and so forth.




Next, the overall operation of the gas treatment apparatus will be described in brief. A wafer W that is extracted from a cassette C of the cassette stage CS is placed in the coating unit


2


. Coating solution T of which colloid or particles of TEOS are dispersed in solvent is dropped on the front surface of the wafer W (refer to FIG.


2


A). Since the wafer W is rotated at high speed, the coating solution T spreads out on the front surface of the wafer W and thereby a coated film F is formed (refer to FIG.


2


B).




Next, the wafer W is placed on a heating plate


31


of the aging unit


3


. The aging unit


3


is sealingly closed with a lid


33


. Alkaline gas (for example, ammonia gas) is supplied to the aging unit


3


so as to gelatinize the coated film (refer to FIG.


2


C).




Thereafter, as shown in

FIG. 2D

, in the solvent substituting unit


4


, solvent substituting treatment is performed for the solvent of the gelatinized coated film with ethylalchol, HMDS (hyxamethyldisilane), and heptane. Thus, moisture of the coated film is substituted with ethylalchol. HMDS causes a hydroxyl group of the coated film to be removed. In addition, the solvent in the coated film is substituted with heptane. With solvent whose surface tension is low (such as heptane), since force applied to a porous structure (namely, a mesh structure of TEOS) is small, the porous structure can be prevented from breaking. Thereafter, the wafer W is baked by the baking unit for one minute. Thus, an inter-layer insulation film as a silicon oxide film is formed on the front surface of the wafer W.




Next, the aging unit (gelatinization treating portion)


3


according to the first embodiment of the present invention will be described.




As shown in

FIG. 3A

, the aging unit


3


comprises a plate


31


, a lid


33


, a gas supplying path


34


, a gas flow regulating member


37


, and an exhausting path


35


. A wafer W is placed on the plate


31


. The lid


33


composes a sealing vessel along with the plate


31


and a seal member


32


that is disposed on the periphery of the plate


31


and that causes the lid


33


to seal the plate


31


. The gas supplying path


34


is connected to the sealing vessel through a gas supplying opening


34




a


that is open to the front surface of the wafer W. The gas flow regulating member


37


regulates the flow of gas supplied from the gas supplying opening


34




a


. The exhausting path


35


is pierced at the center of the lid


33


and the gas flow regulating member


37


.




The aging unit


3


has three wafer raising pins


36


that cause the wafer W to be raised from the plate


31


.




The gas flow regulating member


37


has a gas flow regulating surface portion


37




a


that is formed on the inner surface of the lid


33


. The gas flow regulating surface portion


37




a


faces a treatment surface of the wafer W (namely, the upper surface on which a film has been coated). The gas supplying opening


34




a


is formed in a slit shape on the periphery of the gas flow regulating surface portion


37




a.






Thus, the gas is equally supplied from the peripheral portion of the wafer W and exhausted from the exhausting opening


35




a


. When the gas supplying opening


34




a


is composed of several holes rather than the slit-shaped opening, the hole pattern may affect the thickness of the coated film. Thus, the gas supplying opening


34




a


is preferably formed in the slit shape. As long as the pattern of gas supplying holes is not transferred to the coated film, the gas supplying opening may be composed of many gas supplying holes.




The gas flow regulating surface portion


37




a


has an inclined surface portion


37




b


formed in such a manner that the distance from the inclined surface portion


37




b


to the front surface is reversely proportional to the distance from the center of the wafer W. In other words, the inclined surface portion


37




b


is formed in a concave shape.




In the example shown in

FIG. 3A

, the gas flow regulating surface portion


37




a


is most apart from the front surface of the wafer W in the middle from the periphery of the wafer W to the center portion of the sealing vessel. In addition, the gas flow regulating surface portion


37




a


downwardly protrudes at a portion surrounding the exhausting opening


35




a


so that the gas flow regulating surface portion


37




a


is close to the front surface of the wafer W. In other words, a convex portion


37




c


is formed on the periphery of the exhausting opening


35




a.






In the example shown in

FIG. 3A

, the gas flow regulating member


37


surrounds a space S as a treatment chamber between the gas flow regulating surface portion


37




a


and the treatment surface of the wafer W. The gas flow regulating member


37


has a partitioning portion


39


formed outside the space S as a peripheral buffer chamber


38


. The lower edge of the partitioning portion


39


is connected to the gas flow regulating surface portion


37




a


. A space is peripherally formed between the lower edge of the partitioning portion


39


and the plate


31


so as to supply the gas to the treatment chamber. The space is a gas supplying opening in the treatment chamber of the claim.




The buffer chamber


38


is connected to the gas supplying opening


34




a


. The buffer chamber


38


is connected to the space S as the-treatment chamber in the vicinity of the wafer W. Thus, the gas supplied from the gas supplying opening


34




a


to the buffer chamber


38


laterally flows from the periphery of the wafer W to the center of the buffer chamber


38


in the treatment chamber (space S).




The gas supplying path


34


pierces the plate


31


. In addition, the gas supplying path


34


has a gas dispersing chamber


30


in the plate


31


. The gas dispersing chamber


30


disperses the gas. The dispersed gas is supplied to the sealing vessel through the slit-shaped gas supplying opening


34




a


. In

FIGS. 3A and 3B

, for simplicity, only one gas supplying path


34


is illustrated. Alternatively, a plurality of gas supplying paths


34


(for example, three gas supplying paths


34


) may be disposed.




Next, the operation of the aging unit


3


shown in

FIGS. 3A and 3B

will be described.




A wafer W is transferred from the coating unit


2


to the aging unit


3


by the main arm


13


. The wafer W is placed on the plate


31


through the wafer raising pins


36


. Thereafter, the aging unit


3


is closed with the lid


33


. As shown in

FIG. 3B

, for example, ammonium gas is temporarily supplied from the gas supplying opening


34




a


to the buffer chamber


38


. The ammonium gas laterally flows from the periphery of the wafer W to the treatment chamber. The gas supplying opening


34




a


upwardly opens. The gas is temporarily stored in the buffer chamber


38


. Thereafter, the gas laterally flows from the buffer chamber


38


to the space S as the treatment chamber. Thus, a lateral flow of the gas from the periphery of the wafer W to the center portion thereof is formed. The gas spreads out and flows to the exhausting opening


35




a


at the center of the upper portion of the treatment chamber. The gas that upwardly spreads out smoothly flows to the inside of the treatment chamber along the inclined surface portion


37




b


. Thereafter, the convex portion


37




c


formed in the vicinity of the exhausting opening


35




a


causes the gas to downwardly flow to the wafer W so as to prevent the gas from being diluted in the vicinity of the center of the wafer W. Thus, an equal gas flow is formed along the front surface of the wafer W.




Since ammonia gas is supplied to the front surface of the wafer W, a treatment for gelatinizing colloid of TEOS in the coated film-and connecting it as a mesh structure is accelerated. Since the ammonia gas causes colloid of TEOS to be acceleratingly gelatinized as an alkaline catalyst, it is not always necessary to heat the ammonium gas. However, the ammonium gas may be heated.




In the first embodiment, since an equal gas flow is formed along the front surface of the wafer W, the gelatinizing treatment can be equally performed for the wafer W. Thus, a high-quality thin film (for example, inter-layer insulation film) can be obtained.




In this example, the gas supplied from the gas supplying opening


34




a


is ammonium gas. To suppress solvent in the coated film from vaporizing, vapor of solvent (for example, ethylene glycol) may be supplied along with ammonium gas. In the above-described gelatinizing treatment, the wafer may be heated at for example 100° C. so as to acceleratingly gelatinize the coated film of the wafer W.




In this case, to suppress the solvent in the coated film from vaporizing, for example vapor of ethylene glycol should be supplied. For example, a wafer W is placed on a plate that has an internal heater. In addition, the temperatures of pipes and a vapor generating source should be adjusted so that saturated vapor of ethylene glycol is generated at the temperature of the treatment chamber S. In this case, since vapor of ethylene glycol sufficiently spreads out to the center portion of the wafer W, the solvent of the coated film can be suppressed from unequally vaporizing.




According to the first embodiment of the present invention, the gas flow regulating member is not limited to the structure shown in FIG.


3


A.




Alternatively, as shown in

FIG. 4

, a gas flow regulating member


51


may have a partitioning plate portion


51




b


, a gas flow regulating surface portion


51




a


, and a convex portion


51




c


. The partitioning plate portion


51




b


partitions a buffer chamber


38


. The partitioning plate portion


51




b


is connected to the gas flow regulating surface portion


51




a


. The gas flow regulating surface


51




a


has a convex portion


51




c


. The convex portion


51




c


is formed in such a manner that the distance between the convex portion


51




c


and the front surface of the wafer W is proportional to the distance from the center portion of the wafer W. The convex portion


51




c


is formed in a peripheral area of an exhausting opening


35




a


as with the gas flow regulating member


37


shown in

FIGS. 3A and 3B

.




In this case, the gas flow regulating member


51


shown in

FIG. 4

does not have an inclined surface portion, a vortex flow may take place at the upper portion of the outer periphery of the gas flow regulating member


37


in comparison with the structure shown in FIG.


3


A. Except for such a drawback, the gas flow regulating member


51


shown in

FIG. 4

has the same effect as that shown in FIG.


3


A. Thus, a sufficiently equal gas flow is formed.




As shown in

FIG. 5

, a gas flow regulating member


52


may have a gas flow regulating surface portion


52




a


and a partitioning portion


52




b


. The gas flow regulating surface portion


52




a


is formed in a sphere shape of which the lower edge of a partitioning portion


52




b


that partitions a buffer chamber


38


is connected to an exhausting opening


35




a


in an upper convex shape (or a lower concave shape).




Alternatively, as shown in

FIG. 6

, a gas flow regulating member


53


may have a gas flow regulating surface portion


53




a


and a partitioning portion


53




b


. The gas flow regulating surface portion


53




a


is formed in a circular cone shape of which the lower edge of a partitioning portion


53




b


and an exhausting opening


35




a


are connected in a straight line shape. In the structures shown in

FIGS. 4

,


5


, and


6


, although the gas supplying effect to the center portion of the wafer W is weaker than that of the structure shown in

FIGS. 3A and 3B

, the other effects thereof can be obtained. In other words, in the structures shown in

FIGS. 4

,


5


, and


6


, a sufficiently equal gas flow can be obtained.




Alternatively, as shown in

FIG. 7

, a gas flow regulating member


54


may not have a partitioning portion equivalent to the partitioning portion


37




b


shown in FIG.


3


A. Thus, in the example shown in

FIG. 7

, since the structure shown in

FIG. 7

does not have a buffer chamber, since gas does not laterally flow, the effect for forming an equal gas along the wafer W slightly deteriorates. Except for this drawback, the same effects as the structure shown in

FIG. 3A

can be obtained. In other words, a sufficiently equal gas flow can be obtained. The shape of a gas flow regulating surface portion


54




a


of the gas flow regulating member


54


is not limited. However, the shape is for example the same as that of the structure shown in FIG.


3


A.




As shown in

FIG. 8

, only a partitioning portion


55


equivalent to the partitioning portion


37




b


shown in

FIG. 3A

may be formed. When gas is directly supplied to the treatment chamber without the partitioning portion


55


, a vortex flow takes place at a position opposite to the gas supplying opening


34




a


. However, in this example, since the partitioning portion


55


causes gas to laterally to flow, the vortex flow is suppressed from taking place. Thus, a equal gas flow is formed along the front surface of the wafer W. In this case, when the space between the lower edge of the partitioning portion


55


and the plate


31


is adequately adjusted, the equality of the gas flow can be improved.




According to the first embodiment of the present invention, the gas flow regulating member


37


,


51


,


52


,


53


, and


54


and the partitioning portion


55


may be integrally formed with the lid


33


. Alternatively, the gas supplying opening may be formed on a side surface of the wafer W (for example, a side plate portion of the lid


33


or a ceiling plate portion thereof). The substrate may be a glass substrate for use with a liquid crystal display rather than a wafer. The gas treatment may be another treatment such as an etching treatment rather than the gelatinizing treatment.




According to the first embodiment of the present invention, a substrate such as a wafer can be treated with an equal gas flow in a sealing vessel. Thus, a high-quality thin film (for example, inter-layer insulation film) can be obtained.




In other words, according to the first embodiment of the present invention (refer to claim 1), an outer peripheral portion of a gas flow regulating surface portion protrudes to a holding portion. A partially narrow gas path is formed between the outer peripheral portion of the gas flow regulating surface portion and the holding portion. Thus, gas supplied from a gas supplying opening does not form a vortex flow just above the gas supplying opening. Consequently, the gas supplied from the gas supplying opening equally flows from the outer periphery of the substrate to the center thereof through the gas path. Thus, a film with equal quality can be obtained.




According to a first modification of the first embodiment of the present invention (refer to claim 2), a buffer chamber is formed outside the outer peripheral portion of the substrate and above the gas supplying opening. Thus, the gas supplied from the gas supplying opening equally flows from the outer periphery of the substrate to the center thereof through the buffer chamber and the gas path. Consequently, the coated film on the substrate is equally treated with the gas. As a result, a film with equal quality can be obtained.




According to a second modification of the first embodiment of the present invention (refer to claim 3), gas supplied from the gas supplying opening flows to the center of the substrate through the buffer chamber and the gas path. At this point, the gas flows through an almost spherical concave portion of the gas flow regulating surface portion in the vicinity of the outer periphery of the substrate. Thus, although the gas flow is temporarily apart from the upper surface of the substrate, the gas flows along an almost doughnut shaped convex portion in the vicinity of the center of the substrate. Consequently, the gas flow approaches the front surface of the substrate. Thus, since the entire substrate equally contacts the gas, the concentration of the gas can be prevented from decreasing in the vicinity of the substrate. As a result, the coated film on the substrate is equally treated with the gas. Thus, a film with equal quality can be obtained.




According to a third modification of the first embodiment of the present invention (refer to claim 4), the gas supplied from the gas supplying opening flows to the center of the substrate through the buffer chamber and the gas path. At this point, the gas flows through an almost plane shaped outermost peripheral portion of a gas flow regulating surface portion in a cylindrical space in the vicinity of the outer periphery of the substrate. Thus, the gas flow is temporarily apart from the front surface of the substrate. Since the gas flows through an almost doughnut shaped convex portion in the vicinity of the center of the substrate, the gas flow approaches the front surface of the substrate. Thus, the concentration of the gas is prevented from decreasing in the vicinity of the center of the substrate. The entire substrate equally contacts the gas flow. Consequently, the coated film on the substrate is equally treated with the gas. As a result, a film with equal quality can be obtained.




According to a fourth modification of the first embodiment (refer to claim 5), the gas supplied from the gas supplying opening flows to the center of the substrate through the buffer chamber and the gas path. At this point, the gas flow regulating surface portion has an almost spherical concave portion on the inner peripheral side thereof. Thus, the direction and flow rate of the gas that flows from the outer periphery of the substrate to the center thereof are stable. Consequently, an equal gas flow is formed. As a result, the coated film on the substrate is equally treated with the gas. Thus, a film with equal quality can be obtained.




According to a fifth modification of the first embodiment of the present invention (refer to claim 6), gas supplied from the gas supplying opening flows to the center of the substrate through the buffer chamber and the gas path. At this point, the gas flow regulating surface portion has a concave portion with a vertex of the gas exhausting portion. Thus, the direction and flow rate of the gas that flows from the outer periphery of the substrate to the center thereof are stable. Consequently, an equal gas flow is formed. Since the coated film on the substrate is equally treated with the gas, a film with equal quality can be obtained.




According to a sixth modification of the first embodiment of the present invention (refer to claim 7), the gas supplied from the gas supplying opening flows to the center of the substrate through the buffer chamber and the gas path. At this point, the gas flows through an almost plane shaped outermost portion of the gas flow regulating portion in the space of the cylindrical shape in the vicinity of the outer periphery of the substrate. Thus, the gas flow is temporarily apart from the front surface of the substrate. Thereafter, the gas flows in the radial direction along the front surface of the substrate in the vicinity of the outer periphery of the substrate. On the other hand, since the exhausting opening is formed in the vicinity of the center of the substrate, the gas stably flows from the outer periphery of the substrate to the center thereof. As a result, the coated film on the substrate is equally treated with the gas. Thus, a film with equal quality can be obtained.




According to a seventh modification of the first embodiment of the present invention (refer to claim 8), the gas supplied from the gas supplying opening flows to the center of the substrate through the gas path. At this point, the gas flows through a nearly sphere shaped concave portion of the gas flow regulating surface portion in the vicinity of the outer periphery of the substrate. Thus, the gas flow is temporarily apart from the front surface of the substrate. However, since the gas flows through a doughnut shaped convex portion, the gas flow approaches the front surface of the substrate. Thus, the concentration of the gas is prevented from decreasing in the vicinity of the center of the substrate. Consequently, the gas equally contacts the entire substrate. As a result, since the coated film on the substrate is equally treated with the gas, a film with equal quality can be obtained.




According to an eighth modification of the first embodiment of the present invention (refer to claim 9), since the gas supplying opening is peripherally formed in a slit shape on the sealing vessel, a gas flow becomes stable. Thus, since the coated film on the substrate is equally treated with the gas, a film with equal quality can be obtained.




According to a ninth modification of the first embodiment of the present invention (refer to claim 10), the sealing vessel is composed of a first member and a second member. The holding portion is formed on the first member. The gas flow regulating portion is formed on the second member. The second member is approachable to the first member. Thus, the space between the gas flow regulating surface portion and the front surface of the substrate can be adjusted. Consequently, an adequate gas flow can be formed. As a result, since the coated film on the substrate is equally treated with the gas, a film with equal quality can be obtained.




According to a tenth modification of the first embodiment of the present invention (refer to claim 11), since the gas supplying path is formed through the first member, the space between the gas supplying path and the gas flow regulating surface portion can be adjusted. Thus, an optimum gas flow can be formed. Consequently, since the coated film on the substrate is equally treated with the gas, a film with equal quality can be obtained.




According to an eleventh modification of the first embodiment of the present invention (refer to claim 12), a coating solution of which particles or colloid of a start substance of a film component has been dispersed to solvent is coated on the substrate. Thus, a coated film is formed. In the sealing vessel, the gas is used so as to acceleratingly gelatinizing the particles or colloid of the coated film.




Thus, when the gelatinizing condition of the coated film in the gas treatment is optimized, a coated film with equal quality can be formed.




According to a twelfth modification of the first embodiment of the present invention (refer to claim 13), the gas is alkaline gas.




Thus, when the gelatinizing condition of the coated film in the gas treatment is optimized, a coated film with equal quality can be formed.




Second Embodiment




Next, a second embodiment of the present invention will be described. For simplicity, in the second embodiment, the description of similar portions to those in the first embodiment will be omitted.





FIG. 11

is a schematic diagram showing an outlined structure of an aging unit (a coated film treating unit)


103


according to the second embodiment of the present invention.

FIG. 12

is a plan view of the aging unit


103


.




As shown in

FIG. 11

, the aging unit


103


comprises a heating plate


131


, a lid


133


, and an exhausting path


135


. A wafer W is placed on the heating plate


131


. The heating plate


131


has an inner heater


132


as a heating means. A seal member


134


is disposed on the periphery of the heating plate


131


. The lid


133


composes a sealing treatment vessel


130


along with the seal member


134


and the heating plate


131


. An exhausting path


135


is open at a center portion of the lid


133


. A heating means is preferably disposed in the lid


133


. A plurality of (for example, 15) gas supplying openings


136


are distributively formed along the outside of the periphery of the wafer W (refer to FIG.


12


). A plurality of (for example, three) wafer raising pins


137


for raising the wafer W in a space formed between the sealing vessel


130


and the heating plate


131


are disposed on the heating plate


131


.




The heating plate


131


is composed of a material with large heat capacity so as to suppress a temperature fluctuation due to heat exchange as a disturbance. The hating plate


131


is composed of aluminum and ceramics (for example, SiC) in such a manner that aluminum is coated with ceramics. According to the second embodiment of the present invention, the thickness of the heating plate


131


is not limited. In this example, the thickness of the heating plate


131


is for example 4 cm. Thus, while the gelatinizing treatment is being performed, the temperature of the heating plate


131


is always kept at an almost constant temperature.




Solvent vapor generating portion


105


is connected to the gas supplying openings


136


of the sealing vessel


130


. The solvent vapor generating portion


105


has a heating babbler that generates solvent vapor at a predetermined temperature. The solvent vapor is supplied to the sealing vessel


130


. A gas dispersing chamber


157


is formed in the middle of the gas supplying path


151


so as to equally supply the solvent vapor to the plurality of gas supplying openings


136


.




The gas dispersing chamber


157


is formed in a ring shape along the outer periphery of the wafer W placed on the heating plate


131


. The gas supplying path


151


branches on the side of the solvent vapor generating portion


105


. The branched paths are connected at two opposite positions in the diametrical direction of the vessel


130


(refer to FIG.


12


). Thus, the inner temperature of the gas dispersing chamber is almost the same as the temperature of the heating plate


131


(namely, the temperature of the gelatinizing treatment). In addition, the gas supplying path


151


is provided with a valve V


0


and a tape heater


151




a


. The valve V


0


is disposed in the middle of the gas supplying path


151


. The tape heater


151




a


is a heating means that is wound around the gas supplying path


151


.




The solvent vapor generating portion


105


comprises a bubbling tank (first reservoir tank)


152


, a bubbling gas supplying pipe


153


, a liquid level sensor


154


, a heater


155


, a temperature sensor


156


, and a pressure relief pipe


157


. The bubbling tank


152


reserves solvent


150


such as ethylene glycol. The bubbling gas supplying pipe


153


blows carrier gas such as N


2


supplied from a bubbling gas supplying unit (not shown) to the solvent


150


and bubbles the solvent


150


. The liquid level sensor


154


detects the liquid level of the solvent


150


. The heater


155


heats the solvent


150


so that the temperature of the solvent


150


is slightly higher than the temperature of the sealing vessel


130


. The temperature sensor


156


detects the temperature of the solvent


150


heated by the heater


155


. The pressure relief pipe


157


has a valve V


1


for relieving the inner pressure of the tank


152


when the solvent is replenished to the tank


152


.




The solvent temperature detected by the temperature sensor


156


is fed back to a controlling portion (not shown). The controlling portion turns on/off the heater


155


. Thus, the heater


155


and the temperature sensor


156


function as a first temperature adjusting means. The liquid level of the solvent detected by the liquid level sensor


154


is fed back to the controlling portion. Under the control of the controlling portion, the solvent is replenished to the bubbling tank


152


.




The solvent vapor generating portion


105


has a temperature adjusting spare tank (second reservoir tank)


162


. The temperature adjusting spare tank


162


is connected to the bubbling tank


152


through a connecting portion


161


and a valve V


2


. The temperature adjusting spare tank


162


reserves solvent


160


such as ethylene glycol. The temperature adjusting spare tank


162


is connected to a pressuring portion


180


through a pipe


163


. The controlling portion causes the valve V


2


to opened/closed and the pressuring portion


180


to be turned on/off. The pressuring means blows pressured air to the temperature adjusting spare tank


162


and increases the inner pressure of the tank. When the solvent is replenished to the bubbling tank


152


, the pressuring means relieves the pressured air of the tank.




As with the bubbling tank


152


, the temperature adjusting spare tank


162


has a liquid level sensor


164


, a heater


165


, and a temperature sensor


166


. The heater


165


and the temperature sensor


166


function as a second temperature adjusting means. The second temperature adjusting means and the controlling portion cause the temperature of the solvent


160


in the temperature adjusting spare tank


162


to be kept to the same temperature as the solvent


150


in the bubbling tank


152


. When the liquid level sensor


164


detects a decrease of the liquid level of the solvent


160


in the temperature adjusting spare tank


162


, the controlling portion causes the solvent to be replenished from the replenish tank


172


connected to the temperature adjusting spare tank


162


. The temperature adjusting spare tank


162


has a pressure relief pipe (not shown).




The replenish tank


172


and the temperature adjusting spare tank


162


are connected with a pipe


173


through a pump P such as peri-pump. The pump P is controlled by the controlling portion. Thus, the solvent


170


such as ethylene glycol in the tank is supplied to the temperature adjusting spare tank


162


.




Next, the operation of the aging unit


103


will be described. After a wafer W is transferred from the coating unit


102


, the wafer W is placed on the heating plate


131


of the aging unit


103


. Thereafter, the coating unit


102


is closed with the lid


133


. At this point, to acceleratingly gelatinizing a coated film of the wafer W, the wafer W is heated to for example around 100° C. by the heater


132


. On the other hand, the solvent


150


in the bubbling tank


152


is heated and kept at a slightly higher temperature by around 1 to 5° C. than the temperature of the wafer W (around 100° C.). When the temperature of the solvent


150


is much higher than the temperature of the wafer W, the temperature of the solvent


150


does not drop in the gas dispersing chamber


157


and thereby condensation takes place in the sealing vessel.




Carrier gas such as N, is blown to the solvent


150


reserved in the bubbling tank


152


through the bubbling gas supplying pipe


153


. Thus, vapor of the solvent component at temperature t1° C. slightly higher than the inner temperature of the sealing vessel (for example, around 100° C.) is generated. The vapor of the solvent component may contain vapor that saturates at the inner temperature of the sealing vessel (for example, 100° C.) rather than temperature t1° C. In other words, it is difficult to obtain perfectly saturated vapor with bubbled solvent. The relative humidity of ethylene glycol is preferably around 100%. The vapor is supplied to the gas supplying path


151


. The vapor is kept at temperature t1° C. by the heater


151




a


wound around the gas supplying path


151


. Thereafter, the vapor is supplied to the gas dispersing chamber


157


formed in the heating plate


131


.




Since the temperature of the vapor of the solvent component supplied to the gas dispersing chamber


157


is slightly higher than the inner temperature of the gas dispersing chamber


157


, the vapor is slightly cooled in the gas dispersing chamber


157


and thereby the vapor super-saturates. In addition, since the temperature of the gas dispersing chamber


157


is almost the same as the temperature of the sealing vessel


130


, the vapor of the solvent component that has super-saturated in the gas dispersing chamber


157


occasionally condenses in the gas dispersing chamber


157


. The solvent component becomes vapor that saturates or almost saturates at the temperature of the sealing vessel


130


. Since the solvent vapor that saturates or almost saturates at the temperature of the sealing vessel


130


is supplied to the sealing vessel, the solvent component does not condense in the sealing vessel


130


.




Since the vapor of the solvent component disperses in the gas dispersing chamber


157


, the vapor of the solvent component is equally supplied from the plurality of gas supplying openings


136


formed along the periphery of the gas dispersing chamber


157


formed in the ring shape.




When the liquid level of the solvent


150


in the bubbling tank


152


decreases and the liquid level sensor


154


detects the decrease of the liquid level (refer to FIG.


13


A), the controlling unit causes the valve V of the connecting portion


161


that connects the bubbling tank


152


and the temperature adjusting spare tank


162


to be opened. In addition, the controlling portion causes the pressuring portion


180


to increase the inner pressure of the temperature adjusting spare tank


162


. Thus, the solvent


160


in the temperature adjusting spare tank


162


is replenished to the bubbling tank


152


through the connecting portion


161


(refer to FIG.


13


B). When the liquid level of the solvent


150


in the bubbling tank


152


becomes a predetermined liquid level, the liquid level sensor


154


detects the situation. At this point, the controlling unit causes the valve V of the connecting portion


161


to be closed. In addition, the controlling unit causes the pressuring portion


180


to stop increasing the inner pressure of the temperature adjusting spare tank


162


. Thus, the replenishment of the solvent to the bubbling tank


152


is stopped. After the valve V is closed and the pressuring portion


180


is deactivated, the pressured air in the temperature adjusting spare tank


162


is naturally relived.




When the liquid level of the solvent


150


in the bubbling tank


152


is not controlled with the liquid level sensor


154


, bubbles of the solvent


150


bubbled with the carrier gas such as N


2


shortly disappear. Thus, the concentration of the solvent component in the bubbles does not saturate, but lowers. To prevent such a problem, according to the second embodiment of the present invention, the liquid level of the solvent


150


in the bubbling tank is always kept in a higher level. Thus, the solvent sufficiently bubbles.




Since the temperature of the solvent


160


in the temperature adjusting spare tank


162


is heated and kept at the same temperature as the solvent


150


in the bubbling tank


152


by the heater


165


and the temperature sensor


166


. Thus, when the solvent


160


is replenished from the temperature adjusting spare tank


162


to the bubbling tank


150


, the temperature of the solvent


150


does not drop.




In the second embodiment of the present invention, the temperature of the solvent


150


is controlled so that when the solvent


160


is replenished from the temperature adjusting spare tank


162


to the bubbling tank


152


, the solvent


160


does not cause the temperature of the solvent


150


to drop. Otherwise, the temperature of the solvent


150


in the bubbling tank


152


temporarily drops.




When the temperature of the vapor of the solvent component that saturates with carrier gas such as N


2


rises to the temperature of the gas dispersing chamber


157


and the sealing vessel


130


, the saturated vapor cannot be obtained at the temperature of the sealing vessel. To prevent this problem, according to the second embodiment of the present invention, the temperature adjusting spare tank


162


is heated and kept at the same temperature as the bubbling tank


152


by the heater


162


and the temperature sensor


166


. Alternatively, the supplying pipe connected from the tank


172


to the bubbling tank


152


may be heated instead of using the temperature controlling spare tank


162


.




When the liquid level of the solvent


160


in the temperature adjusting spare tank decreases and the liquid level sensor


164


detects the decrease of the liquid level, the controlling unit causes the pump P in the middle of the connecting portion (pipe


173


) connected from the temperature adjusting spare tank


162


to the replenish tank


172


to be activated. Thus, the solvent


170


is replenished from the replenish tank


172


to the temperature adjusting spare tank


162


. When the liquid level of the solvent


160


in the temperature adjusting spare tank


160


becomes a predetermined liquid level, the liquid level sensor


164


detects the liquid level. At this point, the controlling unit causes the pump P to be deactivated. Thus, the replenishment of the solvent


170


to the temperature adjusting spare tank


162


is stopped.




According to the second embodiment of the present invention, the solvent


150


is heated to a temperature slightly higher than the temperature of the gas dispersing chamber


157


(namely, the sealing vessel) by the solvent vapor generating portion


105


so as to generate vapor that becomes saturated vapor in the sealing vessel. The vapor is supplied to the sealing vessel through the gas dispersing chamber


157


. Thus, the vapor of the solvent component is cooled in the gas dispersing chamber


157


. Consequently, the vapor super-saturates in the gas dispersing chamber


157


. Part of the super-saturated vapor of the solvent component occasionally condenses and is removed. Thus, vapor that saturates at the temperature of the sealing vessel


130


is obtained. The resultant vapor is supplied to the sealing vessel. Thus, when the coated film is gelatinized, the organic solvent can be prevented from vaporizing from the coated film. In addition, the solvent vapor is prevented from condensing on the front surface of the wafer W in the sealing vessel. Consequently, a coated film (particularly, an inter-layer insulation film such as a silicon oxide film) with equal film thickness can be obtained.




According to the second embodiment of the present invention, since the vapor of the solvent component is dispersed by the gas dispersing chamber


157


and equally supplied to the sealing vessel, a coated film (particularly, an inter-layer insulation film such as a silicon oxide film) with more equal film thickness can be obtained.




According to the second embodiment of the present invention, since the solvent


160


is properly replenished from the temperature adjusting spare tank


162


to the bubbling tank


152


, the liquid level of the solvent


150


in the bubbling tank


152


is kept in a high position. Thus, bubbles of the solvent


150


sufficiently stay in the bubbling tank


152


. In addition, the solvent


160


in the temperature adjusting spare tank


162


is heated and kept at the same temperature as the solvent


150


in the bubbling tank


152


. Thus, when the solvent


160


is replenished from the temperature adjusting spare tank


162


to the bubbling tank


152


, the solvent


150


in the bubbling tank


152


is always kept at a temperature slightly higher than the inner temperature of the sealing vessel


130


. Consequently, vapor whose temperature is slightly higher than the temperature of the gas dispersing chamber


157


and that saturates in the sealing vessel


130


is always supplied to the gas dispersing chamber


157


. Excessive vapor of the solvent component condenses in the gas dispersing chamber


157


and is removed. Thus, vapor of the solvent component that saturates or that almost saturates at the temperature of the sealing vessel


130


is supplied thereto.




The second embodiment of the present invention is not limited to the structure shown in

FIGS. 11

,


12


,


13


A and


13


B. In other words, the second embodiment can be modified in various manners. For example, the bubbling tank


152


and the temperature adjusting spare tank


162


may be surrounded with a resistor heater or the like so as to heat the solvents


150


and


160


in the respective tanks. The structures of the temperature sensors


156


and


166


are not limited as long as they detect the temperatures of the solvents


150


and


160


. The gas supplying openings


136


that are open to the heating plate


131


may be formed in a slit shape. In addition, the treatment substrate may be a glass substrate for use with a liquid crystal display as well as a wafer.




Moreover, in an aging unit


103


A shown in

FIG. 14

, ammonium gas may be supplied to a sealing vessel


130


along with vapor of a solvent. In this case, ammonium solution


190


(around 30% by weight) is replenished to an alkali reservoir tank


192


. Ammonium gas is blown to the ammonium solution


190


through an ammonium gas supplying pipe


193


. Thus, ammonium gas that contains 100% of water vapor is generated. The ammonium gas is supplied to a gas supplying path


151


through a pipe


191


. At this point, the ammonium solution


190


in the alkali reservoir tank


192


is heated and kept at the same temperature as a bubbling tank


152


by a heater


195


and a temperature sensor


196


. The ammonium gas at the same temperature as the vapor of the solvent is supplied to the gas dispersing chamber


157


. In the structure shown in

FIG. 14

, since the ammonium gas acts as alkali catalyst on TEOS and acceleratingly gelatinizes it, the gelatinizing treatment promptly completes and thereby the through-put improves.




Thus, according to the second embodiment, solvent is prevented from vaporizing from a coated film in the gelatinizing treatment. In addition, vapor of the solvent is prevented from condensing on the front surface of a treatment substrate in the sealing vessel. Thus, a thin film (for example, an inter-layer insulation film) with equal film thickness can be obtained.




Although the present invention has been shown and described with respect to a best mode embodiment thereof, it should be understood by those skilled in the art that the foregoing and various other changes, omissions, and additions in the form and detail thereof may be made therein without departing from the spirit and scope of the present invention.



Claims
  • 1. A gas treatment apparatus, comprising:a sealing vessel for holding a coated substrate; a heating means for heating the inside of said sealing vessel so as to gelatinize the coating of the substrate; a gas supplying path for supplying vapor of a solvent to said sealing vessel; an exhausting path for exhausting gas out of said sealing vessel; a first reservoir tank for reserving a solution of the solvent, bubbling the solution with a carrier gas, and supplying the vapor of the solvent to said sealing vessel through said gas supplying path; a first temperature adjusting means for adjusting the temperature of the solution in said first reservoir tank to a predetermined temperature; a second reservoir tank for replenishing the solution to said first reservoir tank when the amount of the solution in the first reservoir tank decreases; and a second temperature adjusting means for adjusting the temperature of the solution in said second reservoir tank to a predetermined temperature.
  • 2. The gas treatment apparatus as set forth in claim 1, further comprising:means for supplying alkali gas to said sealing vessel so as to accelerate the gelatinization of the coating of the substrate.
  • 3. The gas treatment apparatus as set forth in claim 1, wherein the vapor of the solvent is ethylene glycol.
Priority Claims (2)
Number Date Country Kind
P10-013218 Jan 1998 JP
P10-078395 Mar 1998 JP
Parent Case Info

This application is a division of U.S. patent application Ser. No. 09/210,854 filed Dec. 15, 1998, now U.S. Pat. No. 6,190,459 B1.

US Referenced Citations (17)
Number Name Date Kind
4220460 Partus Sep 1980 A
4235829 Partus Nov 1980 A
4276243 Partus Jun 1981 A
4436674 McMenamin Mar 1984 A
4545801 Miyajiri et al. Oct 1985 A
4563312 Takimoto et al. Jan 1986 A
4582480 Lynch et al. Apr 1986 A
4844006 Page et al. Jul 1989 A
5035200 Moriyama et al. Jul 1991 A
5399200 Stauffer Mar 1995 A
5401316 Shiraishi et al. Mar 1995 A
5505781 Omori et al. Apr 1996 A
5575854 Jinnouchi et al. Nov 1996 A
5580822 Hayakawa et al. Dec 1996 A
6190459 Takeshita et al. Feb 2001 B1
6409838 Sakai Jun 2002 B1
20010000198 Takeshita et al. Apr 2001 A1
Foreign Referenced Citations (3)
Number Date Country
55-130894 Oct 1980 JP
61-24227 Feb 1986 JP
05-21351 Jan 1993 JP